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Introduction

The numerical simulation of fluid-structure interaction is a complicated problem,
mainly because the dynamics are very sensitive to the unsteady behaviour of tur-
bulent flows. Numerical simulation of these flows is theoretically possible; the
governing Navier-Stokes equations have been known since the early 19th century.
Practically, however, the direct solution is limited to either very small scale problems
or low Reynolds number flows, as the discretized system will very rapidly outgrow the
capabilities of current day computers. The Variational Multiscale (VMS) method
has been suggested as a possible solution to this problem, solving a slightly different
set of equations on a coarser mesh. Although this approach has been very success-
ful, problems remain when the new system of equations is solved in parallel on a
computer cluster.

Parallel computing is used for two reasons. First, by executing separate tasks si-
multaneously, the result can be obtained faster. With the current day processors
running up against fundamental physical limits, further speed gains must be sought
in exploiting parallelism. Second, by distributing the problem over multiple nodes,
larger problems can be solved. Two processors will always be able to solve a larger
problem than a single one, no matter how much memory each has separately. The
disadvantage of all this is formed by the inevitable inter processor communication,
which is usually so much slower than computation that it must be reduced to a
minimum. This means in practice that lesser algorithms are preferred over higher
quality algorithms because of their better parallel properties. The problem for VMS
is that these lesser algorithms turn out to be inferior.

The goal of this report is to examine the possibilities of improving the performance
of VMS in parallel computing environments. The aim is not to modify the VMS
method itself, which will be considered a given fact. Instead, investigations will con-
centrate on the algorithms that are being used to solve the linear systems generated
by this method — the solvers — that are responsible for a large part of the total
computation time. Key focus will be to enhance these solvers by applying defla-
tion, a numerical technique that has already been proved effective for various other
types of problems. This report will try to determine if deflation can be effective in
increasing the parallel efficiency of the VMS method as well.

The answer to this question has been divided in four chapters. Chapter 1 introduces
the VMS method. This method is the source of the troublesome linear systems, and
the underlying mathematics as well as the physical interpretation of the solution can
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Introduction 5

provide insight in the problem, and therefore, the solution. The deflation technique
that is expected to accelerate the solution process of these systems will be introduced
in Chapter 2, forming the conclusion of a general introduction in iterative solution
methods. Because numerical experiments will be required, Chapter 3 describes
the implementation of the deflation technique in the software framework that has
been used for VMS as well. The results of these experiments will be presented and
discussed in Chapter 4, at which point it should be clear whether deflation is indeed
capable of alleviating the experienced parallelization problems for VMS.

Throughout the report a number of notational conventions will be used. Important
terms that occur for the first time in the report are printed in boldface, signifying
that they have been added to the index. The highlight will aid the location of terms
looked up from the index. Other use of boldface is for vectors v, lowercase, and
matrices A, uppercase. Vector spaces V are typeset in calligraphic font; the only
exception being the set of reals, R. The single other use for this blackboard font is
in the projection operator P that will be introduced in Chapter 2.



Chapter 1

The VMS method

In the field of fluid dynamics, arguably the most important distinction made is that
of laminar and turbulent flows. Laminar flows are characterized by a smooth and
highly predictable nature, whereas turbulent flows are chaotic, exhibiting rapid and
seemingly random variations in pressure and velocity. The distinctive difference be-
tween the two types of flow is clearly visible in Figure 1.1, which shows a comparison
of both types of flow over a sphere. Unfortunately, most flows that are found in
nature, be it stirred coffee or the airflow around an airplane, are of the turbulent
type. Their chaotic nature makes numerical simulation extremely hard, due mostly
to the enormous range of scales of motion characteristic for this type of flow. These
simulations form the research field of Computational Fluid Dynamics (CFD).

This chapter will present the Variational Multiscale (VMS) method, which aims
to accurately simulate turbulent flows at much lower costs than a direct numeri-
cal simulation. Section 1.1 presents the governing set of Navier-Stokes equations.
Section 1.2 then gives an overview of Large Eddy Simulation, a method that is
somewhat older but quite similar to VMS, which is introduced next in that section.

laminar flow turbulent flow

Figure 1.1. Comparison of laminar and turbulent flow past a sphere in water,
copied from Anderson [1], Figures 6.9 and 6.10. The laminar flow separates readily
from the surface, leaving a large wake. The turbulent flow separates much further
back on the surface.

6



Chapter 1. The VMS method 7

Section 1.3 defines the discrete representation of the flow, and shows how this flow
can be computed using a discontinuous Galerkin method. Finally, Section 1.4 is
the final step towards an actual implementation of this method by transforming the
resulting non-linear system into a series of linearized equations.

Besides the notational conventions that apply throughout this report, equations in
this chapter make extensive use of what is known as Cartesian tensor notation.
In this notation, spatial and temporal differentiation are denoted as follows:

φ,i =
∂φ

∂xi
, φ,t =

∂φ

∂t
. (1.1)

This convention is very common in CFD literature because of the clean and short
notation it provides for the often large equations in this field. This is especially
so when used in combination with the Einstein summation convention, in which
Greek indices occurring twice within a term or product are interpreted as a summa-
tion over that index. For example, the divergence of a vector field u(x) in 3D space
is notated compactly as uα,α, which expands to u1,1 + u2,2 + u3,3. Both Cartesian
tensor notation and the Einstein summation convention are used exclusively in this
chapter.

1.1 The Navier-Stokes equations

Turbulent flows consist of an enormous range of fluid motions. See for example
Figure 1.2, the famous Leonardo da Vinci drawing which shows large circular motions
around a sluice and much smaller whorls near the impact of the stream. Even the
tiniest whorls, however, are about five orders of magnitude larger than the discrete
molecules that the fluid is made of. The molecular nature of the fluid is therefore
assumed to have only negligible effect on the macroscopic flow. Instead, the fluid
is treated as a continuous medium, which makes it possible to speak in terms of
speed and density at a distinct point in space and time. This important assumption
is known in fluid mechanics as the continuum hypothesis.

The equations that describe the motion of a fluid are known as the Navier-Stokes
equations, independently derived by G.G. Stokes and M. Navier in the early 1800’s.
In the incompressible, viscous case the system consists of five equations: the conti-
nuity equation, three momentum equations and the energy equation. These equa-
tions will be presented here with a brief outline of their origins; for more information
on all underlying physics see for example Anderson’s Fundamentals of aerodynam-
ics [1].

1. Continuity equation

An obvious condition that any fluid must obey is conservation of mass. In an
arbitrary control volume in space, the net mass flow through the boundaries
should equal the rate of mass production within. When the latter is assumed
to be zero, this leads to the following relation between the flow density ρ and
speed u:

ρ,t + (ρuα),α = 0. (1.2)
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Figure 1.2. Part of Leonardo da Vinci’s Studies of water passing obstacles and
falling, showing a flow field induced by a falling stream. The drawing shows many
different scales of fluid motion.

2. Momentum equations

Another important law of nature is conservation of momentum, also known as
Newton’s second law: force equals rate of change of momentum. The forces
that are exerted on a fluid fall in two categories. In terms of control volumes:
body forces act on the entire volume (gravity etcetera, collectively f) while
surface forces act on its boundary (pressure p, shear stress τij). The former
is assumed to be known, the latter will be related to the flow field variables
through constitutive relations. This gives three separate equations, one for
each dimension i:

(ρui),t + (ρuiuα − τiα),α = ρfi. (1.3)

The following constitutive relations are most common:

• τij = −pδij + µ(ui,j + uj,i − 2
3δijuk,k)

• p = ρRT ,

where µ is the dynamic viscosity of the fluid, T the temperature and R the
specific gas constant that connects the fluid’s pressure, density and temper-
ature. The δij in the shear stress expression is the Kronecker delta, which
evaluates to one if i equals j, and zero otherwise.

3. Energy equation

For incompressible flows, i.e. having constant density ρ, the above system of
four equations is complete. For compressible flows, however, an additional
equation is required for the extra unknown ρ. This is the energy equation,
derived from the first law of thermodynamics which states that energy can
neither be created nor destroyed, it can only change form. This means that
the rate of change of the total (internal plus kinetic) energy e should balance
the work exerted on the fluid and heat flux q, yielding:

(ρe),t + (ρuαe− ταβuβ + qα),α = ρfβuβ , (1.4)
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with again two constitutive relations to close the system:

• qi = −κT,i

• e = 1
2uαuα + cvT .

Here κ is the thermal conductivity and cv the specific heat at constant volume,
related to the specific heat at constant pressure cp through cp − cv = R.

In vector notation, it can be seen that the above system of five equations can be
written compactly as follows:

U ,t + F α,α = S, (1.5)

where U(x, t) ∈ R5 contains the so-called conservation variables, F α(x, t) ∈ R5

is the flux vector in the α-th direction and S(x, t) ∈ R5 a source vector. Along
with the constitutive relations, Equation 1.5 forms a closed, non-linear system that
completely describes the flow of a fluid. It will be shown, however, that to create
an efficient numerical method for solving this system is far from straightforward.

1.2 Resolving the large scales of motion

With the governing Navier-Stokes equations available as Equations 1.5, the obvious
approach to simulating a fluid flow is to simply discretize the flow field and solve this
equation numerically. This approach is known as Direct Numerical Simulation
(DNS). Unfortunately, in practice, the smallest length scales are so small that the
costs of such a direct simulation are extremely high. This makes DNS unfeasible for
realistically sized problems. Various models — note: as opposed to simulations —
have been developed to overcome this problem. Examples are Reynolds Averaged
Navier-Stokes (RANS) and Large Eddy Simulation (LES). Compared to these, the
Variational Multiscale (VMS) method that will be introduced in this chapter is
relatively new.

An important idea behind these methods is that of the energy cascade, introduced
by Richardson [14] in 1920. His idea was that turbulence is composed of eddies of
different sizes — an eddy being a certain localized turbulent motion. Richardson
observed that the large eddies are unstable and break up, transferring their energy
to somewhat smaller eddies, which in turn break up into smaller eddies. This energy
cascade continues until at very small scale the eddy motion is stable, and kinetic
energy is dissipated through molecular viscosity. Richardson elegantly summarized
his paper as follows:

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity.
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VMS and LES are based on similar ideas. Both methods solve the system of Navier-
Stokes equations on a much coarser grid than required for a direct numerical sim-
ulation. Since this grid can not represent the smallest scales of fluid motion, the
‘lesser whorls / and so on to viscosity’, a so called eddy-viscosity model is used
to compensate for this deficient resolution. Such a model aims to reconstruct the
influence of the smallest, unresolved scales on the larger, resolved scales, based
only on those resolved scales. The quality of the resulting simulation is determined
largely by the quality of this model.

1.2.1 Large Eddy Simulation

Because LES is so closely related to VMS a short overview of the main ideas behind
this method will be useful. Returning to Da Vinci’s drawing, Figure 1.2, it can be
seen that below a certain length scale the turbulent motions turn from anisotropic to
isotropic, losing all information about the boundary imposed geometry of the large
eddies. This divides the range of scales into two classes with markedly different
properties. DNS resolves both of these, expending nearly all of its computational
effort on the smallest scales of motion. LES resolves only the largest, exploiting the
fact that the large eddies contain the bulk of the kinetic energy.

Pope [13] identifies four conceptual steps in LES:

1. A spatial filter is defined to decompose the velocity u into a filtered (resolved)
component ū and a residual (unresolved) component û. The filtered velocity
field ū represents the motion of the large eddies.

2. The filter is applied to the system of Navier-Stokes equations to derive a new
system for the filtered velocity field ū. Problems arise at the non-linear terms,
since those can not be expressed exclusively in terms of the filtered velocity
ū. This is known as the closure problem.

3. Closure is obtained by replacing the velocity u in the non-linear terms with
the filtered velocity ū and correcting this with a model term: the closure.

4. The new system is solved for ū, which provides an approximation of the large
scale motions in the turbulent flow.

Although LES does give quite good results for certain flow problems and in fact
is widely used, the method has its drawbacks. For instance at step 2, the filter
operation does not commute with spatial differentiation on non-uniform grids, which
restricts the method to relatively simply geometries. Other problems arise at the
walls, where the filter will either have to shrink or extend beyond the boundary.
The major source of problems, however, is step 3. The closure term often fails to
realistically model the influence of the neglected smallest eddies, in particular near
the walls. Since this model applies to all large scale motions LES fails to converge
to the true DNS solution, which in the worst case may lead to even qualitatively
different results.
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1.2.2 The Variational Multiscale method

The Variational Multiscale method, described a.o. by Hughes et al. [6], Collis [2] and
Munts et al. [11], has been specifically designed to address some of the shortcomings
of Large Eddy Simulation. Both methods use a similar approach; the system of
Navier-Stokes equations is solved on a grid that is much too coarse to represent the
small scales of fluid motion, and a model is used to compensate for the inability
to simulate the smallest eddies. Instead of a single decomposition in resolved and
unresolved scales, however, VMS goes one step further and subdivides the former
into large and small resolved scales. This division is reflected by a corresponding
division in function spaces:

V = V̄ ⊕ Ṽ ⊕ V̂, (1.6)

where V is the problem’s solution space, containing space-time representations of the
flow, and V̄, Ṽ and V̂ represent the large, small and unresolved scales, respectively.
The first two are resolved and therefore finite dimensional. For brevity the resolved
space is sometimes denoted as:

¯̃V def= V̄ ⊕ Ṽ. (1.7)

The system of Navier-Stokes equations has been presented in strong form in Sec-
tion 1.1 as Equation 1.5. Vectors U and F α can be expressed in any set of five flow
field variables, joined in a solution vector Y (x, t). This choice of variables defines
the solution space V. For practical reasons it was chosen to define the flow field by
density, speed and temperature:

Y = {ρ, u1, u2, u3, T}T ∈ V. (1.8)

Using the inner product (f , g) =
∫

Q
fT g dQ, taking the inner product with an

arbitrary test function W ∈ V transforms Equation 1.5 to its weak form:

∫

Q

W T (U ,t + F α,α) dQ =
∫

Q

W T S dQ ∀ W ∈ V, (1.9)

or, expressed in Y :
B(W ,Y ) = (W ,S) ∀ W ∈ V, (1.10)

for some operator B : V ×V → R, that is linear in its first argument and non-linear
in its second. The weak formulation is generally the first step in a solution proce-
dure, such as a finite element method. Indeed, when the Navier-Stokes equations
are reformulated in the VMS framework, this procedure will be continued in Sec-
tion 1.3.2. The weak formulation is presented here already because it is an essential
part of VMS as well, which uses the test functions W to separate the large, small
and unresolved scales of motion. Using the decomposition defined in Equation 1.6,
Equation 1.10 can be written as:

B(W̄ + W̃ + Ŵ , Ȳ + Ỹ + Ŷ ) = (W̄ + W̃ + Ŵ ,S)

∀ W̄ ∈ V̄, W̃ ∈ Ṽ, Ŵ ∈ Ŵ. (1.11)
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Taking only one element W̄ , W̃ or Ŵ non-zero at a time, the following system of
three equations is obtained:

B(W̄ , Ȳ + Ỹ + Ŷ ) = (W̄ ,S) ∀ W̄ ∈ V̄
B(W̃ , Ȳ + Ỹ + Ŷ ) = (W̃ ,S) ∀ W̃ ∈ Ṽ
B(Ŵ , Ȳ + Ỹ + Ŷ ) = (Ŵ ,S) ∀ Ŵ ∈ V̂.

(1.12)

Because all terms are linear in their first argument, summing the three equations
transforms Equation 1.12 back to 1.11, which proves complete equivalence to the
original set of Navier-Stokes equations. In other words, the above system is a
reformulation of the original Equation 1.5 and as such still exact. No approximations
have been made to this point.

Reviewing the above procedure, the original system has been reformulated in terms
of unresolved, small and large scales by making a corresponding division in function
spaces and writing the solution Y as a sum of its elements. The weak formulation
acts as a kind of ‘projection’ of Y onto V̄, Ṽ and V̂. This is a striking difference
with the LES method, because now the three scales are separated without the use
of any filtering operation. As a consequence, the obtained formulation is still exact.
Using test functions for the splitting eradicates all problems caused by the spatial
filter (at the wall, on unstructured grids), without even introducing a substitute
operation as these test functions will be part of the solution procedure anyway.

The exactness of Equation 1.12 will be lost when the unresolved scales Ŷ are
ignored, which is necessary because these can not be represented on a coarse grid.
The influence of these scales is present in both of the remaining large and small
scale equations. However, according to Richardson’s energy cascade introduced
in the beginning of Section 1.2, eddies influence mostly nearby scales. Therefore,
the influence of the unresolved scales on the largest scales can be assumed to
be negligible, which means that the Ŷ term drops out of the first equation. The
unresolved scales do dissipate energy from the small scales, therefore terms involving
unresolved scales in the small scale equation will have to be modeled. Under these
assumptions, the remaining non-linear system can be written as:

B(W̄ , Ȳ + Ỹ ) = (W̄ ,S) ∀ W̄ ∈ V̄
B(W̃ , Ȳ + Ỹ ) + M(W̃ , Ỹ ) = (W̃ ,S) ∀ W̃ ∈ Ṽ,

(1.13)

where M is a model term that acts on the small scales only. Adding the large and
small scale equation yields the final, non-linear system of equations:

B( ¯̃W , ¯̃Y ) + M(W̃ , Ỹ ) = ( ¯̃W ,S) ∀ ¯̃W ∈ ¯̃V. (1.14)

Here ¯̃Y is the (finite dimensional) solution vector of the numerical scheme. In
the following only finite dimensional approximations will be considered, and the
distinction with the exact solution Y will be made no more. Therefore, from now
on V will denote the solution space containing resolved scales, and its elements
are Y and W . The tilde does not change meaning; it will still denote the small
components of the resolved scales. With these redefinitions, Equation 1.14 can be
put back integral form as follows:
∫

Q

W T (U ,t +F α,α) dQ+
∫

Q

W̃
T
F̃

m

α,α dQ =
∫

Q

W T S dQ ∀W ∈ V, (1.15)
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Γ Ω

Pn Qn

t

tn

tn+1

Figure 1.3. Schematic overview of the division of a space-time domain Q into
successive time-slabs Qn. Note that in reality, the spatial domain Ω is three-
dimensional.

where F̃
m

α is a model term. The tilde denotes its dependence on Ỹ . A final
comparison with the exact Equation 1.9 gives a clear picture of the resulting VMS
procedure: the unmodified Navier-Stokes equations are solved in weak form on a
coarse grid, and an extra term F̃ α models the effect of the eddies that can not be
resolved on this grid. Because this model term is a function of the small resolved
scales only, the solution space V should be constructed such that it allows an easy
separation of scales.

1.3 Formulating a finite element method

Equation 1.15 derived in the previous section will be solved numerically using a finite
element method. This means that a finite element discretization of the domain will
need to be defined. Because Y represents a solution in both space and time,
this domain Q is four-dimensional. Therefore solving Equation 1.15 on the entire
domain at once is not feasible. In order to reduce the size of the final calculations
the domain will first be divided into a series of so called time-slabs Qn; disjoint,
four-dimensional subdomains that are relatively ‘thin’ in the time dimension:

Qn = Ω× (tn, tn+1)
Pn = Γ× (tn, tn+1).

(1.16)

Figure 1.3 gives a schematic overview of this setup; Ω denotes the spatial domain
with boundary Γ and tn and tn+1 are successive points in time. It will be shown that
on these time-slabs the restrictions Y |Qn can be computed successively. This will
not only reduce the size of the linear systems, it will also allow for a lot of flexibility
in dealing with dynamically deforming domains. Recall that the VMS method has
been designed for fluid-structure interaction problems. The flexibility is due mostly
to the fact that successive time-slabs need only be ‘weekly’ connected, as will be
explained in Section 1.3.2, after the solution space has been defined.
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1.3.1 Construction of the solution space

A finite element discretization consists of two things. One, a set of finite elements.
For a time-slab Qn these are subdomains Q(n,i) such that ∪iQ(n,i) = Qn and
Q(n,i) ∩Q(n,j) = ∅ if i 6= j. Two, a set of basis functions. Because multiple basis
functions can have support on the same finite element an additional index a will
be used for these. Hence N(n,i,a) : Q(n,i) → R is basis function a for elements i
of time-slab n. With these definitions, the solution space V can be defined via its
restrictions on the finite elements:

Y ∈ V, Y
∣∣∣
Q(n,i)

=
∑

a∈A
N(n,i,a)y(n,i,a), (1.17)

where A is an index set for the basis functions and y(n,i,a) ∈ R5 are element vectors
corresponding to time-slab n, element i, basis function a. The only restriction that is
imposed on the element vectors is that the resulting function Y must be continuous
within each time-slab. Continuity over successive time-slabs is not required, as shall
be explained in Section 1.3.2.

The previous section pointed out that the function space V should allow easy sep-
aration of scales, because the model term in Equation 1.15 depends on the small
scales Ỹ only. Equation 1.17 suggests to choose the basis functions N(n,i,a) in such
a way that each function can be identified with a certain scale. In that case the
small-scale function space Ṽ can be defined as a sum over a subset of these basis
functions:

Ỹ ∈ Ṽ, Ỹ
∣∣∣
Q(n,i)

=
∑

a∈Ã
N(n,i,a)y(n,i,a), (1.18)

where A ⊃ Ã contains the indices of the basis functions that can be identified with
small scales. Defined like this, Ỹ and Y share the same element vector y(n,i,a),
which makes it very easy to relate one to the other in a numerical setting.

The construction of polynomial basis functions on a multi-dimensional domain is
described in Chapter 3 of Karniadakis et al. [8]. Given a number of P polynomials
ψp : [−1, 1]→ R, the expansion on a four-dimensional domain is given by the tensor
product:

φpqrs(ξ1, ξ2, ξ3, ξ4) = ψp(ξ1)ψq(ξ2)ψr(ξ3)ψs(ξ4). (1.19)

A set of P 4 basis functions can be created for each element Q(n,i) by mapping ξ1
– ξ4 onto the finite element domain. For these basis functions to correspond to
a range of scales, the same must hold for the polynomial expansion set ψp from
which they are derived. A hierarchical modal p-type expansion has this property,
because its high order modes can be identified with small scales. This expansion is
defined as follows:

ψp(ξ) =





1−ξ
2 p = 0

1−ξ
2

1+ξ
2 Pα,β

p−1(ξ) 0 < p < P
1+ξ
2 p = P,

(1.20)

where Pα,β
p (ξ) represents Jacobi polynomials of order p, for example Legendre (α =

β = 0) or Chebychev (α = β = − 1
2 ) polynomials. The scale separation property
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Figure 1.4. Polynomial Legendre expansion, corresponding to α = β = 0 and
P = 8 in (1.20). The solid lines correspond to the highest order modes p = 5, 6, 7.
In this graph it is clear that high order modes represent small length scales.

is clearly visible in Figure 1.4, which shows a Legendre expansion with the highest
orders highlighted. This property is propagated via Equation 1.19 to the basis
functions N(n,i,a).

An attractive side effect of the modal expansion is that, according to Karniadakis
et al. [8], its hierarchical nature “permits the use of a reduced number of expansion
modes as compared with those in the full tensor space”, which is shown in Fig-
ure 1.5. Most conveniently, the reduction of this so called serendipity expansion
is especially significant in higher dimensions, like a four-dimensional space-time dis-
cretization. Consequently, this can lead to a significant reduction in size of the final
system of equations.

full expansion serendipity expansion

Figure 1.5. Two-dimensional modal p-type expansion of order P = 4, copied
from Karniadakis et al. [8], Chapter 3. Left the full expansion, right the reduced
serendipity expansion in which only 17 of the total 25 elements are retained. In
more dimensions, the reduction is even more significant.



Chapter 1. The VMS method 16

1.3.2 Discontinuous-Galerkin formulation

Now that the solution space V has been defined, the final system of equation can
be obtained by substituting its elements Y and W into Equation 1.15, which is
already in weak form due to the scale separating procedure applied in Section 1.2.2.
Rewriting the left-hand terms using the divergence theorem yields:

∫

Ω

(W T |t−n+1
U |t−n+1

−W T |t+n U |t+n ) dΩ +
∫

Pn

(W T F α + W̃
T
F̃

m

α )nα dP

−
∫

Qn

(W T
,tU + W T

,αF α + W̃ ,αF̃
m

α + W T S) dQ = 0 ∀ W ∈ V, (1.21)

where n in the second integral is the outward normal on Pn, U |t is shorthand
notation for x → U(x, t) and t+n and t−n+1 are the initial and final time of time-

slab n, respectively. Note that U and F α are functions of Y , and F̃
m

α of Ỹ .
The spatial boundary conditions enter through the second boundary integral, and
the initial condition U |t+n in the first integral is formed from the result from the
preceding time-slab, U |t−n . This leads to the so called jump condition:

∫

Ω

W T |t+n U |t+n dΩ =
∫

Ω

W T |t+n U |t−n dΩ ∀ W ∈ V, (1.22)

where t+n denotes the initial time in time-slab n and t−n the end time of the pre-
ceding slab n − 1. This weakly enforced initial condition allows the solution to be
discontinuous over the time-slabs. For this reason, the resulting method is called a
time-discontinuous Galerkin method.

The solution Y and test functions W are completely determined by their element
vectors y(n,i,a) and w(n,i,a) through Equation 1.17. These element vectors are
joined per time-slab in global vectors yn and wn of length N , from which they can
be extracted by a sparse, boolean matrix M (n,i,a) ∈ RN×5, the location operator:

y(n,i,a) = M (n,i,a)yn

w(n,i,a) = M (n,i,a)wn.
(1.23)

Location operators for adjacent elements may extract common values from yn and
wn in order to satisfy the continuity condition. Note from Equation 1.20 that
there are only two elements that have a non-zero value on the boundary: ψ0 and
ψP . This could have one believe that the continuity constraint affects only a small
subset of the final collection of basis functions. In multiple dimensions this is not
true. In fact most basis functions will be non-zero on at least one edge of the finite
element domain. For instance in Equation 1.19, if ψp 6= 0 on the edge ξ1 = 1,
all combinations of φq, φr and φs will produce basis functions that have non-zero
values on this edge.

Combining Equations 1.18 and 1.23, the test functions W can be expressed in terms
of their global vectors wn:

V 3W
∣∣∣
Q(n,i)

=

(∑

a∈A
N(n,i,a)M (n,i,a)

)
wn. (1.24)
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The small-scale functions W̃ are identical, except that the polynomials are summed
over the subset Ã only. These expressions for W and W̃ can be substituted into
the rewritten system of equations, Equation 1.21, but this requires the integrals to
be split into subintegrals over the separate finite elements because the polynomials
N(n,i,a) are defined per element Q(n,i) only. For brevity, these subintegrals will
be denoted as vectors v(n,i,a) and ṽ(n,i,a), the former dependent on Y , the latter

on Ỹ . When In denotes the index set of elements in time-slab n, Equation 1.21
transforms to:

wT
n

∑

i∈In





∑

a∈A
MT

(n,i,a)v(n,i,a) +
∑

a∈Ã
MT

(n,i,a)ṽ(n,i,a)



 = 0 ∀ wn ∈ RN ,

(1.25)
or, more compactly:

wT
nG(yn,yn−1) = 0 ∀ wn ∈ RN , (1.26)

where G : RN × RN → RN is a non-linear operator, composed of all separate
element integrals v(n,i,a) and ṽ(n,i,a) that are put in place by the location operators
M (n,i,a). Its dependence on the previous time-slab solution yn−1 is caused by the
jump condition, Equation 1.22. With operator G defined, the requirement that
wT

nG is zero for any vector wn ∈ RN leads to the final, non-linear system of N
equations:

G(yn,yn−1) = 0. (1.27)

Addendum

For sake of completeness, the complete expressions of the subintegrals v(n,i,a) and
ṽ(n,i,a) are presented below. They will not be used further in this report.

v(n,i,a) =
∫

Ω(n,i)

(
N(n,i,a)|t−n+1

U |t−n+1
−N(n,i,a)|t+n U |t−n

)
dΩ

+
∫

P(n,i)

N(n,i,a)F αnα dP

−
∫

Q(n,i)

(
N(n,i,a),tU +N(n,i,a),αF α +N(n,i,a)S

)
dQ,

ṽ(n,i,a) =
∫

P(n,i)

N(n,i,a)F̃
m

α nα dP

−
∫

Q(n,i)

N(n,i,a),αF̃
m

α dQ.
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1.4 Solving the non-linear system

Non-linear equations such as Equation 1.27 are usually solved using an iterative
solution method. Such an iterative method starts with an initial guess y0

n and uses
a recurrence relation to construct a sequence of approximations yk

n that converges
to the exact solution yn — assuming that this solution is unique. The iterations
can be stopped when yk

n is considered a good enough approximation of yn:

‖G(yk
n,yn−1)‖ < ε, (1.28)

where ‖ · ‖ is an appropriately chosen norm and ε is a measure of the desired
precision. The solution of the preceding time-slab yn−1 is known. An obvious
choice is to use this previous solution as a starting vector y0

n for the new iterations
as well. Note, however, that the jump condition from Section 1.3.2 does not require
meshes on successive time-slabs to correspond in any way. Even if yn−1 has the
same length as yn, it can represent a completely different flow on both time-slabs.
This can be a point of concern for example for VMS implementations that deal with
time-changing domains.

A widely used root-finding algorithm is Newton’s method, which is based on a
Taylor expansion. For a scalar function f : R → R, the first two terms of this
expansion read:

f(x+ h) = f(x) + hf ′(x) +O(h2), (1.29)

where O is Landau’s order symbol. If x+h is a root of f , and x is an approximation
of this root, the error h will be small. Under these assumptions, the above expression
can be rewritten as:

h ≈ − f(x)
f ′(x)

. (1.30)

Here h is an approximation of the error, because the high order terms of the Taylor
expansion have been neglected. Therefore, adding this error to an approximate
solution will not result in an exact root of f . It will, however, result in a much
improved approximation of this root. Each time that this procedure is repeated
the error decreases, which justifies the neglection of high order terms even more.
The resulting, rapidly converging algorithm is described by the following recurrence
relation:

xk+1 = xk − f(xk)
f ′(xk)

. (1.31)

This recurrence depends only on the most recent approximation xk, which means
that previous approximations do not have to be kept in memory. This short recur-
rence property becomes important when Newton’s method is generalized to vector
functions, where arguments can be really large. For such functions the derivative
is replaced with a Jacobian matrix. Applied to Equation 1.27, Newton’s method
reads:

yk+1
n = yk

n −
(
∂G

∂yn

(yk
n,yn−1)

)−1

G(yk
n,yn−1), (1.32)

where ∂G
∂yn
∈ RN×N is the Jacobian matrix of G. Theoretically, for every Newton

iteration a new Jacobian matrix will need to be formed around the updated solution.
This can be a lot of work. Fortunately, in practice the matrix can be reused for
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multiple Newton iterations; the solution will simply converge a little less fast. For
VMS the matrix is even reused for multiple successive time-slabs.

Whether the Jacobian matrix is updated or not, every Newton iteration will need
to solve a linear system involving this matrix. For this, a large number of iterative
solution methods are available. However, many of those demand special properties
of the matrix, like symmetry, or they are known to work especially well or to break
down under certain conditions. To find out which solvers apply to the system at
hand, more information will be required for the Jacobian of G. By Equations 1.25
and 1.26, the Jacobian matrix can be written as:

∂G

∂yn

=
∑

i∈In

{ ∑

a∈A
MT

(n,i,a)

∂v(n,i,a)

∂yn

+
∑

a∈Ã
MT

(n,i,a)

∂ṽ(n,i,a)

∂yn

}
, (1.33)

where
∂v(n,i,a)

∂yn
∈ R5×N and

∂ṽ(n,i,a)

∂yn
∈ R5×N are the Jacobian matrices of v(n,i,a)

and ṽ(n,i,a), respectively. Since v(n,i,a) and ṽ(n,i,a) consist of integrals over a single
finite element i, only a subset of yn — the element vectors y(n,i,b) — produces
non-zero derivatives. Hence, the Jacobian of v(n,i,a) can be written as:

∂v(n,i,a)

∂yn

=
∑

b∈A

∂v(n,i,a)

∂y(n,i,b)

M (n,i,b), (1.34)

where
∂v(n,i,a)

∂y(n,i,b)
∈ R5×5 is a subset of the full Jacobian matrix, corresponding to

the derivatives of y(n,i,b). The location operator moves its five columns to their
positions in the full Jacobian matrix. A similar expression holds for ṽ(n,i,a), in which

b can even be restricted to Ã because ṽ(n,i,a) depends only on the small scales Ỹ .
Substitution in Equation 1.33 yields a new expression for the Jacobian matrix:

∂G

∂yn

(yn,yn−1) =
∑

i∈In

{ ∑

(a,b)∈A2

MT
(n,i,a)

∂v(n,i,a)

∂y(n,i,b)

M (n,i,b)

+
∑

(a,b)∈Ã2

MT
(n,i,a)

∂ṽ(n,i,a)

∂y(n,i,b)

M (n,i,b)

}
(1.35)

This expression shows that the Jacobian has a symmetric sparsity pattern, because
for every element (a, b) in A2 there is an element (b, a) as well. However, since
∂v(n,i,a)

∂y(n,i,b)
and

∂v(n,i,b)

∂y(n,i,a)
are no mutual transposes, symmetry for its contents can not be

guaranteed. Indeed, the Jacobian matrix is not symmetric in general. This excludes
a lot of solution methods from the list of candidates, such as the popular Conjugate
Gradient method that demands the matrix to be symmetric and positive definite.
Instead, the VMS method will require a solver that has general applicability.



Chapter 2

The deflation method

Finite dimensional linear systems occur in a many different fields of mathematics.
They can for example represent differential equations, discretized through finite
element, volume or difference methods. Or they can be linear least squares or
optimal control problems. Regardless of the underlying problem, though, finite
dimensional linear systems can always be put in the following form:

Ax = b. (2.1)

Finding a solution x is the terrain of linear solution methods — solvers, in short.
In the course of time a wide range of different solvers has been developed. Initially,
the solution algorithms were designed mainly with round-off errors and numerical
robustness in mind. The recent widespread availability of relatively low-cost com-
puting power, however, has boosted the desire to analyze the mathematical models
much more accurately, leading to very large linear systems. This development has
forced attention towards new bottlenecks such as memory usage, computation time
and parallel efficiency. For these reasons, most current-day applications depend on
iterative methods to solve their systems, in particular Krylov subspace methods
which are considered the most powerful iterative methods currently available. One
of the more recent developments is to accelerate these Krylov methods even further
by a technique called deflation, subject of this chapter.

This chapter will give an overview of the most important linear solution methods,
starting with direct methods in Section 2.1. The most straightforward of iterative
methods, appropriately named basic iterative methods, are treated in Section 2.2,
followed by the more advanced Krylov subspace methods in Section 2.3. Thereafter
it will be a small step towards deflated Krylov methods, which — other than the
name suggests — can actually be thought of as enriched Krylov methods. This is
explained in Section 2.4, which concludes this chapter. The subsections will contain
more detailed information that is not strictly required to follow the line of reasoning
in this chapter.

20
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2.1 Direct methods

The n × n system Ax = b is short notation for the following system of n linear
equations and n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn.

(2.2)

A straightforward way of solving this system is to start with the first equation
and solve it for x1 in terms of x2, . . . , xn. Next, the second equation can be
solved for x2 in terms of x3, . . . , xn, using the previously obtained expression for
x1. This can be repeated until at equation n the solution for xn is obtained. At this
point the direction reverses, and the remaining values are computed by subsequent
substitution of the computed values into the generated expressions for xn−1, xn−2

down to x1. The thus defined two-stage algorithm is known as the Gaussian
elimination method, which is the method of choice for small, dense systems.

An important observation in the above algorithm is that all operations are indepen-
dent of the right hand side b. It is therefore possible to compute the factors of
subsequent additions once and reuse them for different right hand sides. It follows
that these factors can be placed conveniently in a lower triangular matrix L and
upper triangular matrix U such that LU = A, which transforms Equation 2.1 into
a pair of triangular systems:

Ly = b, Ux = y. (2.3)

Solving the first and second equation corresponds to the forward and backward
substitution phase of the Gaussian elimination method, respectively. Gaussian elim-
ination and the thus defined LU decomposition method are hence mathematically
equivalent.

For sparse matrices often large memory savings can be made by storing only the
values and positions of the non-zero elements. A major problem with direct methods
such as LU-decomposition is that they will change at least some of the zero-valued
elements to non-zero, resulting in increased memory usage. This phenomenon is
known as matrix fill-in. The amount of fill-in depends on the sparsity structure of
the matrix; LU-decomposition fills at most the elements within the matrix profile,
shown in Figure 2.1. This is markedly better than a full matrix inversion, during
which the entire matrix will be filled. Moreover, fill-in can be reduced by strategic
row and column permutations. However, it will still require extra memory, and for
very large matrices this may be unacceptable. Iterative methods have no fill-in at
all, and are therefore often a better choice in such situations.
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a16a11

a22

a33

a44
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a66

Figure 2.1. Profile structure of a sparse 6 × 6 matrix. Non-printed elements are
zero. During LU-decomposition, only the zero elements within the gray bands can
be filled in.

2.1.1 Pivoting

An important point of concern for the Gaussian elimination or LU decomposition
methods is the possibility of breakdown. Already in the first step, if a11 is zero,
the first equation can not be solved in terms of x1 and the algorithm breaks down.
The solution to this problem is to reorder the equations such that this situation
can not occur. If, for example, a21 and a12 are non-zero, the second equation
can be solved for x1 and the first for x2 instead. This reordering of equations to
prevent breakdown is called partial pivoting. Preventing breakdown through partial
pivoting is always possible, but this will require extra work.

Preventing breakdown is not the only reason to apply pivoting. It is also useful for
reducing the accumulation of round-off errors, which in certain situations can be
substantial. Partial pivoting helps in this situation as well, and leads to a stable
algorithm in most practical situations. Even better than partial pivoting, which
uses row interchanges only, would be to use a combination of both row and column
interchanges. The extra costs of such a complete pivoting algorithm, however,
are so high that its use can not normally be justified. In practice, partial pivoting is
often found to perform well enough.

An important thing to note about pivoting is that it will change the matrix profile,
and therefore the amount of fill-in during LU-decomposition. For certain types of
matrices this can lead to a substantial increase of memory. An example are banded
matrices, that are efficiently stored using a fixed subset of diagonals. Pivoting
destroys this structure, which means that a different type of storage must be used.
In these situations, pivoting is to be avoided as much as possible.

2.2 Basic iterative methods

Direct methods are particularly well suited for solving small and dense systems.
Many practical applications, however, deal with systems that are instead large and
sparse. Efficient storage of these matrices allows problems to grow in size far
beyond the point where a full matrix would reach a memory limit. Using a direct
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Figure 2.2. Example convergence behaviour of a basic iterative method applied to
a two-dimensional system. In each iteration i, the search vector ẽi points more or
less at the exact solution x.

method such as LU-decomposition, however, the sparse matrices will inevitably
suffer a huge amount of fill-in of zero elements, thereby increasing the required
memory for storage. The result is that the size of the problem will be limited by the
memory required by the solver, rather than the matrix itself. Clearly, this situation
is unsatisfactory.

A second problem that follows from the use of direct methods involves computation
time. For a dense n × n matrix, the number of floating point operations required
for performing a full LU-decomposition scales with n3. For sparse matrices this will
be somewhat better, depending on the level of sparsity, but the total workload and
hence computation time will still increase rapidly with size. This work then results in
a solution that is almost machine-accurate, which may be a lot more then required.
In practice, linear systems are often inaccurate models of the truth, and do not
have a really meaningful exact solution. An approximate solution is in general good
enough, and should be a lot easier to obtain.

Iterative methods solve both of these problems. These methods are based solely on
matrix-vector multiplication operation and do not require access to single elements
of the matrix. This matrix can therefore be stored very efficiently. In fact, the
matrix need not be stored at all, as its elements can be generated on the fly during
the multiplication operation. Such a method is called matrix-free. Using only
multiplications, each iteration produces a new approximate solution. The algorithm
can therefore be stopped as soon as the desired accuracy is reached. Depending on
the problem at hand and the iterative method used, the resulting computation time
can be much lower than that of a direct method.

Of all iterative methods, the basic iterative methods are the simplest, yet least
powerful. Their operation is based on the following observation. Suppose an ap-
proximate solution x̃ is available for Equation 2.1, Ax = b. The residual vector
at this point is defined as r = b −Ax̃. To obtain the exact solution, the vector
that should be added to x̃ is the error e = A−1r. Clearly, an exact computation
of this error is not feasible since this requires solving the system Ae = r, which is
identical to Equation 2.1. However, if a non-singular, cheaply invertible approxima-
tion of matrix A is available, denoted M , then this matrix can be used to compute
an approximation ẽ of the error. By repeatedly updating x̃ with this approximate
error, the algorithm is expected to converge to the exact solution x.

Figure 2.2 shows a possible first three iterations of this algorithm. Starting with an
initial guess x0, the first iterate x1 is formed by adding the approximate error ẽ0.
At this point a new approximate error ẽ1 is calculated and added to x1, yielding
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the second iterate x2. Continuing this process, the complete algorithm is described
by the following few lines of pseudocode:

Algorithm 2.1
1. start: x0

2. for i in 0, 1, 2, . . . :
3. ri ← b−Axi

4. if ‖ri‖2 < threshold:
5. break
6. end if
7. ẽi ←M−1ri

8. xi+1 ← xi + ẽi

9. end for

The crucial points in this algorithm are lines 1, 4 and 7. Line 1 defines the starting
vector x0, which is used to supply the algorithm preliminary information about the
solution. It depends on the problem that is solved if such information is available. In
case of a time dependent problem, for instance, information from previous timesteps
can often be used. In other situations the solution of a related problem can be a
useful start, such as an analytic solution of a simplified problem, or a solution from
a coarser grid. The possibility to use this preliminary information as a starting point
of the iterative procedure is a great advantage of iterative methods over direct
methods, that have no way of utilizing this information. When no sensible initial
guess can be made, starting from zero is always possible.

Line 4 is the termination criterion, which determines when the iterative process
can be stopped. Ideally, this is when a certain precision has been reached, i.e. when
the error is small enough. However, since a direct measurement of this error is
not possible, the termination criterion will have to rely on indirect measurements
instead. The above algorithm terminates when the residual norm drops below a
certain threshold. This threshold should be chosen with great care. If it is chosen
too weak the solution will be meaningless, whereas if it is too severe the algorithm
will become very costly and may not even converge. Sometimes the residual can
be related to a physical quantity that gives information about the accuracy of the
solution. In other situations, however, with no clear relation between error and
residual, determining a suitable threshold is hard.

Lastly, line 7 computes the next search vector ẽi. The quality of this vector depends
on the quality of the approximate solver M−1, usually called a preconditioner
for matrix A because it lowers the condition number, the fraction of extreme
eigenvalues, by clustering the eigenvalues of M−1A around one. In general, the
more densely clustered, the faster the algorithm converges. Clearly, in the extreme
case that M = A, all eigenvalues are exactly one and the algorithm converges
in a single iteration. On the other extreme, when the eigenvalues of M−1A are
widely scattered the algorithm will not converge at all. The following theorem states
an exact condition for preconditioner M−1, illustrated by Figure 2.3, under which
Algorithm 2.1 will yield a convergent process.
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Figure 2.3. Example eigenvalue distribution of a preconditioned matrix that yields
a convergent basic iterative method, according to Theorem 2.1.

Theorem 2.1. The iterates xi of Algorithm 2.1 converge to the exact solution of
equation Ax = b, for any starting vector x0, if all eigenvalues of the matrix M−1A
are contained in the open unit sphere centered around one, i.e. if

|1− λ| < 1 ∀ λ ∈ spectrum M−1A. (2.4)

Proof. First the following is proved by induction:

en = (I −M−1A)ne0, (2.5)

where ei = x − xi is the exact error at iteration i. For n = 0 the statement
is clearly true. Assuming that the statement is true for n = i, it follows that
xi = x− (I−M−1A)ne0. The next iterate xi+1 is generated by a single iteration
of Algorithm 2.1:

3. ri ← b−Axi = A(I −M−1A)ie0

7. ẽi ←M−1ri = M−1A(I −M−1A)ie0

8. xi+1 ← xi + ẽi = x− (I −M−1A)i+1e0.

This proves Equation 2.5 for n = i + 1, hence, by induction, for general n ≥ 0.
Using Lemma 7.3.1 from Golub et al. [5], it follows that the error converges to zero
if all eigenvalues of I −M−1A are smaller than one in absolute value. If λ is an
eigenvalue of M−1A then 1 − λ is an eigenvalue of I −M−1A, therefore this
proves Equation 2.4.

Summarizing, basic iterative methods are controlled by three properties. The start-
ing vector controls the precision of the first iteration, the termination criterion
controls the precision of the last, and the preconditioner controls the number of
iterations in between. The preconditioner is usually the identifying element that
gives a basic iterative method its name. Many such iterative methods have been
developed, but they have long since been surpassed by more advanced iterative
methods such as Krylov subspace methods. In current day applications, the use of
basic iterative methods as standalone solvers is negligible.
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2.2.1 Preconditioners

A preconditioner M−1 is a matrix that approximates the inverse of a matrix A, in
the sense that the eigenvalues of M−1A are clustered around one. Like the matrix
itself, the preconditioner is used only in the context of matrix-vector multiplications,
so its individual elements are never accessed. In practice, if a matrix is stored at all,
it will be the non-inverted matrix M since that will in general inherit the sparsity
of A. The multiplication operation then becomes a linear solution procedure. An
important requirement for preconditioners is that this procedure can be performed
at very low cost, because otherwise any positive effect on convergence will be offset
by the increased computational costs.

The usual approach to preconditioners in basic iterative methods is to view them
as part of an operator splitting. This means that A is written as the sum of two
matrices M and N , transforming the original system to Mx = b −Nx. When
the right hand side is formed from the most recent approximation of x this yields an
iterative process that is equivalent to Algorithm 2.1. Theorem 2.1 shows that this
process is convergent when the spectral radius of M−1N is strictly smaller than
one. This forms the basis of many specific convergence results available for basic
iterative methods, two of which are mentioned below.

When M consists only of the diagonal of A, M−1 is called a diagonal scaling
preconditioner. A basic iterative method based on this preconditioner is called
Gauss Jacobi iteration. Clearly, this preconditioner is very sparse and cheap.
Less obvious is the extend to which it approximates A−1. It is not hard to see,
however, that the iterates generated by Algorithm 2.1 using this preconditioner are
the following. Looking at System 2.2, the elements of the next iterate are obtained
from solving the first equation for x1, the second for x2, and so on to xn, using the
remaining elements xj from the previous iteration. It seems plausible that this can
yield a convergent method. Theorem 4.5 by Saad [16] shows that this is the case
for example when matrix A is strictly diagonal dominant.

The above procedure can be improved by using the most recently computed values
for x1, . . . , xj−1 when solving equation j. This corresponds to defining M as the
lower triangle of A. The resulting preconditioner can again be applied cheaply
because a triangular system can be solved at low cost, even more so because this
system inherits the sparsity of A. An iterative method based on this preconditioner
is called Gauss Seidel iteration. As expected, Gauss Seidel converges in general
faster that Gauss Jacobi. Moreover, Theorem 10.1.2 by Golub et al. [5] shows that
Gauss Seidel always yields a convergent process when applied to the very common
class of symmetric, positive definite matrices.

A generalisation of Gauss Jacobi and Gauss Seidel iteration is successive over-
relaxation, which can be seen as a linear combination of both: M = ω−1

ω MGJ +
MGS , for some constant ω ∈ R. The reason behind this is that Gauss Seidel is
often found to underpredict the error. Successive over-relaxation extrapolates the
computed error by a factor ω and is thus expected to yield faster convergence, if ω
is suitably chosen. Being a generalization of Gauss Seidel, it is certain that it can
always be at least as fast. However, finding the optimal value for ω is usually hard.
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2.3 Krylov subspace methods

In the preceding text on preconditioners it was noted that the Gauss Seidel precon-
ditioner often underestimates the size of the error, and should therefore improve
from extrapolation. In general it will be true that search vectors can be improved
by scaling. In Figure 2.2, for example, the iterates x2 and x3 would be much closer
to the exact solution x if the search vectors ẽ1 and ẽ2 had been added scaled down,
while x1 would have benefitted from scaling ẽ0 up. The problem here is to find
the optimal scaling factor, as this factor should minimize the distance to a solution
that is not known at the time of scaling.

The solution to this problem is to use a different measure. In the above claim
that ẽ1 and ẽ2 should have been scaled down to bring the iterates closer to x it
was tacitly assumed that the distance is measured in the Euclidean norm, or ‘with
a ruler’. Other norms exist, however, that are equilly well suited for measuring
distances and some of those are indeed capable of minimizing the distance to the
unknown solution x. Using such a norm it will be possible to compute the optimal
scaling of an arbitrary set of search vectors. This scaling procedure forms the basis
of the popular class of Krylov subspace methods.

A Krylov subspace method, like a basic iterative method, starts with an initial guess
x0. A preconditioner is used to compute the approximate error ẽ0, the first search
vector. Prior to adding this vector to x0, however, it is scaled to move the result
closest to x, measured in a suitable norm. At this point x1 a new search vector ẽ1 is
computed, which is different and expectedly more accurate than its basic iterative
counterpart. This time, instead of simply scaling the vector, the Krylov method
chooses a combination of both search vectors that brings x2 closest to x. See
also Figure 2.4, the Krylov counterpart of Figure 2.2. For larger problems than this
one, the updates that follow are constructed from the growing subspace of search
vectors. This leads to the following algorithm:

Algorithm 2.2
1. start: x0

2. for i = 0, 1, 2, . . . :
3. ri ← b−Axi

4. if ‖ri‖ < threshold:
5. break
6. end if
7. ẽi ←M−1ri

8. xi+1 ← xi + Pspan{ẽ0,...,ẽi}(x− xi)
9. end for

Compared to the basic iterative method, Algorithm 2.1, the only thing that has
changed is line 8. That is where the iterate xi is updated by adding a linear
combination of search vectors. The optimal update element can be viewed as a
projection of the exact error onto the subspace spanned by the search vectors, such
that it is closest measured in the chosen norm. This projection is defined as follows:

PV : U → V, u→ argmin
v∈V

‖v − u‖, (2.6)
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Figure 2.4. Example convergence behaviour of a Krylov subspace method applied
to a two-dimensional system. Compare with Figure 2.2. Again, the search vectors
point more or less at the exact solution x, but this time only directions are used.
Since the search vectors ẽ0 and ẽ1 span R2, the method converges in two iterations.

in which argmin return the element v that minimizes its argument. With P defined
like this, line 8 shows that the difference vector is a linear combination of search
vectors; xi+1 − xi ∈ span{ẽ0, . . . , ẽi} for all i. When xi+1 − x0 is written as
a telescoping sum, (xi+1 − xi) + · · · + (x1 − x0), it is clear that xi+1 − x0 ∈
span{ẽ0, . . . , ẽi} for all i. A straightforward shift argument, argminv∈Vf(v) =
w + argminv∈Vf(v + w) for w ∈ V, now transforms line 8 into the following
somewhat more usable expression:

xi+1 = x0 + Pspan{ẽ0,...,ẽi}(x− x0). (2.7)

Written in this form, it is clear that the iterate xi is composed of the initial guess
x0 plus an approximate error, composed of the first i search vectors such that it is
closest to the exact initial error x−x0 measured in the chosen norm. Surprisingly,
the following theorem states that this norm in fact does not influence the subspace
that is spanned by the search vectors, only the iterates that are formed from it. The
theorem shows that regardless of the norm, the first i search vectors span a Krylov
subspace of dimension i, which is defined as follows:

Ki(A, b) def= span{Ai−1b, . . . ,A2b,Ab, b}. (2.8)

Theorem 2.2. The subspace spanned by the first n search vectors in Algorithm 2.2
is independent of the norm used in projection PV , and equals the Krylov subspace
of dimension n corresponding to matrix M−1A and initial residual M−1r0:

span{ẽ0, . . . , ẽn−1} = Kn(M−1A,M−1r0). (2.9)

Proof. The Krylov subspace of dimension n will be written compactly as Kn. From
Algorithm 2.2 it follows directly that ẽ0 = M−1r0, so the theorem is true for n = 1.
Left to prove is the relation Kn ⊕ span{ẽn} = Kn+1 for general n. By induction,
assuming that this relation holds for all n < i, it suffices to prove the case n = i:
Ki ⊕ span {ei} = Ki+1. For this two distinct possibilities are considered:

1. ẽi /∈ Ki

Writing the residual of xi as ri = r0 + A(xi − x0), line 7 of Algorithm 2.2
transforms to:

ẽi = M−1r0 + M−1A(xi − x0). (2.10)

Both terms are elements of Ki+1, the latter due to Equation 2.7 which says
that xi − x0 ∈ Ki. Since the dimension of Ki+1 is at most one higher than
that of Ki, adding ẽi /∈ Ki must yield Ki+1.
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2. ẽi ∈ Ki

In this case the search vector does not enrich the search space, and it needs
to be shown that in this case the Krylov subspace does not change either.
For this, Equation 2.10 is put in the following form:

ẽi = ẽ0 + M−1A(α0 · ẽ0 + · · ·+ αi−1 · ẽi−1), (2.11)

using the fact that xi − x0 ∈ Ki = span{ẽ0, . . . , ẽi−1}. By assumption, the
left hand side ẽi is in Ki, as are all but the last terms on the right. It follows
that αi−1M

−1Aẽi−1 ∈ Ki as well.

It will suffice to show that M−1Aẽi−1 ∈ Ki because then M−1AKi ⊆ Ki,
hence Ki+1 = Ki. If αi−1 6= 0, this follows directly from the obtained result.
If αi−1 = 0 then xi−1 = xi−2 due to optimality, hence ẽi−1 = ẽi−2, which
means that αi−1 and αi−2 can be interchanged. Continuing this process until
the first non-zero coefficient if will always be possible to have αi−1 6= 0 in
Equation 2.11, which proves the theorem.

Theorem 2.2 opens a way to a wide range of different implementations, all being
mathematically equivalent to Algorithm 2.2. The key to this is that the search
space can now be formed without ever calculating the iterates xi which involved the
expensive projection operation. Instead of calculating approximate errors ẽi, Krylov
subspace implementations in practice build their search space from Krylov vectors,
that can be formed simply by repeatedly multiplying the previously calculated Krylov
vector by M−1A, starting from M−1r0. This process can be optimized in several
ways, depending on specific properties of the system and the desired properties
of the algorithm, such as memory efficiency. Some well known Krylov subspace
methods will be discussed later in this section.

Because the Krylov subspace can never grow beyond the size of the problem, it is
known in advance that it will reach the point of invariance — situation two in The-
orem 2.2 — in at most n iterations for a system of n unknowns. Therefore, Krylov
subspace methods can theoretically be considered finite methods. In practice this
property is not really useful because the number of unknowns is often very large,
which means that an enormous amount of work is possibly required to compute this
exact solution. Moreover, more iterations will be required in practice due to round-
ing errors. The power of Krylov methods is not their ability to compute an exact
solution, but to form a reasonable approximation in only a few iterations, depend-
ing mostly on the quality of the preconditioner. The optimality of the projection
operator makes various convergence theorems possible, such as the following.

Theorem 2.3. If the preconditioned matrix is diagonalizable, i.e. if there exist a
matrix X and diagonal eigenvalue matrix Λ such that M−1A = XΛX−1, then
the exact error at step i of Algorithm 2.2 is bounded by

‖x− xi‖ ≤ ε(i) ·max
k
‖ek‖‖X‖‖X−1‖‖x− x0‖, (2.12)

where the ek are basis vectors of the form (0, . . . , 0, 1, 0, . . . , 0) and the vector
norm is the same as used in projection P. The matrix norm is induced as ‖X‖ =
max‖v‖=1 ‖Xv‖. Denoting Pi the space of polynomials of order less then i and σ
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Figure 2.5. Example eigenvalue distribution of a preconditioned matrix that yields
a convergent Krylov subspace method, according to Theorem 2.3. The inner circle
shows that all eigenvalues are contained in a disc of radius 0.7 and center 1.0, which
provides an upper bound for the error of the successive approximations.

the spectrum of the preconditioned matrix, ε(i) is defined as

ε(i) = min
p∈Pi+1
p(0)=1

max
λ∈σ
|p(λ)|. (2.13)

If, moreover, the eigenvalues σ are contained in a disc with center C ∈ R and radius
R < C, then the following upper bound holds:

ε(i) ≤
(
R

C

)i

. (2.14)

Proof. Combining Equations 2.6, 2.7 and 2.9, the error at step i satisfies ‖x−xi‖ =
miny∈Ki ‖x − x0 − y‖. By construction, the Krylov subspace Ki over which is
minimized is bijective to the space of polynomials Pi: for every Krylov element y ∈
Ki there exists exactly one polynomial p ∈ Pi such that y = p(M−1A)M−1r0.
Using the diagonalization of M−1A this simplifies to y = Xp(Λ)ΛX−1(x−x0),
in which p(Λ)Λ is a polynomial of increased order with a root at zero. With this,
the error at step i of Algorithm 2.2 becomes

‖x− xi‖ = min
p∈Pi+1
p(0)=1

‖Xp(Λ)X−1(x− x0)‖. (2.15)

Because the matrix p(Λ) is diagonal, its matrix norm is bounded from above by
maxλ∈σ |p(λ)|maxk ‖ek‖. Using this identity, repeated application of the induced
matrix norm inequality ‖Mv‖ ≤ ‖M‖‖v‖ results in the error bound Equation 2.12,
with ε(i) defined as in Equation 2.13. Equation 2.14 is a direct application of
Zarantello’s lemma, presented in Saad[16] as Lemma 6.4, Section 6.11.2.

Compared with Theorem 2.1 that predicts convergence for basic iterative methods,
Theorem 2.3 ensures the same and more. Equation 2.14 shows that for Krylov sub-
space methods, the speed of convergence depends on the amount of clustering of
eigenvalues of the preconditioned matrix. In Figure 2.5 the spectrum shown before
in Figure 2.3 is contained in a smaller disc, providing an exponentially decreasing
upper bound for ε(i). The size of this disc depends mostly on the quality of the
preconditioner. A high quality preconditioner will be able to cluster the eigenvalues
very tightly, leading to a very fast convergent process. Applying such a precondi-
tioner, however, often incorporates a lot of work, increasing the computation time
per iteration. An ideal preconditioner balances these two effects.
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A last observation to be made from this theorem is that in Equation 2.15, when
x − x0 is built of a subset of eigenvectors (the columns of X), the error x − xi

is influenced only by the corresponding eigenvalues (the elements of Λ). This
means that the upper bound Equation 2.13 can be improved by restricting the
maximum to this part of the spectrum. The same goes for the disc in Equation 2.14.
Apparently, only those eigenvectors that yet have to be ‘found’ by the Krylov method
for changing from x0 to x determine the speed of convergence. Tied to this subset
of the spectrum is a possibly smaller effective condition number that governs
convergence. During convergence, as more and more eigenvectors are found, the
effective condition number will gradually decrease. This explains the super-linear
speedup that is commonly observed in Krylov subspace methods, which is what
makes them so very popular.

2.3.1 Preconditioners (continued)

To gain a better understanding of the role the preconditioner plays in Algorithm 2.2,
it is useful to have a direct expression for the generated iterates. This is provided
by Equation 2.7, using the result from Theorem 2.2. For a system Ax = b, with
initial guess x0 and preconditioner M−1, the i-th iterate equals

xi,left = x0 + PKi(M−1A,M−1r0)(x− x0). (2.16)

In the special case that both initial guess and preconditioner are absent, i.e. x0 = 0
and M = I, this simplifies to PKi(A,b)x. From this it follows that completely
equivalent to Equation 2.16 is xi,left = x0 + yi, with yi the i-th iterate of Algo-
rithm 2.2 applied to the system M−1Ay = M−1r0, with no preconditioner and
no initial guess. The equivalence of both representations shows that Krylov sub-
space methods need not know of preconditioners and initial guesses, as these can
be supplied ‘hidden’ in the system. This modified system, left multiplied with the
preconditioner, is called a left preconditioned system.

Equation 2.16 shows that the iterates of Algorithm 2.2 are formed in the affine
subspace x0 +Ki(M−1A,M−1r0). By construction of the Krylov subspace, this
space is identical to x0 + M−1Ki(AM−1, r0), which leads to the idea of creating
iterates of the form

xi,right = x0 + M−1PKi(AM−1,r0)M(x− x0). (2.17)

This corresponds to solving AM−1y = r0 using the standard algorithm, and setting
xi,right = x0 +M−1yi. The new systems is called a right preconditioned system
for obvious reasons. Though these iterates are formed in the same subspace, they
are different from Equation 2.16 because they are projected in a different way. This
does not mean, however, that they are generally worse. Since the solution spaces
are identical, the rate of convergence is approximately the same in both situations
except when M is ill-conditioned, which could lead to substantial differences. In
practice, an advantage of the right preconditioned system is that its residual can
be directly related to that of the non-preconditioned system, whereas in the left
preconditioned case this is obscured by the preconditioner.
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Another reason for wanting to alter Algorithm 2.2 is to preserve symmetry of the
system. A symmetric and positive definite (SPD) system has several nice proper-
ties that can be exploited by specialized Krylov implementations, and these should
not be lost due to preconditioning. When the preconditioner is SPD as well, a
Cholesky decomposition M = LLT gives rise to a two-sided preconditioned sys-
tem L−1AL−T y = L−1r0, post-processed with x = x0 + L−T y. A symmetric
preconditioner will thus retain symmetry of the system, without actually changing
the solution space. Again, the iterates do change:

xi,both = x0 + L−TPKi(L−1AL−T ,L−1r0)L
T (x− x0). (2.18)

Saad [16] shows in Section 9.2.1 that this two-sided preconditioned system is equiva-
lent with a left preconditioned system solved with a slightly modified Krylov method.
Therefore, in practice, the Cholesky decomposition needs not actually be performed.
In the following situation, however, the decomposition is available for free so either
variant can be used.

For Krylov subspace methods, the preconditioners introduced in Section 2.2 are
often too weak. More sophisticated preconditioners are desirable. One example of
a powerful preconditioner is incomplete LU or ILU decomposition. Like LU de-
composition, presented in Section 2.1, the matrix is factored into a lower triangular
matrix L and upper triangular matrix U , with the difference that little or no fill-in
is allowed. The idea is that the thus obtained, cheaply invertible matrix LU still
closely approximates the matrix A, inheriting useful properties such as symmetry
and sparsity. For a sparse matrix, skipping over its zero elements gravely reduces the
work of factorization, as well as the memory required for storing the preconditioner.

2.3.2 Projection properties

Before moving on to some real Krylov subspace implementations, it is useful to
gain a better understanding of the operator PV defined in Equation 2.6. In the
preceding text, this operator has been called a projection without actually giving
this a meaning. Formally, a projection operator P is a linear transformation that
is idempotent, that is, P2 = P. The idempotence property says that the result of
a projection does not change from projecting it again, which is intuitively how a
projection should behave. It is clear that this property holds for PV .

Linearity is less trivial. To prove that under certain conditions PV is indeed a linear
operator, an intermediate step will be required. The following theorem states that
when a distance is minimized in a norm that is induced by an inner product, then
the difference vector is perpendicular to the target subspace.

Theorem 2.4. Let U and V ⊆ U be inner product spaces. For any two vectors
u ∈ U and v ∈ V, the following two statements are equivalent:

1. ‖u− v‖ ≤ ‖u−w‖ ∀ w ∈ V
2. (u− v,w) = 0 ∀ w ∈ V
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Proof. The implication 2 ⇒ 1 is straightforward. From ‖u − w‖2 = ‖(u − v) +
(v−w)‖2 = ‖u−v‖2+2(u−v,v−w)+‖v−w‖2, using the fact that v−w ∈ V,
it follows that ‖u−w‖2 = ‖u− v‖2 + ‖v −w‖2 ≥ ‖u− v‖2 for all w ∈ V.

For the reverse implication, 1⇒ 2, rewrite the above equality as (u− v,v −w) =
1
2 (‖u −w‖2 − ‖u − v‖2) − 1

2‖v − w‖2 ≥ − 1
2‖v − w‖2. Substituting for w the

vectors v + ε · x and v − ε · x, for some x ∈ V, yields the inequality − ε
2‖x‖2 ≤

(u− v,x) ≤ ε
2‖x‖2 for all ε 6= 0, hence (u− v,x) = 0 for all x ∈ V.

In Theorem 2.4, the vector v ∈ V that satisfies the first statement is exactly PVu.
When the norm is induced by an inner product, the equivalent second statement
gives an important relation between a vector u ∈ U and its projection. It follows
that under this condition, the projection operator is indeed linear.

Theorem 2.5. Let U and V ⊆ U be inner product spaces, and PV the projection
defined in Equation 2.6. Then PV is a linear operator, and the following relation
holds:

(PVu,v) = (u,v) ∀ u ∈ U ,v ∈ V. (2.19)

Proof. The projection of a vector u ∈ U is by definition the vector in V that is
closest to u in the chosen norm, therefore ‖PVu − u‖ ≤ ‖v − u‖ for all v ∈ V .
By Theorem 2.4, this is equivalent to (PVu − u,v) for all v ∈ V, which proves
Equation 2.19. Linearity now follows directly: (PV(ax + by),v) = (ax + by,v) =
a(x,v) + b(y,v) = a(PVx,v) + b(PVy,v) = (aPVx + bPVy,v) for all v ∈ V,
therefore, PV(ax + by) = aPVx + bPVy.

When both U and V are finite dimensional vector spaces, the linearity of PV ensures
that the operator can be presented as a matrix. Equation 2.19 provides a means of
constructing this matrix for projection norms of the form ‖v‖ = vT Xv. The result
is an explicit expression for the projection defined in Equation 2.6.

Theorem 2.6. Let U and V ⊆ U be real valued, finite dimensional inner product
spaces. When the projection norm is induced by a SPD matrix X, then there exist
a matrix V such that the projection PV defined in Equation 2.6 equals

Pcol V = V (V T XV )−1V T X. (2.20)

Proof. The finite dimensionality of V means that it has a finite basis. When such a
basis is formed by the columns of a matrix V , each element v ∈ V can be identified
with a coordinate vector v′ ∈ RdimV such that v = V v′. Using the matrix-induced
inner product (v1,v2) = vT

1 Xv2, this transforms Equation 2.19 into the equivalent
expression V T XV (PVu)′ = V T Xu, for all u ∈ U . Solving this expression for
(PVu)′ yields Equation 2.20.
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2.3.3 Krylov methods for SPD matrices

All forework being done, it is now only a small step towards the actual Krylov
subspace implementations that are used in practice. To recapitulate, Equation 2.7
showed that the iterates of a Krylov subspace method applied to a linear system
Ax = b can be formed by projecting the exact solution of the system onto the
growing subspace of search vectors: xi = PVx; the initial guess and preconditioner
can both be worked into the system beforehand and need henceforth not be available
as separate components, as explained in Section 2.3.1. The search space V takes the
form of a Krylov subspace, which by Theorem 2.2 is independent of the norm used in
the projection. This norm, however, does have consequences for the implementation
of the resulting method.

For a general matrix X-norm, the projection operator is made explicit in Equa-
tion 2.20. Unfortunately, not any matrix X yields a valid Krylov method. In the
beginning of Section 2.3 already it was noted that the norm should allow mea-
surement of the unknown solution, that is, it must be possible to evaluate PVx.
Equation 2.20 shows that one norm that has this property is the matrix A-norm.
Substituting the right hand side for Ax, this leads to the following iterates:

xi = V i(V T
i AV i)−1V T

i b, (2.21)

in which matrix V i spans the Krylov subspace Ki(A, b) of dimension i. This norm
forms the basis of the widely used Conjugate Gradient method, popular for its low
resource usage due to a number of special optimizations. Unfortunately, in order to
yield a valid norm matrix A must be symmetric and positive definite, which restricts
this method to this special subset of problems.

The key to an efficient Krylov subspace implementation is to construct a Krylov
basis that in some way simplifies the evaluation of Equation 2.21. CG uses a process
known as Arnoldi’s method to construct a set of orthonormal basis vectors vi. By
definition, Equation 2.8, K1 is spanned only by right-hand side b which means that
the first basis vector must be of the form v0 = β−1b. The coefficient β is chosen
such that v0 has unit length. Next, since v0 and Av0 span K2, so do v0 and any
linear combination of v0 and Av0. In particular it is possible to construct a basis
vector v1 of unit length that is orthogonal to v0. Repeating this process i times
yields a set of basis vectors satisfying

Avi−1 = v0h0,i−1 + · · ·+ vi−1hi−1,i−1 + vihi,i−1, vT
i vj = δij . (2.22)

Matrix V i in Equation 2.21 is formed of the first i basis vectors. When Hi denotes
the i× i matrix formed of coefficients h, the above relation can be written as

AV i = V iHi + vi(0, . . . , 0, hi,i−1), V T
i V i = I. (2.23)

Because hi,j = 0 if i−j > 1, Hi is a Hessenberg matrix. From Equation 2.23 now

follows the important equality Hi = V T
i AV i, which shows that if A is symmetric,

so is Hi and hence hi,j = 0 if j − i > 1. This has two important consequences.
First of all, Equation 2.22 shows that Arnoldi’s method requires only the two most
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recent basis vectors in computing a new vector that is orthonormal to all others,
although in practice the orthogonality will slowly degenerate due to rounding errors.
Second, V T

i AV i is tridiagonal and can be inverted very efficiently. Writing the
right hand side vector as βv0 = βV ie1, where e1 is the first unit vector of Ri,
Equation 2.21 simplifies to

xi = βV iH
−1
i e1. (2.24)

This expression corresponds to Equation 6.65 of Saad [16], Section 6.7, in which
it is shown to lead to a highly efficient algorithm that updates xi each iteration,
requiring only a single vector in memory, regardless of how long the iterative process
proceeds. This short recurrence property, together with the optimality property
imposed by the projection behind Equation 2.21, is what makes the Conjugate
Gradient method so popular. It would be very attractive to have the same two
properties united in a Krylov method for general matrices as well. Unfortunately, it
was shown by Faber and Manteuffel [3] that such is not possible.

2.3.4 Krylov methods for general matrices

For general matrices, the A matrix on itself does not yield a valid norm; a zero norm
no longer implies zero length, which renders the projection useless. An alternative
norm that is valid for any matrix A and still capable of measuring the unknown
solution vector x is the matrix norm based on the product AT A. Using this norm,
the Krylov iterates take the following form:

xi = V i(V T
i AT AV i)−1V T

i AT b. (2.25)

By definition of the matrix norm, ‖xi − x‖AT A = ‖ri‖2, which means that when
the projection minimizes the distance to the exact solution in AT A norm, it actually
minimizes the residual vector’s Euclidean length. Whether this is better or worse
than the projection used in CG is in general hard to say. Both projections bring down
the error by minimizing related, though different quantities; it will depend largely
on the quality of the preconditioner which of the two is related most closely. Recall
that the preconditioner has been worked into the system matrix A. A very high
quality preconditioner will make this matrix approach identity, which means that the
residual will likewise approach the error. In practice this quality of preconditioning
is not feasible, and the CG measured quantity can well be closer.

A popular Krylov method based on the AT A norm is GMRES, short for Gener-
alized Minimum Residual method and named after the above interpretation of the
projection operator. Like the CG method, GMRES relies on Arnoldi’s method to
construct an orthonormal Krylov basis. The identity Hi = V T

i AV i still holds but
it is of little use because the inverted matrix in Equation 2.25 is now V T

i AT AV i.
In order to efficiently invert this matrix, GMRES uses a series of Givens rotations
Ωi to put Hi in triangular form, thus transforming Equation 2.23 to

AV i = V i+1ΩT
1 · · ·ΩT

i

(
U i

0T

)
, (2.26)
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where U i is a triangular matrix. Details of these transformations are for example
in Section 6.5.3 of Saad [16]. Because Givens rotations are unitary, it follows that
V T

i AT AV i = UT
i U i. Substitution in Equation 2.25 yields the following expression

for the iterates of GMRES:

xi = βV iU
−1
i Ωi · · ·Ω1e1. (2.27)

The rotations can be applied progressively and will therefore add only a fixed amount
of work per iteration. The diagonal system can be solved very cheaply as well, so
this method is indeed very efficient in terms of work. Note, however, that since
all previously calculated Krylov vectors are required to evaluate this expression,
memory usage does increase with the number of iterations. This was of coarse
known in advance because short recurrences and optimality are mutually exclusive
in the general case. A possible way of reducing memory usage is to restart the
iterative procedure after a fixed number of iterations, using the last iterate as the
new starting point. As the algorithm will need to rebuild a Krylov subspace from
scratch, however, super-linear convergence will be lost.

Somewhat better than restarting the iterative procedure would be to truncate the
Krylov subspace, such that a fixed number of the most recently computed Krylov
vectors will be kept in memory. Variants of GMRES that allow for truncation
do exist, but this requires some serious modifications to the above approach. A
Krylov method for which truncation comes naturally is the Generalized Conjugate
Residuals method, which is based on the same AT A-norm as GMRES. This method
stays very close to the ‘theoretic’ Algorithm 2.2, forming a Krylov subspace from
actual residuals. Therefore, no matter how the subspace is modified during the
iterative process, GCR will always head in the direction of the exact solution.

Like CG and GMRES, GCR has its own way of evaluating Equation 2.25. The
idea is to form a set of basis vectors for which V T

i AT AV i equals identity, so as
to eliminate the matrix inverse. This means that the Krylov vectors must now be
made AT A-orthonormal, (Avi,Avj) = δij . Similar to Arnoldi’s method, this is
done by decomposing each newly calculated residual in a Krylov component and
an AT A-orthogonal component, the latter forming the new Krylov vector vi. To
prevent a dramatic accumulation of matrix-vector multiplications in this process, a
second set of vectors wi = Avi is stored. With that, Equation 2.21 simplifies to

xi = V iW
T
i b = v1(w1, b)2 + · · ·+ vi−1(wi−1, b)2. (2.28)

Note that (wi, b − Axj) = (wi, b) for all j < i due to orthogonality. GCR can
therefore be implemented progressively as xi = xi−1 + vi(wi, ri−1). In this form
truncation of the Krylov subspace is allowed, limiting the memory that is required
by the algorithm. The downside is that each dimension now requires two vectors in
memory: vi and wi. Moreover, when truncation is not used, the theoretically equiv-
alent GMRES method proves to be more robust in certain situations. Therefore, in
many applications, the latter is to be preferred.
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2.4 Deflated Krylov methods

The Krylov subspace introduced in Section 2.3, Equation 2.8, has a fairly rigid
structure. The only means of modification are by using a preconditioner and an
initial guess, which corresponds to solving (M−1A)y = M−1r0 instead of the
unmodified system Ax = b. In many applications these two are enough to get a
fast convergent method, meaning that the low-dimensional Krylov subspaces already
contain a close approximation to the exact solution. The quality of either, however,
can be hampered by specific properties of the system, or by restrictions imposed
by the computational setting, often a parallel cluster. In those situations, it would
be useful to have an additional means of using additional, preliminary information
about the system at hand.

This is the main idea behind deflation, a numerical technique for accelerating
existing Krylov subspace methods by augmenting the subspaces with additional
basis vectors, called deflation vectors. The nature of these vectors can depend
entirely on the problem that is solved. Let a fixed set of deflation vectors span a
linear subspace Z. The following modification of Algorithm 2.2 directly augments
the set of search vectors with these deflation vectors, thereby expanding the search
space and thus improving the quality of the next iterate.

Algorithm 2.3
1. start: x0

2. x0 ← x0 + PZ(x− x0)
3. for i = 0, 1, 2, . . . :
4. ri ← b−Axi

5. if ‖ri‖ < threshold:
6. break
7. end if
8. ẽi ←M−1ri

9. xi+1 ← xi + PZ⊕ span{ẽ0,...,ẽi}(x− xi)
10. end for

Compared to Algorithm 2.2, line 2 is new and line 9 has been changed. The added
line enhances the initial guess with information from the deflation subspace, and
the modification makes this information available to all iterates that follow. Note
that the entire search space changes because of these modifications, as the search
vectors ẽi are based on these iterates xi. Therefore, the deflation subspace offers
more than just a head start, it can continuously force the search vectors in more
fruitful directions. Considerations for choosing a good deflation subspace will be
treated later in this section.

Algorithm 2.3 is once again of theoretic value only. To get to practical implemen-
tations, it must be transformed back to the Krylov Algorithm 2.2 for which several
efficient implementations exist. The following theorem will be invaluable to this
transformation.
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Theorem 2.7. Let Z and V be orthogonal linear spaces with respect to a certain
inner product, i.e. (z,v) = 0 for all z ∈ Z, v ∈ V. When P is the projection defined
in Equation 2.6, based on the induced norm, the following identity holds:

PZ⊕V = PZ + PV (2.29)

Proof. By linearity of the inner product, ((PZ+PV)u, z+v) expands to (PZu, z)+
(PVu,v) + (PZu,v) + (PVu, z), in which the latter two terms are zero due to the
orthogonality of Z and V. The remaining two terms transform through Theorem 2.5
to (u, z)+(u,v) = (u, z +v) = (PZ⊕Vu, z +v) for all z +v ∈ Z⊕V and u ∈ U ,
which proves Equation 2.29.

Theorem 2.7 can not be used directly to transform line 9 because the search vectors
will in general not be orthogonal to the deflation subspace. It is easy to see, however,
that for general subspaces Z and V, the direct sums Z ⊕V and Z ⊕ (I −PZ)V are
equal: z +v = (z +PZv)+ (I −PZ)v and z +(I −PZ)v = (z−PZv)+v prove
mutual inclusion. Theorem 2.5 shows that (z,v − PZv) = 0, hence the subspaces
in the latter direct sum are indeed orthogonal. Theorem 2.7 now shows that the
projection on line 9 can be split into two independent projections as follows:

xi+1 ← xi + PZ(x− xi) + P(I−PZ) span{ẽ0,...,ẽi}(x− xi). (2.30)

Not quite equal to Algorithm 2.2 yet, but it is moving in the right direction. The
next observation is that for both i = 0 (line 2) and i ≥ 1 (Equation 2.30) the
projection of the iterate onto the deflation subspace equals that of the exact solution,
PZxi = PZx. This follows from the linearity of PZ and the projection property
P2
Z = PZ ; in Equation 2.30, the second projection vanishes due to orthogonality.

Consequently, the first projection in Equation 2.30 is always zero and drops out.
Defining a new set of search vectors ẽ′i, lines 8 and 9 can now be modified such
that Algorithm 2.3 assumes the form of a standard Krylov method, i.e. that of
Algorithm 2.2:

ẽ′i ← (I − PZ)M−1ri

xi+1 ← xi + Pspan{ẽ′0,...,ẽ′i}.
(2.31)

Thus put into Krylov form, all results obtained in Section 2.3 become valid again,
including efficient implementations such as CG and GMRES. It would seem that, in
the end, deflation is not essentially different from any other preconditioner. There
is, however, one essential difference: the new preconditioner (I − PZ)M−1 is sin-
gular. Its null space is spanned by the columns of MZ. This means that the Krylov
subspace can reach only part of the total solution space — to be precise, the or-
thogonal complement of the deflation subspace. The deflation subspace component
is determined independently. Deflation can thus be seen as a means to narrow the
search space, constantly forcing the Krylov method away from possibly problematic
regions. The iterates take the following form:

xi = x0 + PZ(x− x0) + yi, yi ⊥ Z (2.32)

Of course this ‘explanation’ of improved convergence due to deflation is merely
heuristic. More solid grounds will be built on insights provided by eigenvalue defla-
tion, a subject to be treated later in this section. Before discussing these specific
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examples of deflation, however, there is one final step to be taken in order to arive at
the ‘standard’ formulation, that is commonly found in articles on this subject such
as by Vuik et al. [19] and Frank and Vuik [4]. This step is similar to the transition
from a left to a right preconditioned system in Section 2.3.1, which transformed
Equation 2.16 to 2.17 by shifting the preconditioner through the Krylov subspace.
In exactly the same way, the subspace in which yi in Equation 2.32 is formed can
be expressed in three different ways:

yi ∈ Ki

[
(I − PZ)M−1A, (I − PZ)M−1A(I − PZ)(x− x0)

]
(2.33)

= (I − PZ)Ki

[M−1A(I − PZ),M−1A(I − PZ)(x− x0)
]

(2.34)

= (I − PZ)M−1Ki

[
A(I − PZ)M−1,A(I − PZ)(x− x0)

]
. (2.35)

Although three times the exact same search space, the Krylov subspace inside dif-
fers which means that the connected Krylov methods yield different iterates due
to a different projection. The first of those methods is completely equivalent to
Algorithm 2.3. Its iterates are formed from

xi = x0 + PZ(x− x0) + yi,[
(I − PZ)M−1

]
Ay =

[
(I − PZ)M−1

]
A(I − PZ)(x− x0), (2.36)

in which the yi result from a Krylov subspace method applied to the left-precon-
ditioned system. Due to the use of the projection operator, this system is singular.
This is not necessarily a problem. A well known result from Kaasschieter [7] is that
Krylov subspace methods have no problem solving singular systems, as long as the
system is consistent, meaning that the right hand side lies in the column space
of the system matrix. Since the same preconditioner is used on both sides of the
equation, this condition is met and the Krylov method will generate a valid solution
for this system.

There does appear to be a problem, though, because this solution is not fully
determined. It can contain an arbitrary component from its the null space, formed
of the columns of A−1MZ. As the original, non-linear system is not singular and
therefore does have a uniquely defined solution, arbitrary iterates are useless. The
reason that this is not a problem is that Krylov subspace iterates are in fact not
arbitrary, but fully determined projections onto the growing Krylov subspace. By
construction, these subspace elements are all of the form (I − PZ)v, which means
the Krylov method will always select the single solution that is orthogonal to the
deflation subspace.

It follows that the solution method defined in Equation 2.36 produces fully deter-
mined, valid iterates. However, its high dependence on the structure of the Krylov
subspace will prove to be very restrictive. A method based on the reformulated
search space, Equation 2.34, will allow for much more flexibility. These iterates are
formed as

xi,left = PZx + (I − PZ)(x0 + yi,left),[
M−1(I −APZA−1)

]
Ay =

[
M−1(I −APZA−1)

]
r0, (2.37)

where the yi,left result from a Krylov method applied to the new preconditioned

system. Note that the A−1 in the new preconditioner will cancel against the trailing
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A in PZ , which is there as explained in Sections 2.3.3 and 2.3.4. The preconditioner
is still singular, with a null space equal to the deflation subspace Z. The system
therefore has solutions of the form y = x − x0 + z, with z an arbitrary deflation
subspace component. The main difference with the previous method is that the
iterates xi,left are unique regardless of the Krylov subspace, because the arbitrary
component z is annihilated separately by the projection I − PZ .

By loosing dependence of the Krylov subspace, the solution method has become
very tolerant to modifications. For instance, it is now possible to use different
projection norms in the deflation and Krylov projections, something that would
immediately destroy convergence of Equation 2.36. In fact, the new method can
only exist by virtue of this new possibility. Note that the reformulation of the search
space involves shifting I − PZ out of the Krylov subspace. Section 2.3.1 noted
that such can lead to substantially different iterates in case the shifted matrix is
ill-conditioned. A singular matrix can be considered an extreme case, and indeed
performing the Krylov projection in either the A or AT A norm does not result in a
convergent method. This is fixed by projecting in a seminorm based on the deflated
matrix A − APZ , thus measuring orthogonal to the deflation subspace only. In
practice this discrepancy is of no concern, as actual Krylov methods project in the
preconditioned matrix norm anyway.

Equation 2.37 shows deflation the way it is usually found in literature: a left-pre-
conditioned system with a solution that needs post-processing to make it unique.
Less commonly found is the right-preconditioned variant, based on the second re-
formulation of the search space, Equation 2.35. Its iterates are

xi,right = x0 + PZ(x− x0) +
[
(I − PZ)M−1

]
yi,right,

A
[
(I − PZ)M−1

]
y = b−A(x0 + PZ(x− x0)), (2.38)

where yi,right are Krylov iterates from the right preconditioned, singular system. The
null space is spanned by the columns of MZ, and it can be seen that an arbitrary
component from this space is again annihilated in the formation of xi,right. What
is different from left preconditioned deflation is that annihilation is now caused by
the preconditioner instead of a separate post-processor. Compare Equation 2.38
to the standard right preconditioned system introduced in Section 2.3.1. It seems
that, using x0 + PZ(x− x0) as initial guess and (I − PZ)M−1 as preconditioner,
deflation simplifies to a normal, right preconditioned Krylov method that does not
require any extras like a post-processing step. This step is not lost, however; it has
simply changed into a preprocessing step to form the new initial condition.

In practice, the preconditioned Krylov variants of deflation coexists with algorithms
that stay more close to Algorithm 2.3. Morgan [9] for example has formulated
a modified GMRES algorithm that is capable of dealing with arbitrary deflation
subspaces. Such algorithms are called augmented Krylov methods, which sounds
as though they are the exact opposite of ‘deflated’ Krylov methods while in fact
they are very similar. From the above it is clear that the two classes relate in similar
ways as left and right preconditioned iterative methods do: they merely measure in
different spaces. Therefore both classes are expected to show the same convergence
behaviour for a given deflation subspace. The only question left is which subspaces
will actually improve convergence, and why.
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2.4.1 Krylov deflation

An interesting deflation subspace that springs to mind is a Krylov subspace of fixed
dimension n: Z = Kn(MA,Mr0). This subspace is spanned by the first n search
vectors of the non-deflated Algorithm 2.2. Equation 2.7 now shows that line 2
assignes x0 the n-th non-deflated Krylov iterate, from which point onward both
algorithms construct exactly the same search vectors. As always, actual iterates
can differ due to modifications in the implementation of both algorithms, such as
those underlying Equations 2.37 and 2.38, but the search spaces are identical. For
this deflation subspace, apparently deflation is no more than a head start of n Krylov
iterations, which is of no practical use as it will take an additional n iterations to
form the deflation subspace. Still, this does lead to two ideas about how deflation
can be put to use.

The first has to do with restarting. Recall from Section 2.3 that most Krylov
subspace methods require all Krylov vectors to be kept in memory, inevitably leading
to memory problems when convergence takes many iterations. A common solution
is to restart the Krylov method after a fixed number of iterations, using the last
computed approximation as initial guess. The obvious problem to this approach is
that all information about the Krylov subspace is lost, with dramatic consequences
for convergence. The above example shows that feeding this information through
deflation fixes this problem and leaves convergence intact after a restart, only it
doesn’t resolve the memory problem as the Krylov vectors are basically just renamed
to deflation vectors. However, when the information present in the Krylov subspace
can somehow be compressed into a smaller deflation subspace, deflation could be
really useful in the context of restarted Krylov methods.

Another idea about deflation is brought by further inspection of the Krylov deflated
process. What happens is that the unmodified Krylov subspace rapidly catches
up with the deflation subspace, embodying the deflation vectors in only a few
iterations. Once this point is reached, the deflated method continuous as though
it were a normal Krylov method, leaving only a fixed amount of iterations gain at
best. In this respect, the first few Krylov vectors form the worst deflation subspace
thinkable. In order to be more than just a flying start, deflation should be based
on vectors that come into the Krylov subspace only after many iterations, long
after a suitable approximate solution is found. That way deflation will continuously
accelerate convergence by injecting external information into the algorithm, as well
as provide a leap start.

However different these two ideas may seem, it will be shown that in both situations
eigenvectors are the key to a good deflation subspace. In practice, the first idea
underlies most augmented Krylov implementations, while the second is the main
idea behind most deflated ones. This can be explained partially from the fact that
for SPD matrices, restarts are not normally required due to the short recurrence
property. The deflation preconditioner retains this property and can thus still be
used to speed up convergence through enrichment. For general Krylov methods
this restriction does not apply, and for those directly adding vectors to the Krylov
subspace can be a little more straightforward than preconditioning.
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2.4.2 Eigenvalue deflation

The following special case will give an explanation of improved convergence in de-
flated Krylov methods. Consider a symmetric and positive definite system Ax = b,
solved using a deflated Krylov method based on Equation 2.37 with no precondi-
tioner M . An SPD matrix induces a norm that can be used in the projection PZ
onto the deflation subspace. When this subspace is spanned by the columns of a
matrix Z, Equation 2.20 shows that the deflated system takes the following form:

PA = A−AZ(ZT AZ)−1ZT A. (2.39)

Note that the deflated system is still symmetric, which means that highly opti-
mized Krylov methods such as the Conjugate Gradient method are still applicable.
Moreover, for a carefully chosen deflation subspace, deflation will retain not only
symmetry but even a large part of the spectrum of A. To see this, let the eigenvec-
tors of A be denoted v0,v1, . . . , with corresponding eigenvalues λ0, λ1, . . . such
that Avi = λivi. A well known SPD matrix property is that its eigenvectors can
be chosen such that they form an orthogonal set. Due to this property, when Z is
composed of a subset of eigenvectors v1, . . . ,vn, the following holds:

(PA)vi =

{
0 i ≤ n
λivi i > n

(2.40)

This shows that deflation can be used to selectively ‘project’ certain eigenvalues of
A to zero, while leaving the others in place. Recall from Section 2.3 that Krylov
convergence is governed by the effective condition number, which is tied to the
set of eigenvectors that are to be found by the Krylov method. Since the deflation
vectors are known from the start, the corresponding zero eigenvalues do not influence
convergence. With the remaining part of the original spectrum left in place, the
effective condition number of the thus deflated system is at most as high as the real
condition number. When extreme eigenvalues are projected out, it will be smaller.

This example illustrates the explanation of improved convergence in deflated Krylov
methods. Instead of shifting the eigenvalues of the system together, like a normal
preconditioner does, the effective condition number is lowered by selectively pro-
jecting the smallest eigenvalues to zero. This can be thought of as ‘deflating’ the
spectrum of the matrix, which at last explains the name of this method. Ideally,
the remaining part of the spectrum is left unharmed, but in practice this is not
really feasible as determining eigenvectors is a very expensive procedure. Practical
deflated methods therefore rely on various techniques to cheaply generate a set of
approximate eigenvectors. Although this will slightly change the spectrum of the
deflated matrix, the effective condition number should still decrease.

Returning to the first of the two deflation approaches suggested in the previous
section, it is now clear how the information in a Krylov subspace should be ‘com-
pressed’ into a set of deflation vectors. The convergence speed that is wished to
be preserved after a restart is due to a decreased effective condition number, mean-
ing a few extreme eigenvectors are closely approximated by the Krylov subspace.
These approximate eigenvectors span a subspace of a much lower dimension than
the complete Krylov space, while still containing most of the information that keeps
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convergence up to speed. What is more, these approximate eigenvectors, known
as Ritz vectors, can be cheaply obtained from the Arnoldi method underlying for
example GMRES. Results of restarted GMRES based on this type of deflation are
presented a.o. by Morgan [9], who tested it with his own modified algorithm.

The other idea was to speed up convergence by explicitly adding a set of vectors that
are not so easily found by the Krylov method. These vectors are now understood
to be eigenvectors, corresponding to the lower part of the spectrum. This time
there is no way of obtaining these vectors other than through expert knowledge of
the system. For example Vuik et al. [19] manually composed a set of approximate
eigenvectors based purely on physical grounds, which they called physical deflation
vectors. Another option is to base deflation on insights on the matrix itself, in which
case it is sometimes called algebraic deflation. This type of deflation, described
a.o. by Frank and Vuik [4], is most often found in domain decomposition contexts
where it can be seen as a means of global communication between subdomains.

2.4.3 Subdomain deflation

This chapter started with the observation that current day research often involves
increasingly large systems of equations. As technology progresses this growth will
continue. The techniques discussed so far aimed at reducing both work and memory
usage, so as to stretch the limits of what can be solved within reasonable time. No
matter how efficient these methods may be, however, limits will always continue to
exist. The final important step is therefore to implement the techniques discussed
thus far in such a way that a group of separate computational nodes can work in
joint collaboration. Such a parallel computing environment can be thought of as
a single system with a large amount of memory and computing power, with one
major bottleneck caused by inter node communication. This communication should
be the main concern when developing for a parallel cluster.

Methods for solving linear systems in parallel, at least those representing physical
problems, often build on domain decomposition techniques. This means that the
physical domain is subdivided into a number of subdomains, that an equal number
of computational nodes can claim as their part of the problem. The approximate
solutions are thus spread over the parallel cluster, and during the iterative process
relevant parts are communicated with other nodes in the cluster. In particular, oper-
ations requiring this communication are inner products and matrix-vector products.
Due to the underlying physics, communication data is usually limited to the interface
regions between adjacent subdomains. This is an important difference with direct
solution methods, which require heavy communication due to their inherent global
nature. The impact of this on performance makes direct methods less suitable for
parallelization.

Recall that the popular ILU preconditioner is a modified version of full LU decom-
pomposition. As such, ILU exhibits the same kind of communication problems as
direct methods when used in parallel computing environments. For this reason, in
most practical domain decomposition methods preconditioners are applied on sub-
domain level only. These are then combined into one global preconditioner through
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block variants of the Gauss Jacobi or Gauss Seidel preconditioners introduced in
Section 2.2.1, although in this setting they are usually named additive Schwarz
and multiplicative Schwarz, respectively. Using ILU for the (approximate) block
inversions, the resulting preconditioner is sometimes referred to as block ILU. Other
popular preconditioners for domain decomposition methods are based on the Schur
complement method, which takes a quite different approach. Both types of meth-
ods are covered extensively in Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, by Smith et al. [17].

Being approximate solvers, preconditioners improve convergence by smoothing out
the error in subsequent approximations. As such they can be viewed as a means
of global communication within the iterative method, added to the local, physical
connections manifested in the non-zero entries of the original matrix. When no
preconditioner is used, propagation of information from one side of the domain to
the other through these local physical connections can require many iterations. Since
block variants operate subdomain local, inter subdomain communication in block
preconditioned methods falls back on these slow, local connections, manifested in
slowly decaying, though rapidly smoothed subdomain errors. For this reason parallel
methods always experience a drop in convergence speed, but the total computation
time can still go down due to the division of work. For increasingly large clusters,
however, the situation worsens to the point where further parallelization can not be
justified.

Deflation can help improve this situation. When a set of deflation vectors is con-
structed that are zero everywhere on the domain, except for a single subdomain on
which they are constant, the resulting deflation subspace is the set of solutions that
are constant along subdomains. Since the deflation subspace is the null space of the
deflated system, subdomain wide shifts in the solution go unnoticed. The absolute
size of the subdomain error is ignored by the deflated system, which means that inter
subdomain communication is taken over by the deflation operator. Thus comple-
menting the intra subdomain communication brought by the block-preconditioner
with a means of inter subdomain communication, subdomain deflation is expected
to reduce the ill effects of a domain decomposition.

The preceding subsection gave an explanation of improved convergence due to
deflation in terms of eigenvectors. Indeed, the subdomain constant deflation vectors
can be thought to span a subspace similar to that of the smallest few eigenvectors
of a block preconditioned system. Since the remaining eigenvalues are shifted to
one by the block-preconditioners, projecting these smallest few to zero reduces the
effective condition number. This shows the great difference with another widely used
acceleration technique, coarse grid correction, which uses a similar subspace to shift
the smallest eigenvalues to one. Nabben and Vuik [12] proved with Theorem 2.6 that
for identical subspaces, the effective condition number of a deflated SPD system is
always at most as high as that of the coarse grid corrected system.

The eigenvector explanation suggests that if a richer deflation subspace manages
to approximate the unwanted eigenvectors more closely, this will lead to an even
better convergence speed up. One possible way of enrichment is adding higher
order deflation vectors, such as proposed by Verkaik [18] in his master thesis. Note,
however, that a larger subspace will evenly enlarge the small system that is solved
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for each application of the deflation operator, countering the decrease of iterations
by increased work per iteration. As with most things in numerics, constructing a
good deflation subspace is a matter of optimization, which may require new trial and
error investigations every time that one is confronted with a new type of system.



Chapter 3

Implementing deflation

The VMS method introduced in Chapter 1 is implemented by a research group at
the faculty of Aerospace Engineering of Delft, University of Technology. They have
taken a flexible approach, making not only the problem itself but also many aspects
of the solution procedure configurable at runtime. This includes solver type, precon-
ditioners, number of subdomains, accuracy, etcetera, which makes the program very
suitable for numerical experiments. The flexibility is due mainly to the Jem/Jive
programming toolkits developed by Habanera. These toolkits allow for rapid devel-
opment of efficient numerical software in the C++ programming language. Strictly
speaking the VMS code is written on top of MPF, a toolkit developed at Aerospace
Engineering that specifically targets fluid-structure interaction problems. Since MPF
in turn builds on Jem/Jive, however, this distinction is irrelevant to this report.

Experiments with the existing implementation have shown that the VMS method
performs quite well when executed as a single process. However, this performance
deteriorates quickly when the problem is distributed over an increasingly large num-
ber of computational nodes and solved in parallel. In other words, it scales very
poorly. These experiments were performed using an additive Schwarz preconditioner
in combination with local approximate solvers, typically an ILU preconditioner. Sec-
tion 2.4.3 showed that this situation can possibly improve from using a deflation
technique, which takes the form of a new solver. Due to the modular design en-
forced by Jem/Jive, the current program should be able to use the new solver
without change, once it becomes available.

This chapter describes the implementation of a deflation solver in Jem/Jive. General
knowledge of the C++ programming language will be assumed, including object
oriented concepts such as classes and inheritance. Knowledge of function templates
— although heavily used in Jem/Jive — is not required for reading this chapter.
The first two sections are a general introduction to Jem/Jive, with focus on parts
that are relevant to solver development. Section 3.3 describes the implementation
of the deflation solver in detail. The complete source code of the deflation solver
has been included as Appendix A.

46
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3.1 Jem

The first and foremost choice to be made when a new software project is started is
which programming language is going to be used. In particular, one should choose
between high and low level languages. High level languages, such as Python and
Scheme, abstract away error prone tasks like memory management, which increases
the maintainability and also portability of code at the cost of efficiency. Well written
low level code will in general execute faster because these tasks can be optimized
for specific applications, which is the main reason that low level languages are still
used in areas where speed is of prime importance. Other considerations that can
force the use of a certain language are company policy, existing code base and
programming expertise. It will therefore be very useful to have some high-level
functionality without having to switch language.

Jem is a toolkit for the relatively low-level C++ programming language that aims to
be exactly this. It introduces typical high-level features such as garbage collection,
complex data types and, most of all, portability of code while keeping the possibility
of low-level optimization. This means that the non time-crucial parts — in general
the large majority — of code can be written fast and cleanly because focus can lie
on essentials instead of accessories, like memory management. Typical candidates
for optimization are numerical algorithms, for which all potential power of C++ is
still available. This section is a reference of the main Jem objects and their intended
use. For ease of reference these objects are indexed under ‘Jem’.

3.1.1 System interface

Ideally, C++ source code should compile to a valid program, unchanged, on all com-
puter architectures that have a C++ compiler available. The compiler translates
the source into a sequence of low level, architecture specific instructions that form
the same intended program on any of these. The reason that most code still needs
changing in order to run on different platforms is mostly not architecture but op-
erating system related. Problems occur where low-level interaction is required. For
instance things like user input and output require different system calls in Windows
and Linux, with obvious implications on code. This difference is usually hidden by
libraries such as STL, which have different implementations on supported platforms.
From the programmer’s perspective these provide a consistent way of performing
certain tasks and using these he is able to write code that runs on all platforms that
have this library.

Jem is a similar abstraction layer, that provides consistent access to various aspects
of the operating system through several classes, in particular the System class.
This includes environment variables, system properties, stack traces, as well as user
interaction through input-output operations and logging facilities. By accessing the
system strictly through Jem, the source code will be completely operating system
independent because all dependence has been moved into Jem, which has different
implementations on the supported platforms. Currently these are Linux and Mac
OS X. When in a later stage Jem is made to support an other operating system
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as well, Windows for example, this support will automatically transfer to all code
written on top of it.

One of the things that are accessible through the System class is printing text to
the standard output. The standard C++ way of doing this is by using the cout
stream object, which is capable of printing a wide range of data types through an
overloaded shift operator. Jem uses a similar approach, except that it provides five
stream objects instead of one. In increasing order of priority these are debug, info,
out, warn and err. These stream objects can all be configured to behave differently,
for example to hide data sent to debug or to print a prefix text indicating priority,
process id, time, etc. These settings can be read from a configuration file a runtime,
which makes it possible to alter the program’s output without having to recompile.

The following example code shows ’hello world’ through Jem’s info stream.

1 using namespace jem;
2

3 int main( int argc , char∗∗ argv )
4 {
5 System:: info () << ”hello world\n”;
6 }

Another useful member of the System class is the traceback function. When this
function is called at some point during execution of the program, it will display the
sequence of function calls that led to that particular point in code. The exception
handler by default calls this function when an exception occurs, thus giving valuable
information about what exactly went wrong. Clearly this is very useful in debugging
newly written code. Moreover, users of a finished software product will be able
to provide the same information after they have come across an undiscovered bug,
because the exception handler can remain active after a program has been released.

3.1.2 Properties

The standard data types provided by C++ include character strings, number types
such as integers and floats, and arrays of these. High level languages often provide
more complex data types such as dynamic lists and databases. Commonly used
databases are organized in key-value pairs; in Python these are called dictionaries,
in Jem they are Properties but these are essentially the same thing. The keys are
unique strings that are tied to an object that can be of any type, possibly a new
(nested) Properties object. These values can be acquired through a call to either
the get or find member functions, the difference being that the former raises an
exception when the requested key is not found while the latter silently returns NIL,
Jem’s general null object. Nested Properties can be accessed quickly by joining
multiple keys with dots and using this string in either get or find.

The key-value structure suggests a text representation of the form “{key1=value1;
key2=value2; . . . }”, in which the values are formatted according to their own text
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representations. For example string objects will be quoted, arrays are enclosed in
square brackets and nested Properties objects are formatted as above, i.e. enclosed
in curly braces. When a Properties object is printed via one of the stream objects
from the System class, it will be formatted like this. The other way round, starting
with a text representation, it is possible to build the represented Properties object.
Jem comes with a string parser that does exactly this. Its main use is to parse
strings read from text files, which gives the user the possibility to define properties
at run time. Such a properties file can for instance be:

1 num = 1.25; // float
2 solver = // nested propery
3 {
4 type = ”GMRES”; // string
5 restart = 100; // integer
6 };

Note that the superfluous curly braces at the highest level are left out. What remains
is very similar to standard C syntax. Text starting with a double foreslash are
comments, ignored by the parser, and whitespace is not significant which allows the
kind of formatting used in the above example. The parser will translate this string
to a Properties object with two keys, “num” and “solver”, the latter corresponding
to a nested property object with again two keys. Using either the find or get
methods, the nested property values can be accessed directly as “solver.type” and
“solver.restart” which is shorthand notation for the alternative of two consecutive
calls. This convention can be used in the property file as well, for example writing
‘solver.type = “GMRES”’ instead of the above scoped notation. Lastly, it is possible
to refer to already defined keys, for example adding ‘x = solver.restart’ would be
identical to ‘x = 100’ in the above example.

3.1.3 Garbage collection

When software projects reach a certain size, memory management becomes in-
creasingly hard and tedious. Dynamically allocated blocks of memory can be used
in many different places, and great care should be taken to ensure that this memory
is released exactly at the moment that it is no longer used in any of these places.
Releasing it too early will mean that data that is still in use can be overwritten,
while releasing it too late or not at all will result in diminished performance due to
reduced available memory, a situation usually referred to as memory leaks. High
level programming languages often simplify this task by counting the number of
references to each object. When this reference count drops to zero, the object
is automatically removed — a process known as garbage collection. Jem imple-
ments a garbage collection scheme of its own that should likewise simplify memory
management in C++.

In Jem, not all C++ objects can be used in combination with this scheme, only those
that are derived from the Collectable base class. Fortunately, most of Jem’s objects
are. Collectable instances must be made through the newInstance function, which
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returns a Ref instance that behaves much like a pointer to the created object. This
means for example that member items are accessible through the arrow operator.
For every new reference to that object its reference count is incremented, and
it is decremented when the reference is lost. This happens automatically when
the local reference variable looses its scope. The object itself is removed only
when the reference count has become zero, i.e. directly after the last reference to
the object is lost. This way memory management is taken completely out of the
hands of the programmer, who can instead focus on main aspects of the program
instead of implementation details. In places where performance is crucial, low level
management can still be used.

3.1.4 Numerical tools

Jem mainly targets numerical software. A minimum requirement for that is a multi-
dimensional data type that can represent vectors and matrices. The standard C++
arrays are quite limited in that they can only be used to store and retrieve elements.
Jem’s Array class is a much more advanced data type that supports arbitrary slicing
and resizing and that has many operators defined on it such as scalar multiplica-
tion and block assignment. Moreover, this Array object is automatically garbage
collected, which is extremely useful for a data type that is usually created and de-
stroyed and passed around so often that it is very hard to keep track of. For reasons
of implementation, however, Arrays have their own garbage collection system and
are therefore not instantiated by a Ref object.

The Array class is a template class with two template variables that define its type
and dimension. For example, Array<int,2> is a two-dimensional array of integers,
of a shape determined by its constructor arguments. A 100-element integer vector is
created as Array<int,1> vec(100), which claims the memory but leaves the vector
uninitialized. The single scalar assignment vec = 0 makes all of its elements zero.
Likewise, a 100×100 array of uninitialized doubles is created as Array<double,2>
A(100,100).

Instead of dimensions it is also possible to call the constructor with another Array
instance, which is then copied to a new location in memory. This is very different
from slicing, which creates a new Array instance that points at the same block of
memory. An example of this is A(SliceAll,0) which returns the 100-element vector
that points at the first column of a matrix A. More complicated slices are allowed
as well, such as A(Slice(0,50,10),Slice(0,50,10)) that returns a 5×5 matrix formed
of the elements of rows and columns 0, 10, 20, 30 and 40 — the three arguments
of the Slice object are first index, last index (exclusive) and stride, respectively.
Slices provide a flexible way of selecting parts of a matrix without having to worry
about underlying memory access. It is important to realize, however, that a slicing
operation results in shared memory and that modifications in one object can lead
to changes in another.

Besides the basic operations defined on Matrix objects, Jem provides a set of linear
algebra tools in the numeric namespace. These include a crossProduct and dot-
Product function to compute the outer and inner product of two vectors; matmul for
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standard matrix-vector, vector-matrix or matrix-matrix multiplications, depending
on the type of arguments; and the LUSolver class that contains a set of methods
to factor, solve and invert linear systems through LU decomposition. The numeric
namespace also contains a SparseMatrix object that stores only the positions and
values of nonzero elements. For sparse matrices, which have only a small fraction of
nonzero elements, this is much more memory efficient than full matrix storage. An
inherent consequence of this storage mode, however, is that SparseMatrix objects
are not as full-featured as their full counterparts. Slicing for instance is not sup-
ported because the submatrices can no longer use the same memory. However, the
basic assignment operators still apply, as do some of the numeric tools like matmul.

3.1.5 Parallel computing

It is often necessary to solve a certain numerical problem in parallel on a cluster
instead of on a single processor. Not in the first place to speed up the solution
process by having multiple processors working together on the same problem, but
because of sheer data size. The matrices that represent the high level of detail
required by many current day applications are so large that they simply do not fit
in memory completely. A parallel application will therefore need to distribute the
matrix over the available nodes and adapt the numerical algorithm to handle this
situation.

Obviously, the parallelized algorithm will at certain points need to exchange matrix
or vector elements between the various nodes. To make full use of available commu-
nication hardware requires full knowledge of all platforms that the software should
possibly run on, turned into specialized code. Fortunately, this task is taken out of
the hands of the programmer, as this specialized code is usually available in the form
of a Message Passing Interface library. MPI is the de facto standard for writing
parallel software, and most computer clusters provide their own implementation of
it, optimized for its specific hardware. The library abstractly defines a wide range
of operations such as send, receive, broadcast and gather. Complete information
can be found on various websites such as [10].

Strictly speaking, it is not necessary to access MPI through Jem. As MPI is portable,
the same holds for applications that use it natively. Nonetheless, Jem makes its
functions available through its own mp::Context class for two reasons. First is
convenience, because it takes some administrative tasks out of the hand of the
programmer, who this way does not need to know of underlying libraries. The other
reason is that Jem provides its own alternative parallel processing mechanism, based
on posix threads. Threads generally have much less overhead than MPI processes,
but they are limited to single or multi-core shared memory machines. Using the
mp::Context class, the preferred mechanism can be chosen at runtime.
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3.1.6 Event handler

In order to improve maintainability of code, Jem encourages a modular software
design in which tasks are strictly separated. Ideally these tasks operate without any
idea of each other’s existence. However, since modifications to shared objects will
have global effect, there needs to be a way notifying other tasks of certain events.
For example, in a particle collision simulation, one possible division of tasks is 1.
generating and deleting particles, 2. calculating gravity forces and 3. calculating
collision forces. These tasks can operate completely independently, except that
when the first task generates a new particle the other two should be notified of this
as they will need to include it in their calculations.

Jem provides an event handler that allows functions to be connected to derived
util::Event objects. In the above example, the first task can emit a ‘new particle’
event, that the other two may have connected to functions that make the necessary
changes. By this construction none of the three tasks need to know of the others’
existence. They only know of an abstract event that can occur, or that they can
make to occur. Multiple events can be connected to the same function, and vice
versa, which makes the event system very flexible. Note the difference with com-
pletely event-driven applications, such as most graphical applications, where events
are mainly external. In Jem they are raised by the software itself, and after handling
of all connections the normal execution flow is restored.

3.2 Jive

Jem provides a set of very useful, though still quite low level tools to facilitate
software development in general. The garbage collector, for instance, will serve
its purpose just as well in game development as it will in numerical software, but
both situations will still require a set of (completely different) collectable objects in
order to put it to use. Because numerical software is the main target, such a set
of high level numerical tools has been implemented on top of Jem, forming Jive.
Figure 3.1 shows that Jem forms an abstraction layer between Jive’s components and
the operating system, assuring portability of code. The various components include
mesh generators, finite element tools, numerical solvers, etcetera. The complete
range of tools is too wide to be covered completely in this section. Therefore, only
those that are relevant to this report will be discussed here.

Like Jem, Jive is a toolkit that can be used to create numerical software, but that is
no software on its own. The user is responsible for putting the various components
together in such a way that they compile to a program that does what is intended.
This does require some basic programming skills, but it implies a great flexibility in
the range of problems that can be handled. The Jive components are designed with
extensibility in mind, meaning that they should easily be made to cooperate with
non-Jive, problem specific code. The resulting program will be tuned and optimized
for a single, specific task, possibly one that none of the closed numerical package
on the market are able to perform.
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Figure 3.1. Schematic overview of the Jem/Jive framework. Jem provides a cross-
platform interface to the Operating System and certain platform-specific libraries.
Through this interface, Jive maintains portability to all supported platforms.

Most realistic problems will require some amount of problem specific code. More
standard problems can be solved by simply putting together of existing components.
An example of this is the following complete Jive application, which is built exclu-
sively of standard components. This section uses this example code to introduce
some of the most important Jive components — which will be indexed under ‘Jive’
— meanwhile revealing what exactly this program does, and how. It will be shown
that in fact the code below is not enough to answer this question, because many
fundamental decisions are made at runtime.

1 using namespace jem;
2 using namespace jive;
3

4 Ref<app::Module> mainModule()
5 {
6 fem::declareMBuilders ();
7 model::declareModels ();
8 femodel ::declareModels ();
9

10 Ref<app::ChainModule> mainChain = newInstance<app::ChainModule>();
11

12 mainChain−>pushBack( newInstance<mesh::MeshgenModule>() );
13 mainChain−>pushBack( newInstance<fem::MPInputModule>() );
14 mainChain−>pushBack( newInstance<fem::PartitionModule>() );
15 mainChain−>pushBack( newInstance<fem::InputModule>() );
16 mainChain−>pushBack( newInstance<app::ControlModule>() );
17 mainChain−>pushBack( newInstance<fem::ShapeModule>() );
18 mainChain−>pushBack( newInstance<fem::InitModule>() );
19 mainChain−>pushBack( newInstance<app::InfoModule>() );
20 mainChain−>pushBack( newInstance<implict::LinsolveModule>() );
21 mainChain−>pushBack( newInstance<app::OutputModule>() );
22

23 return mainChain;
24 }
25

26 int main( int argc , char∗∗ argv )
27 {
28 return app:: Application :: pexec( argc , argv, & mainModule );
29 }
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3.2.1 Modules

Section 3.1.6 explained how Jem’s event handler makes it possible to split a program
into components that can operate virtually unaware of each other. Jive strongly
builds on this idea by organizing its components in modules, which are independent
objects that perform certain specific tasks. The only connection between these
objects is a globally shared Properties object, named globdat. This globdat is
where each module expects to find certain specific items, input for its own task,
and where it makes its results available for other modules to use. For example, a
module can expect to find a matrix and a right hand side vector in globdat, and
add to this the solution vector that it computes for this system.

The module system is driven by the pexec function, called by the example’s main
function in line 35. This function performs some basic initialization, after which
it hands over operation to the module specified in its third argument. Technically,
the argument is a function that generates a module object, which amounts to the
same thing. Module objects are derived from the Module base class, which in turn
is a Collectable. This means that instances must be made through newInstance,
returning Ref objects. Note again that Jive is built firmly on top of the Jem foun-
dation. The Ref objects behave as pointers through which the member functions
of the referred Module instance can be accessed. These are:

• init

• run

• shutdown

Part of the pexec’s initialization is parsing the command line, which should at
least specify a properties file to configure the application’s further operation. A
properties file was defined in the previous section to be the string representation of
a Properties object. This object is created by pexec and handed over to the module’s
init function, together with the globdat object, to be used in its own initialization.
Then the run function is called with the globdat argument, repeatedly, until it
returns a status value indicating that the program can shut down. This happens
after the module’s shutdown is called, which allows it to clean things up, close files,
etcetera.

Clearly, a single module does not really constitute a modular design. The main-
Module function defined in the example in line 21 therefore returns a ChainModule
object, which forwards the calls to init, run and shutdown to a chain of modules
that all have a specific task. The mainChain contains modules that mesh a domain,
partition it for parallel processing, define a finite element solution space and that
solve a linear system, to name a few. The forwarded function calls are made in the
same order as modules are added to the chain, i.e. starting with the MeshgenModule
and ending with the OutputModule. During run phase the chain is closed, meaning
that the first module follows the last, until one of the modules returns a stopping
status, initiating shutdown.
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3.2.2 Models

Most of Jive’s modules are configurable through the properties specified on the
command line, which are made available to each individual module’s init function.
The module bases its own operation on the properties that are relevant to its task.
This can go a lot further then simply defining constants and switching options on
and off. The example’s module chain, for instance, suggests that it performs some
kind of finite element simulation, but the nature of this simulation is not clear.
The reason is that certain identifying actions are performed by models, which are
defined at runtime. Models can be viewed as user pluggable functions. Internally,
they are model::Model objects that implement one main function:

• takeAction

The takeAction function expects three arguments: a string specifying the action to
be performed, a properties object used for both input and results, and the globdat
object. The actions should be as general as ‘build a matrix’, ‘build a precondi-
tioner’, ‘provide a set of boundary conditions’, etcetera. Many different models
can implement actions like these based on completely different grounds. Since the
LinsolveModule relies on these actions to build its linear system, this shows that the
actual type of problem that is solved is completely model dependent. For example,
the following model entry in the properties file will simulate a transport (diffusion,
convection) problem with no source term.

1 model =
2 {
3 type = ”MP”;
4 model =
5 {
6 type = ”Matrix”;
7 matrix =
8 {
9 type = ”FEM”;

10 symmetric = true;
11 };
12 model =
13 {
14 type = ”Transport”;
15 elements = ”all”;
16 precision = 1;
17 mobility = 1.0;
18 };
19 };
20 };
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The configured model is of type “MP”, which stands for multi-processing. This
model takes care of various parallelization issues, but it has no idea of the type of
simulation that is performed. For that it has a nested model to which it forwards
the actions that it can not perform itself. This “Matrix” model, in turn, has a
nested “Transport” model that actually defines the type of problem that is solved.
Simply specifying this model at top level will not do because it does not provide all
the required actions. This shows that the models must fulfill certain requirements
imposed by the modules, which are fixed at compile time. Within these bounds,
however, models can be chosen freely.

The model system assures a lot of flexibility even after a Jive application has been
compiled. Compared to modules, which are fixed at compile time, models are much
more dynamic. The idea is that modules determine the application’s global opera-
tion only and depend on models to fill in the details. This way, a Jive application can
handle a wide range of (mildly) similar problems without requiring recompilation.
Besides making experimenting a lot easier by lifting the burden of recompiling, the
resulting standalone application is also clearly a lot more useful than one that can
only solve a single distinct problem.

3.2.3 Discretization

Jive provides a set of tools that facilitate the discretization of partial differential
equations, using for instance finite elements. Some of these tools will be used by
models, because these define the system that will be solved. The FEM model in
the above properties excerpt, for example, will interpret the ’build a matrix’ action
as to discretize the equation defined by its nested model, in this case a “Transport”
model which holds the Laplace equation. Information such as size and shape of the
domain, boundary conditions and finite element type are all obtained from globdat,
where it was made available by other modules or models previously executed in the
chain.

The resulting system will most likely be solved using an iterative method. This
means that the composed matrix is used only in matrix-vector multiplications; indi-
vidual matrix elements need not be accessible. For this situation, Jive provides an
algebra::AbstractMatrix and a solver::Preconditioner base class with a matmul
member that performs this operation. Derived classes are completely free in the
way that this operation is implemented. It is for instance possible to work matrix-
free and form matrix elements on the fly during the multiplication, without storing
anything. Other derived classes will have some form of underlying data structure.
Because iterative solution methods will use only the members of the AbstractMatrix
base class, models are free in choosing a suitable matrix type for their problem, or
defining a completely new one.

A finite element method forms a solution as a linear combination of basis functions,
each of which amounts to one or more degrees of freedom, or DOFs, in the final
linear system. These are the elements of the final solution vector. To keep track
of which DOF corresponds to which basis function, Jive provides a DofSpace, a
bidirectional mapping between DOFs and basis functions that is essential in the
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interpretation of the solution of the linear system. The DofSpace forms the bridge
between a solution vector and the function that it represents. Actually, it can
represent multiple functions, referred to as types. A DofSpace therefore maps
a DOF to a unique string-integer pair, where the string denotes the DOF type
(“temperature”, “v x”) and the integer is an enumeration of basis functions within
this type.

Usually, not all degrees of freedom are really free. Some will be subject to certain
constraints, for instance imposed by boundary conditions. Dirichlet boundary con-
ditions will simply enforce a value, whereas other types such as Neumann will add
linear constraints to the final system. Combined, the constrained solution will have
the following form:

x = x̄ + Cx̂, (3.1)

with x̄ known and C holding all linear constraints. The remaining vector x̂ is com-
puted from the smaller, nonsingular system that follows from substituting Equa-
tion 3.1 into the original system Ax = b and left multiplying with CT :

(CT AC)x̂ = CT (b−Ax̄). (3.2)

Constraints are usually kept separate from the formation of A. They are ap-
plied in a later stage, allowing the investigation of different constraints in the
same system without having to recompose the matrix. Jive therefore provides a
solver::ConstrainedMatrix wrapper class, which matmul function performs the
CT AC multiplication without actually forming this matrix. In addition to this, it
provides a pre-processor initRhs that transforms a right hand side vector b to that of
Equation 3.2, and a post-processor getLhs to transform the solution of this system
to the real solution via Equation 3.1. These should be called before and after the
linear solution procedure, respectively, after which a solution of the original system
is formed that satisfies all the imposed constraints.

3.2.4 Parallel computing

In parallel computations, vectors are usually distributed over computational nodes.
To multiply this distributed vector with a matrix, this matrix needs to be distributed
over the nodes as well, in such a way that corresponding matrix and vector elements
are hosted on the same node. This is schematically shown in Figure 3.2 for the case
of three computational nodes. To perform the multiplication, the relevant parts of
the vector will need to be present on all the nodes, which forces a communication
step. By distributing the vector elements in such a way that they correspond to
coherent subsections of the physical domain, however, the sparsity structure of the
matrix will in general be such that only a few ‘neighbouring’ elements will need to
be exchanged.

Parallel programs are often written in such a way that exactly the same code runs
on all the nodes, using a unique process id to distinguish the various cooperating
processes at runtime. This id is made available through Jem’s mp::Context object,
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Figure 3.2. Schematic overview of the distribution of matrix and vectors over
multiple computational nodes in a parallel computing environment. The matrix-
vector multiplication can be performed per node using only a subset of matrix rows,
but some communication will be required to acquire off-node vector elements.

which provides access to low level communication — communication is a typical case
where distinction based on process id is required because it is something that has
to be coordinated with other processes. The above described parallel multiplication
will for instance require exchanging Array elements with neighbouring nodes. After
that, the procedure is the same on all processes: the assembled vector is multiplied
with the local submatrix, yielding a new local Array object that is part of the global
result. Therefore, apart from the communication step, processes need not even
know that they are doing only part of the work.

This idea is the basis of Jive’s algebra::MPMatrixObj class, which is a matrix
wrapper like the solver::ConstrainedMatrix class. Its matmul operation performs
the necessary communication and forwards the assembled vector to the wrapped
matrix’ matmul function. The MPMatrixObj class hides all parallel aspects inside
the matmul function, a member of the AbstractMatrix base class. This means
that algorithms that depend only on matrix-vector multiplications — most notably,
iterative solution methods — are automatically parallel when applied to a matrix
of this type. Of coarse, some preparations must be made beforehand, such as
distributing the vector over the nodes. The MPMatrixObj object will be the result
of these preparations.

It is true that iterative solution methods use matrices only in the context of matrix-
vector multiplications. There are, however, other operations that require communi-
cation as well in a parallel computing environment. These are operations that involve
vectors only, such as inner products. After computing an inner product on each com-
putational node, the local results need to be gathered, summed and redistributed to
have the global inner product available on each node. To keep this distinction out of
code as well, Jive provides VectorSpace and mp::VectorExchanger classes, with
multi-process counterparts, through which many of these vector operations can be
performed.
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3.2.5 Linear Solvers

Returning to the example code at the beginning of this section, a global picture of
the program’s operation can now be formed. Most of it is already given away by
the module names. For instance the MeshgenModule, first in the chain, generates
a mesh on a user defined domain and makes it available in globdat. The three
modules from the app namespace handle input and output to the user. The five
fem namespace modules in the chain jointly define a problem, based on the mesh
found in globdat, and store their results there as well. This problem is then solved
by the implict::LinsolveModule next in the chain. Because of its relevance to this
report, this module will be discussed in more detail.

Instead of taking objects directly from globdat, the LinsolveModule fulfils most of
its dependencies via model takeActions. The matrix, preconditioner and constraints
are acquired this way during the init phase. During run phase a right hand side
vector is acquired, as well as an initial left hand side vector, which is to be replaced
with a sufficiently accurate solution of the system. This is where the LinsolveModule
returns its main result, obtained from either a direct or an iterative solution proce-
dure. This procedure is determined at runtime via the ‘linsolve.solver’ properties, as
are all other solver settings. For example, the following properties excerpt defines
a restarted GMRES procedure that targets a residual over right hand side ratio of
0.001, using an ILU0 preconditioner if no other is specified by a model.

1 linsolve . solver =
2 {
3 type = ”GMRES”;
4 restartIter = 200;
5 precon.type = ”ILU0”;
6 precision = 1e−3;
7 };

Other solver types provided by Jive include iterative solvers such as CG and GCR,
as well as some direct solvers. A solver in Jive is a separate object, derived from the
solver::Solver base class. This object is created during init phase, based amongst
others on the matrix, preconditioner and constraints that are provided by the various
models. These can optionally be updated at later times, which makes it possible
to solve a different system in each module chain run. This is useful for instance in
time simulations. In order to deal with these late changes the solver can use Jem’s
event framework to connect to certain events, for instance to alter internal data
structures upon matrix changes, if such is necessary.

Upon creation, the solver object is of the right type and contains the relevant
information about the system, but other than that is still unconfigured. For config-
uration, the solver::Solver class defines two member functions:

• configure

• getConfig
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The configure function receives a single Properties argument that corresponds to
the solver entry in the properties file, ‘linsolve.solver’ in the above example. Solver
objects that are nested, or otherwise used differently, will be configured elsewhere
but this is hidden from the object itself. The solver just receives a Properties
object and uses this to configure itself, using default values for non-specified keys
as much as possible. To present a complete overview of which settings are really
used, including default values, and which are ignored, getConfig is called next with
an empty Properties object that is to be filled with these actual settings. It can
therefore be seen as the exact opposite of the configure function, forming properties
based on configuration instead of configuring based on properties.

Once the solver object is created and properly configured, it can be put to use
for the actual solving. This is done by specifying a right hand side vector for the
configured system, using one of the following functions:

• solve

• improve

Besides the right hand side vector both functions also require a left hand side vector
that they can replace with the generated solution of the system upon return; the
right hand side remains unchanged. The only difference between the two functions
is that improve uses the left hand side as an initial guess, whereas solve ignores
its initial contents and starts searching simply from zero. During iterations the left
hand side is repeatedly improved in place. This is stopped as soon as the residual
over right hand side ratio drops between a user specified threshold, the ‘precision’
property in the above example.

To keep track of the various available solver objects, instances are created via a so
called solver factory. This requires two additional functions that can be called prior
to making the instance, typically organized as static members of the solver class.

• declare

• makeNew

The first function, declare, registers the second function, makeNew, under a cer-
tain name at the solver factory. When the LinsolveModule requests, for instance, a
“GMRES” solver object, the factory looks it up in its database and calls the corre-
sponding makeNew function. This function will call the solver’s actual constructor,
often after extracting the required data from the globdat. The factory approach
is used extensively in Jive because it provides a flexible way of adding new com-
ponents without having to alter code. Other objects that are managed this way
include models and preconditioners.
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3.3 Deflation

The aim is to make the deflation technique, introduced in Chapter 2, part of Jive.
This requires a number of early design decisions. For instance, Section 2.4 de-
fines three slightly different variants of deflation from which one should be chosen;
Equation 2.36 that is equivalent to Algorithm 2.3, Equation 2.37 that uses a left
preconditioner and Equation 2.38 that uses a right preconditioner. As shown in
Equations 2.33 to 2.35, iterates are formed in exactly the same spaces so con-
vergence speed should be roughly the same for all three options. This and other
decisions will therefore be based mostly on ease of implementation and the level of
integration with existing Jive components. As a general principle: the more code
that can be reused, the better.

‘Normal’ preconditioners are in general applicable on both the left and right hand
side of the matrix. For deflation this is different, because Section 2.4 showed that
the operator changes shape depending on the side that it is used. Because all
Jive solvers use right preconditioning this forces the use of the right preconditioned
variant as otherwise all solvers will need to be recreated in a specialized deflation
version. A very bad example of code reuse, and dramatic for the maintainability
of Jive as a whole. The only benefit of a standalone deflation solver, resistance
to changes in other components like the side of preconditioning, can not turn the
scales. This means that deflation in Jive will be based on the right preconditioned
deflation variant, Equation 2.38, repeated here for convenience:

xi = x0 + Pyi, APy = b−Ax0, (3.3)

where P = (I − PZ)M−1 is the right preconditioner and x0 = x̃0 + PZ(x − x̃0)
the initial guess. In these, Z is the deflation subspace, PZ the projection onto this
subspace, M−1 a standard preconditioner (such as block ILU) and x̃0 the initial
guess that is provided to the solver — possibly zero.

The real initial guess x0 that is used by the iterative solver is enhanced by the
projected error. This is the ‘pre-processing step’ mentioned in Section 2.4. If not
for this single step, deflation would take the form of a normal preconditioner, albeit
forcedly used on the right hand side. Unfortunately, this step is a crucial part of de-
flation without which the final solution lacks its deflation subspace component. This
leaves no other option than to make deflation a solver, rather than a preconditioner,
that simply starts a second ‘nested’ Jive solver as soon as the necessary prepara-
tions have been made. This nested solver will use the deflation preconditioner that
is supplied internally by the solver.

Appendix A contains the complete source code for a deflation solver based on this
principle. The preceding introduction to the Jem/Jive toolkits should be sufficient
to understand the main ideas. This section discusses the design of this solver
and the closely connected preconditioner, with references to the relevant parts in
code. The discussion has been divided into four parts, corresponding to the four
configurable components of the solver: the deflation subspace Z, the projection
PZ , the preconditioner M−1 and the nested iterative solver. Ahead of explanation,
a typical configuration may look as follows:
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1 solver = {
2 type = ”Deflation”;
3 subspace = {
4 type = ”Subdomain”;
5 dofs = [ ”u”, ”v” ];
6 linear = true;
7 };
8 projection = {
9 type = ”Standard”;

10 };
11 precon = {
12 type = ”ILU0”;
13 };
14 solver = {
15 type = ”GMRES”;
16 precision = 1e−3;
17 };
18 };

3.3.1 Subspace

Chapter 2 showed that the class of Krylov subspace methods is named after the
search space that these methods build to form a solution. Deflation was shown to
be a means of augmenting this space with a set of predefined vectors, spanning
what is called the deflation subspace Z. The first iteration is formed completely
in this deflation subspace; it is the initial vector x0 in Equation 3.3. Subsequent
iterations approach the true solution in a Krylov subspace that is built orthogonal
to the deflation subspace — orthogonal with respect to the norm used in projection
PZ . The orthogonality ensures that the deflation subspace component needs only
be determined once and does not require adjustment during the iterative process.

The deflation vectors are free to choose; Section 2.4 discussed some general ideas
about deflation vectors that can be expected to improve convergence. A common
element is that deflation vectors are closely connected to the physics underlying the
system of equations. They can for example represent a constant temperature on
part of the physical domain. By manually making this link, deflation can be used to
bring expert knowledge from physics into the numerical algorithm. In this respect it
is convenient to make the connection to simulated variables (‘DOF types’ in Jive)
already in code, resulting in the ‘subspace.dofs’ property that can be used to select
types or groups of types for which deflation vectors should be created.

The initSubspace function (line 522) is in charge of forming the deflation subspace.
For each configured DOF type it builds two arrays: one with the vector indices that
correspond to that DOF, and one with the corresponding element id’s. These arrays
are then handed over to a specialized vector builder that forms the actual deflation
vectors, selected by the ‘subspace.type’ property. The selected vector builder can
have its own additional properties for further configuration, such as ‘subspace.linear’
for the “Subdomain” type selected in the above example. After some additional
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checking of the generated vectors, initSubspace adds them to the subspace matrix
and moves on to the next configured DOF.

Currently, the number of vector builders to choose from is limited; no more than
three (quite general) subspace types have been hard coded in the solver. The idea
is to add the possibility for user defined functions in future versions of the solver,
that can be tailor made for various kinds of problems. The vector builder approach
has been taken with this in mind, and should be quite easily extendible to user
defined functions by using a factory object similar to that used for solvers and
preconditioners. Until that time, however, only the following types of deflation can
be selected.

Type: Empty

The vector builder for this subspace type is the getEmptySubspace function, line 592.
Since all it does is return an empty matrix, this leaves a deflation subspace of di-
mension zero which effectively disables deflation. As such, the “Empty” subspace
is a convenient way of temporarily switching of deflation, falling back on the nested
solver and standard preconditioner as though these were configured directly. Espe-
cially in testing this is often useful for quick comparison.

Type: Subdomain

The “Subdomain” subspace is the first real deflation type, linked to the getSubdo-
mainSubspace vector builder at line 603. The generated subspace corresponds to
that proposed in Section 2.4.3: when the physical domain has been decomposed
into several subdomains, usually prior to a parallel computation, the generated vec-
tors represent solutions (for the DOF type under consideration) that are constant
valued on a single subdomain and zero on all the others. The subspace spanned
by this set of vectors corresponds to the set of piecewise constant solutions over
the various subdomains. Section 2.4.3 explained that convergence should improve
depending on how closely these solutions manage to approximate the eigenvectors
that belong to the smallest few eigenvalues of the system.

A problem arises when the various subdomains have a certain amount of overlap.
Simply creating a constant vector for each complete subdomain can not be right as
then the constant solutions are no longer part of the spanned subspace. There are
two different ways of fixing this, both implemented and controllable through the
‘subspace.blend’ property. When false, each DOF in the overlap regions is being
uniquely assigned to a single subdomain, thus fixing the problem by effectively
removing overlap. The other option (blend is true) is to divide each DOF in the
overlap region by the amount of subdomains sharing it. This way the deflation
vectors will again add up to a constant solution, ensuring that these are still part of
the spanned subspace. The latter situation is shown in the top row of Figure 3.3.

Section 2.4.3 also mentioned the possibility of higher order subdomain vectors in ad-
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Figure 3.3. Deflation vectors generated by the “Subdomain” vector builder with
subspace.blend set to true, using a decomposition in four subdomains. The top row
shows the piecewise constant vectors, corresponding to subspace.linear set to false;
the lower two are added when subspace.linear is set to true.

dition to the constant vectors. These vectors should enrich the deflation subspace,
bringing it closer to the targeted eigenvectors and thus further increasing conver-
gence speed. An important complication compared to the constant subdomain case
is that to build these higher order vectors, each DOF needs to be connected to a
physical coordinate. This is why the initSubspace function supplies an array with
vector id’s in addition to the vector indices, for which coordinates can be looked
up. The “Subdomain” vector builder implements only first order vectors, activated
by the ‘subspace.linear’ property. When set to true, an additional set of subdo-
main vectors is added for each physical dimension; two for the situation shown in
Figure 3.3 — the last two rows show the resulting vectors.

Type: Basis

The “Basis” subspace is the other deflation type currently provided by the solver,
that is linked to the getBasisSubspace vector builder at line 662. This vector builder
takes a quite different approach than the Subdomain type. Instead of using an exist-
ing decomposition in subdomains, it performs its own decomposition by computing
the bounding box of the domain and dividing it into rectangular cells. The advan-
tage of this type of decomposition is that it makes it possible to define a deflation
subspace that is inherently continuous; the “Subdomain” type subspace clearly is
not. Since there is no reason to assume that eigenvectors are discontinuous on
subdomain boundaries, this space (the linear variant) is quite a bit too rich — a
waste.

The deflation vectors formed by this vector builder are similar to the basis functions
used in finite element methods. When the physical domain has dimension n and
the rectangular cells have size δ1 × · · · × δn, a deflation vector is formed for each
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Figure 3.4. Deflation vectors generated by the “Basis” vector builder with ‘subdo-
main.nodes’ set to 3, given the same square domain as in Figure 3.3.

grid point p based on the mapping Rn → [0, 1]:

fp(x) =

{(
1− |x1−p1|

δ1

)
. . .

(
1− |xn−pn|

δn

)
x− p ∈ [−δ1, δ1]× · · · × [−δn, δn]

0 else

(3.4)
This function is zero in all cells that do not contain p, one only in p, and continuous
throughout the domain Rn. On a square two dimensional domain, divided into 2×2
cells, this results in the nine basis functions shown in Figure 3.4.

Adding up to one, these functions again span a function space that contains at
least the constant solutions. The fact that all functions in this space are continuous
makes it seemingly more numerically efficient than the “Subdomain” type. At the
same time, however, a large potential for parallel efficiency is lost. The property that
“Subdomain” type vectors have local support on a single process makes it possible
to implement the formation and inversion of the small projection matrix in a parallel
efficient manner. This benefit is largely lost when deflation vectors have support
that overlaps multiple subdomains, as is the case here. This is why deflation vectors
are preferred to have local support on single subdomains, even though the current
solver has no way of exploiting this yet. For testing purposes, though, it will be
interesting to see how the “Basis” type deflation subspace behaves in comparison
to the more common “Subdomain” type.

3.3.2 Projection

When the deflation subspace Z has been defined, the next step in implementing
deflation is the projection PZ , defined in Equation 2.6. This projection maps a
general vector to the closest vector in Z, measured in a certain norm. Sections 2.3.3
and 2.3.4 explained that possible norms are the matrix A and AT A-norms, because
these make it possible to project the unknown solution of the problem. Using this
and Theorem 2.6, which gives an explicit expression for this projection, the projection
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onto a subspace spanned by the columns of Z can be implemented as follows:

Pcol Z = Z(Y T AZ)−1Y T A, (3.5)

where Y = Z corresponds to a projection in A-norm (“Standard” deflation) and
Y = AZ corresponds to a projection in AT A-norm (“GMRES” deflation). Both
variants are supported in the current solver, using a construction similar to the
vector builders from the previous section. The ‘projection.type’ property selects
either getStandardProjection on line 754 or getGMRESProjection on line 762, that
simply yield the corresponding set of vectors Y . The real initializing work is done
by the initProjection function on line 718.

To efficiently perform the projection operation, Equation 3.5, a number of different
approaches can be followed. To name:

1. Store (Y T AZ)−1 and Y

The matrix Y T AZ is in general very small, with dimensions equal to the
number of deflation vectors. Because the projection PZ is part of the precon-
ditioner P in Equation 3.3, and will therefore need to be performed in each
iteration of the solution method, this is one of the rare occasions where a direct
matrix inversion will actually pay off. When this inverted matrix is available
on all of the computational nodes, performing the projection is a matter of
four matrix vector multiplications, two of which requiring communication.

The “GMRES” projection requires additional storage of the vectors Y = AZ
because the transposed matrix AT is not directly available — left multiplica-
tion is not defined. This necessity turns out to be quite convenient, because
it hides the difference between the two variants of deflation. During initializa-
tion the Y vectors can be defined to be either the same block of memory as
the deflation vectors Z, or a new block of memory containing AZ. During
iterations the distinction between the two variants is lost.

2. Store (Y T AZ)−1Y T A

When an additional set of vectors needs to be kept in memory anyway, such
as being the case with “GMRES” deflation, storing Y is not the best thing to
do. The four matrix vector multiplications that are required for one projection
can be reduced to two by performing these during initialization and storing
the result. This will simplify the projection operation to a transformation
from a large to a small vector (first multiplication) back to a large vector
(second multiplication by Z). What is more, the small matrix does not need
to be stored separately, even freeing some memory for the case of “GMRES”
deflation.

There are, however, two problems. First, the absence of a left multiplication
operation restricts this technique to symmetric matrices, for which left and
right multiplication are identical. Because symmetric matrices will generally
be used in combination with “Standard” deflation, option 1 is to be preferred.
Second, incorporating the multiplication by A makes it impossible to project
the unknown solution x, which can otherwise be performed by substituting
the right hand side for Ax. Although this is necessary only once during
initialization and can therefore be computed as an intermediate step, this
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does mean that the set of vectors needs to be recreated for each new right
hand side.

3. Store (Y T AZ)−1Y T

Both these problems are solved by computing the small matrix times Y prod-
uct during initialization and leaving the multiplication by A for during the
actual projection. This projection will then require three matrix vector mul-
tiplications, two of which requiring communication: multiplication by A and
multiplication by (Y T AZ)−1Y T , stored as a set of column vectors just like
the deflation subspace Z. The last multiplication by Z does not require com-
munication. Compared to option 1 a single communication-free multiplication
will be lost, at the cost of additional memory for “Standard” deflation but ac-
tually freeing some memory for “GMRES” deflation. And, as A is multiplied
during projection, projecting the unknown solution is still possible.

Option 3 is chosen over 1 mainly for reasons of simplicity; the additional required
memory (equal to that of the deflation subspace) is not expected to be a serious
problem, and the reduced work per iteration is a welcome side effect. The set
of vectors is computed by the initProjection function and stored in the projection
matrix. Currently the small matrix is inverted on all computational nodes simulta-
neously, not using any form of cooperation. Optimizations are clearly possible here,
although they do depend heavily on the structure of the deflation subspace. How-
ever, because this inversion needs to be performed only once for every new matrix,
the true benefits are questionable.

3.3.3 Preconditioner

Nearing completion, the deflation preconditioner P = (I − PZ)M−1 lacks only a
standard preconditioner M−1. This preconditioner is defined by the ‘precon.type’
property. The properties shown on the beginning of this section for example define
M−1 to be a block ILU preconditioner. Additional ‘precon’ properties are possible
for specific configuration of the selected type. Normally, the selected preconditioner
is created by the solver’s makeNew function and handed over to the solver’s con-
structor. Here, due to the nested solver and the added deflation projection, things
are slightly different.

The preconditioner object is formed in makeNew, line 1012, as usual. Here, instead
of being handed over to the solver (either the DeflationSolver or the nested solver)
it is used in the construction of a DeflationPrecon object, which is derived from a
jive::solver::Preconditioner. Its matmul function (line 822) subsequently performs
the multiplications M−1 and I − PZ , effectively making this object matrix P .
This object is then handed over to the nested solver, which knows only about its
Preconditioner nature and can therefore use it only in this limited context. To the
DeflationSolver, several more functions are available.
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3.3.4 Solver

The DeflationSolver object is created at the end of makeNew, line 1012, after all
other objects have been created. It requires only two objects: the DeflationPrecon
object for the additional functionality it offers, and the nested solver that already
received this object during creation. The nested solver type is determined by the
‘solver.type’ property, which can be “CG”, “GMRES” or any of the iterative solvers
offered by Jive. Again the type is optionally accompanied by additional solver
specific settings, such as a ‘solver.precision’ to set a stop criterion. Any speci-
fied ‘solver.precon’ will be ignored because the deflation preconditioner is supplied
internally.

Upon calling solve or improve, line 898, the DeflationSolver must start solving
Equation 3.3, involving the deflated system AP = b−Ax0. The difference between
solve and improve is that the former does not use its left hand side vector as an
initial guess, and improve does. For deflation, however, the initial guess must
always contain the projected solution PZx, so in both cases the nested solver is
handed an initial vector to improve. This initial vector x0 is computed by the
DeflationPrecon’s ‘improve’ function, line 797. When the DeflationSolver is called
as ‘solve’, this function is simply handed a zero vector.

Recall from Section 3.2.3 that any constraints imposed on the solution are not
normally worked into the system matrix. Instead, given a set of linear constraints
x = x̄ + Cx̃, the first thing a solver does is transform the system Ax = b
into the constrained system (CT AC)x̃ = CT (b − Ax̄). This means that the
initial projection should be based on this right hand side, rather than b. The
DeflationPrecon’s improve function computes this right hand side using the matrix’
‘getRhs’ function and uses this to compute the deflation subspace projection. This
deflation subspace was created such that the result is automatically in ‘tilde form’,
i’e’ not containing any of the constraints. Upon return this is put back in normal
form by ‘getLhs’, which makes it a valid first approximation of the solution.

After improving the initial guess, the nested solver’s improve function is called. This
immediately undoes the latest transformation by calling initLhs, which removes
the Dirichlet boundary conditions x̄. This may seem like a waste, but it has a
clear programming advantage over staying in ‘tilde form’ after improving the initial
guess and preventing the nested solver from transforming the system — which is
possible. This would mean that pre- and post processing of the system become the
responsibility of the DeflationSolver, which currently does not need to know anything
of constraints, matrices, or anything. This is the sole terrain of the DeflationPrecon
object; the DeflationSolver merely controls. Also in terms of code reuse this would
be bad, and most of all, the added work is negligible.

The nested solver will repeatedly improve its left hand side until the configured
precision is attained. This precision is measured by the residual over right hand side
ratio; iterations stop as soon as this ratio drops under the threshold value configured
through the ‘solver.precision’ property. Deflation does not influence this process;
since no post processing of the generated solution is performed after the nested
solver returns, the solver has full view of the solution it generates and therefore
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does not require changes in its stop criterion. Note that for left preconditioned
deflation, which does require post processing of the generated solution, this would
be different.



Chapter 4

Numerical results

At this point, the Variational Multi Scale method that was introduced in Chapter 1
is a method for which the benefits of deflation are very much an open question. The
nature of the deflation method is such that it is very difficult to judge beforehand if
the method will yield great improvements in convergence. Even the question which
deflation subspace will be best suited is far from trivial. The main guideline is that
eigenvectors should be approximated, but this can be done in many ways. One ap-
proach is to use information from underlying physics, but this is not always possible.
Another approach is to approximate eigenvectors in a general function space, such
as that of piecewise constant solutions. Notwithstanding the various underlying
ideas, actually predicting the performance gains is quite something different. For
this, the only reliable source of information is numerical experiments.

Instead of immediately running experiments on VMS, however, it is important to
test if the current implementation is functioning properly in situations where defla-
tion is already known to work, or at least where its behaviour is known. This to
reduce the chance of programming errors and other possible mistakes. Fortunately,
many deflation experiments have been performed and documented in articles on
this subject; these can all be used for comparison. A second reason for not turning
immediately to VMS is that a simpler problem will allow for easy visualisation of the
solution and intermediate steps, which will provide practical insight in the various
mechanisms at work. The four-dimensional VMS time slabs are somewhat more
complicated to visualise.

This Chapter will present the results obtained with deflation on two distinct classes
of problems. Section 4.1 starts with the two dimensional Laplace equation, a well
known problem that has a clear physical interpretation and for which many external
results are available for reference. This problem will be used both for checking the
solver implementation and for testing some new features such as the “GMRES”
projection for general matrices. Finally, Section 4.2 will apply deflation to the VMS
problem.

70
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Figure 4.1. Exact solution of Equation 4.1 discretized on a 21×21 grid, representing
the steady-state temperature distribution of a square plate that is heated on one
side and cooled on another.

4.1 Laplace test problem

One problem for which deflation is known to yield good results is solving the Laplace
equation. Many articles on deflation have used this problem in convergence tests,
for example Saad et al. [15], Nabben and Vuik [4] and Verkaik [18]. This means
that a large amount of both qualitative and quantitative information is available
for this problem, which makes it ideal for initial testing of the created solver. The
results of these tests will be compared to those found by the named authors to see
if they match. This will prove that the solver is functioning properly on this single
problem, which increases the chance that it will do so on other problems as well. It
is impossible to be completely sure in software.

The test problem that will be used throughout this section is the two dimensional
Laplace equation on a square domain, with Dirichlet boundary conditions on two
adjacent sides and Neumann boundary conditions on the remaining two:

u : [0, 1]× [0, 1]→ [−1, 1]





uxx + uyy = 0 0 < x < 1, 0 < y < 1
u = −1 0 < x ≤ 1, y = 0
ux = 0 x = 1, 0 ≤ y ≤ 1
uy = 0 0 ≤ x ≤ 1, y = 1
u = 1 x = 0, 0 < y ≤ 1

(4.1)

Physically, the solution to this problem can be interpreted as the temperature dis-
tribution of a square plate that is held at a constant high temperature on one side
and at a constant low temperature on another, adjacent side, after a steady state
has been formed. This distribution is shown in Figure 4.1.

The results in this section are obtained using the same Jive application that was used
as an example in Section 3.2. As explained in Section 3.2.2, this application can be
made to simulate a wide variety of problems because of to the model chain that is
defined at run time. This includes the test problem defined in Equation 4.1. The
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relevant module chain has already been shown in Section 3.2.2, where a “Transport”
model was nested inside a “FEM” matrix model. The transport model defines the
transport equation, of which Laplace is a special case; the FEM model uses this in
its finite element procedure to build the coefficient matrix. The result is as though
the following nine-point stencil was used:



−1 −1 −1
−1 8 −1
−1 −1 −1


 . (4.2)

The system is solved using non-restarted GMRES, not CG as would perhaps be
expected for a symmetric problem such as Laplace. Obviously, in real life, CG
would be preferred for its low memory usage due to the short recurrence property.
In this testing phase, however, memory is not an issue and the convergence of both
methods is the same; when loss of orthogonality due to numerical inaccuracies is
ignored, the Krylov subspaces that are built by both algorithms are exactly equal.
The only difference is in the projection of the iterates, and as the convergence plots
will use the residual as a measure for the solution accuracy, it seems best to find
an optimal Krylov element based on this criterion. More practically, in GMRES
the residuals are automatically available whereas CG offers only approximations and
would therefore require modification.

4.1.1 Deflation versus no deflation

An important application of deflation is in parallel computing environments, where
certain restrictions hamper the creation of ‘classic’ preconditioners. The problem
is that data is distributed over a set of computational nodes, which means that
heavy communication will be required for global operations such as computing an
(approximate) matrix inverse. High latency and limited bandwidth make that this
kind of operation is no longer feasible, which discards a large set of preconditioners
that are commonly used in non-parallel algorithms. They are often replaced with
block variants of the existing preconditioners, such as block ILU. As these blocks
can be built in parallel, requiring no communication, these block preconditioners
are highly suited for parallel computations.

The gains in parallelism, however, come at a cost. The inherent locality of block
preconditioners makes that they are ill capable of changing the lower part of the
eigenvalue spectrum, which belongs to the slowly varying, global eigenvectors. As
a result the smallest eigenvalues will stay more or less in place, thus hampering
convergence according to Theorem 2.3. Figure 4.2 compares convergence for four
different preconditioners, three of which block ILU0 and the last one diagonal scal-
ing. At 16 blocks already block ILU0 is only slightly better than diagonal scaling in
terms of iterations, and accounting for the extra work per iteration the latter is to
be preferred. Diagonal scaling can in fact be considered the limiting case of block
ILU, when no overlap is used; the fact that block preconditioners tend to this limit
illustrates the problem.

Deflation is meant to solve this problem by improving the existing preconditioners
within the restrictions imposed by the parallel environment. Section 2.4 explained
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Figure 4.2. GMRES convergence of the test problem on a coarse 21 × 21 grid,
comparing four different preconditioners: 1, 4 and 16 block ILU0 and diagonal
scaling. The plot shows that block ILU0 deteriorates quickly as the number of
blocks increases, to the point where convergence is almost identical to that of
simple diagonal scaling.

that a central element of this method is a projection onto a predefined deflation
subspace, that minimizes the distance in a convenient norm. Typically used is the
matrix A-norm which is also the basis of the CG method. This, however, is only
a valid norm for matrices that are symmetric and positive definite (SPD). For this
reason the solver offers the alternative of minimizing in AT A, which yields a valid
norm for any matrix. Because the Laplace matrix is SPD, however, initial tests will
be based on the former projection, labeled “Standard”. This is the same projection
that has been used in all reference articles.

The deflation subspace can currently be selected from two configurable presets,
the “Subdomain” and the “Basis” subspace, introduced in Section 3.3.1. When
a deflation subspace has been selected, the deflated Krylov method starts with
projecting the exact solution onto this subspace. For the test problem this solution
was shown in Figure 4.1, and the resulting projections on the example subspaces
in Figures 3.3 and 3.4 are shown in Figure 4.3; the corresponding residuals shown
on the right. The projections form the start vector of the deflated Krylov process
that will be started next — that is to say, except for the unlikely situation that the
exact solution was part of the deflation subspace and no further improving will be
required.

Table 4.1 shows convergence results obtained with “Subdomain” type deflation,
comparing various variants including the upper two from Figure 4.3. The table lists
the number of iterations required for reaching various levels of accuracy, using non-
restarted GMRES and three different block ILU0 preconditioners, ranging up to 16
blocks. Judged by these numbers it seems that the blended variants — in which
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1. “Standard” projection on “Subdomain” subspace; blend=true, linear=false

‖b−Ax0‖2 = 5.40

2. “Standard” projection on “Subdomain” subspace; blend=true, linear=true

‖b−Ax0‖2 = 2.21

3. “Standard” projection on “Basis” subspace; nodes=3

‖b−Ax0‖2 = 1.94

Figure 4.3. Visualization of the projected solutions (left) and the corresponding
residuals (right) for the three deflation subspaces that were shown in Section 3.3,
Figures 3.3 and 3.4, with dimensions 4, 12 and 9, respectively. Comparing the first
and second row, the figure shows that linear subdomain vectors bring the projected
solution much closer to the exact solution shown in Figure 4.1. This is reflected by
the smaller residual on the right. The “Basis” subspace comes slightly closer, and
does so with greater efficiency as its dimension is down by three.
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Figure 4.4. GMRES convergence of the test problem on a 21×21 grid, comparing
two variants of “Subdomain” deflation with standard 16 block ILU0 preconditioning.
The displayed variants are marked with an asterisk in Table 4.1 below.

no deflation “Subdomain” deflation
linear=false linear=true

blend=false blend=true blend=false blend=true

(0, 0, 0∗) (1, 4, 16) (1, 4, 16∗) (3, 12, 48) (3, 12, 48∗)
10−1 2 2 3 2 2 3 2 2 2 1 2 1 1 1 1
10−2 5 7 9 5 6 7 5 6 6 3 4 4 3 3 4
10−3 7 10 13 7 11 10 7 10 9 6 7 6 6 6 6
10−4 12 18 22 11 15 14 11 14 12 7 10 8 7 9 8
10−5 15 22 27 14 18 18 14 17 16 10 12 10 10 11 10
10−6 17 25 31 16 21 21 16 20 19 12 14 12 12 14 12
10−7 19 28 35 18 24 24 18 22 21 14 16 14 14 16 14
10−8 20 30 38 19 27 26 19 25 25 16 18 17 16 18 16
10−9 22 32 41 21 29 30 21 28 28 17 21 19 17 20 18
10−10 23 34 43 22 31 33 22 30 30 19 23 21 19 22 21

Table 4.1. Number of iterations required to reach various levels of accuracy (the
first column) measured as the residual over right hand side ratio. The first block
of three columns show the number of iterations required by 1, 4 and 16 block
ILU0, respectively, as shown in Figure 4.2. The next four blocks compare the same
three preconditioners combined with various variants of “Subdomain” deflation, the
subspace dimensions shown in braces.
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deflation vectors overlap in shared regions — have a small but steady advantage over
the strictly disjoint variants, a single three iterations difference being the worse case.
Henceforth concentrating on blended subspaces, Figure 4.4 graphically displays some
of the data in Table 4.1, comparing convergence of constant and linear deflation in
a 16 subdomain situation against non-deflated convergence.

Figure 4.4 shows that both variants of deflation yield almost perfect linear conver-
gence, compared to the non deflated process which suffers from periods of relatively
slow progress such as in iterations 13 to 20. These periods are typically caused by
tightly clustered eigenvalues that the Krylov process has trouble finding. It seems
that the deflation preconditioner has been able to favourably change these parts of
the spectrum. The same observation can be made in Figure 7.1 of Saad et al. [16],
which shows the results of a similar experiment except that the deflation subspace
is formed of up to three eigenvectors. Note that this is the ideal situation; Sec-
tion 2.4 explained that this subspace effectively deletes the smallest few eigenvalues
of the spectrum. Although less apparent due to the relatively low dimension of the
deflation subspace, the figure shows the same linear convergence and absence of
slowly convergent periods as found here, especially in the first 30 iterations.

The “Subdomain” type subspaces are expected to approximate the same eigenvec-
tors that were constructed explicitly by Saad et al. [16], while using less work and
maintaining sparsity — although the latter is not exploited by the current solver.
The linear deflation vectors were proposed by Verkaik [18] as an enrichment in order
to better achieve this goal. Figure 5.10 in this thesis shows some convergence re-
sults for Laplace, using both CG and GCR. Note that the convergence of the two is
qualitatively the same, which agrees with the assumption that convergence is gov-
erned by the common Krylov subspace. This allows for comparison with Figure 4.4
as well. Although the smaller grid and the 25 subdomains make the effects of defla-
tion relatively larger, qualitative the same linear convergence is observed throughout
the process for both constant (CD) and linear (CLD) deflation, the latter converging
faster in terms of iterations.

Note that in practice not iterations but time is of essence. In order to choose either
for or against deflation, or between different deflation subspaces, startup costs and
work per iteration will need to be taken into account. The linear subspace of
Figure 4.4, for example, is thrice as large as the constant subspace, which means
that the work for each projection will triple in work, increasing the work per iteration.
Moreover, the ‘small’ matrix that is inverted at the start of the iterative process
will triple in size as well. In extremity this matrix can grow to the size of the
original matrix, in which case deflation becomes a direct solution method; the
required number of iterations will be zero. Depending largely on the quality of
implementation, an optimum will lie somewhere between the two extremes where
the two effects are in balance, iteration decrease versus work increase, yielding
fastest convergence in time.

In general a comparison based on iterations between deflation subspaces of equal
dimension is reasonably fair. Except for subspace specific optimizations, both ini-
tializing work and work per iteration should be equal. This is interesting to keep in
mind when examining the other deflation subspace offered by the solver, the “Basis”
type. Table 4.2 again shows the required number of iterations for reaching various
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levels of accuracy, using non restarted GMRES and the same three precondition-
ers as in Table 4.1. Figure 4.5 graphically represents an interesting subset of this
data. Comparing this with Figure 4.4, it is immediately apparent that of the two
subspaces of equal dimension, constant and basis-4 deflation, the latter converges
much faster. In fact, it converges about as fast as linear deflation, using a subspace
one third in size.

These findings correspond well with the original idea behind this “Basis” subspace
type, which can be put as ‘efficiency’. Because the deflation vectors represent
the continuous functions defined in Equation 3.4, they span a subspace consisting
of piecewise linear, continuous functions. Note that continuity refers here to the
underlying functions; this property does not transfer over to the discrete domain. In
the same way, “Subdomain” deflation vectors represent discontinuous functions with
support only on certain subsections of the physical domain. Apart from piecewise
linear, continuous functions, this subspace contains functions with discontinuities
on the subdomains. As there is no reason to assume that the eigenvectors that are
approximated will be discontinuous exactly on these boundaries, this subspace is
actually too rich.

Although from an algorithmic point of view the “Basis” vectors seem superior over
the “Subdomain” vectors, there are two practical reasons for using the latter. The
first is that the sparsity of these vectors is ideal for parallel exploitation, because
each processor can simply ignore all but the few vectors that have support on its
subdomain. Besides reducing work, this also allows for highly efficient storage.
Moreover, the sparsity of the deflation vectors can be used in the inversion of
the small matrix which increases efficiency during initialization as well. Similar
optimizations will be possible for “Basis” vectors, if only the subdomains correspond
exactly with the rectangular blocks used in the construction of this subspace. The
fact that these are not inherently the same hinders the optimization of this deflation
type.

The second reason for using “Subdomain” deflation is that the subspace dimension
follows the number of subdomains, making the method more or less insensitive to
parallelism. This can be seen in Table 4.1, comparing the required iterations for one,
four and sixteen subdomains. Block ILU0 deteriorates as the number of subdomains
increases, but as this is compensated by the richer deflation subspace, the iterations
remain more or less constant. Again for “Basis” deflation a similar result can be
obtained by manually refining the grid on which these vectors are formed. Indeed,
comparing one node on one block, two nodes on four blocks and three nodes on
sixteen blocks, iterations are once again constant. The rigid structure of this grid,
however, makes it much harder to closely follow the number of subdomains.

The claimed insensitivity to scaling is valid only within limits. Constant deflation
on a single domain requires less iterations than on four or sixteen subdomains.
At this point the ILU0 preconditioner deteriorates more quickly than deflation can
compensate it. The reverse is true on the other side of the spectrum. Linear
deflation can be seen to yield faster convergence on sixteen subdomains than on
four. Apparently from some point onward deflation improves faster than block ILU0
worsens. This was to be expected, because it was noted before that an extremely
rich deflation subspace turns the Krylov method into a direct method, in which
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Figure 4.5. GMRES convergence of the test problem on a 21×21 grid, comparing
three variants of “Basis” deflation with standard 16 block ILU0 preconditioning.
The displayed variants are marked with an asterisk in Table 4.2 below.

no deflation “Basis” deflation
nodes=1 nodes=2 nodes=3 nodes=4

(0, 0, 0∗) (1, 1, 1) (4, 4, 4∗) (9, 9, 9∗) (16, 16, 16∗)
10−1 2 2 3 2 2 3 1 2 2 1 1 2 1 1 1
10−2 5 7 9 5 7 9 3 5 6 2 3 4 2 2 3
10−3 7 10 13 7 10 13 6 8 10 4 6 7 3 4 6
10−4 12 18 22 11 13 17 7 11 14 5 9 11 4 7 8
10−5 15 22 27 14 17 21 10 14 18 7 11 14 6 9 11
10−6 17 25 31 16 23 29 12 17 21 9 13 17 7 11 13
10−7 19 28 35 18 26 32 13 20 25 10 16 20 8 13 16
10−8 20 30 38 19 28 35 15 23 28 12 19 23 9 15 18
10−9 22 32 41 21 30 38 17 25 31 13 20 26 10 18 21
10−10 23 34 43 22 33 41 19 28 34 15 23 29 12 19 24

Table 4.2. Number of iterations required to reach various levels of accuracy (the
first column) measured as the residual over right hand side ratio. The first block of
three columns show the number of iterations required by 1, 4 and 16 block ILU0,
respectively, as shown in Figure 4.2. The next four blocks compare the same three
preconditioners combined with various variants of “Basis” deflation, the subspace
dimensions shown in braces.
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Figure 4.6. Number of iterations required to reach a precision of 10−5, solving
the test problem Equation 4.1 on increasingly dense grids using various deflation
variants. The grid density is connected to the number of processes such that all
problems maintain a fixed ratio of 100 degrees of freedom per process. By fixing
the dimension of the deflation subspace to the number of processes, all deflated
methods become insensitive to parallel scaling.

case the preconditioner has become irrelevant. The same is happening in “Basis”
deflation because based on subspace dimension, the four nodes subspace should
have been the last one to compare.

Because of this effect, true parallel scaling can only be investigated when the size of
the problem is scaled along with the number of subdomains. This has been done in
Figure 4.6, which shows the number of iterations required to reach a fixed precision
for a wide range of subdomains, keeping the degrees of freedom per subdomain fixed
at one hundred. For a normal, non deflated Krylov method this number increases,
albeit sub linearly. For all tested variants of deflation it is practically constant from
a number of subdomains onward; about twenty for constant deflation and about
five for linear and basis deflation. The number of basis deflation vectors have been
kept equal to the number of subdomains, which explains why data points exists
only for square numbers. These few points, however, coincide very well with linear
deflation, which once again confirms that the discontinuities in linear deflation are
completely superfluous.

Figure 4.6 corresponds very well with Figure 6.1 of Frank and Vuik [4], which
shows the results of a similar experiment. Here, too, the number of iterations if
found to be (bounded) independent of the number of subdomains. With this, all
reference articles have confirmed that the current solver behaves as expected in well
known situations. It will be assumed henceforth that the deflation method has been
implemented correctly, which means that investigations can continue in directions
for which no reference data is yet available.
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Figure 4.7. GMRES convergence of the test problem om a 21×21 grid, comparing
“Standard” and “GMRES” projected constant subdomain deflation, combined with
16 block ILU0 preconditioning. The “GMRES” deflated method performs very badly
compared to the “Standard” deflated method, which is unexpected.

4.1.2 Standard versus GMRES deflation

The results from the previous section are all based on “Standard” projection, which
means that the deflation projection minimizes the distance to the deflation subspace
measured in matrix A-norm. For the Laplace test problem this is mathematically
correct, as the matrix for this problem is SPD and therefore yields a valid norm.
This is not true for general matrices; the resulting ‘norm’ can well be zero for non-
zero vectors, or even negative. This problem can be solved by projecting in AT A
instead, which is SPD for any matrix. This is exactly the same difference that
underlies the CG and GMRES methods, of which only the latter is applicable to
general matrices. By analogy, deflation based on AT A projection has been labeled
“GMRES” deflation.

Although there is no mathematical need to use “GMRES” deflation for Laplace,
being SPD, this method is still expected to yield similar convergence improvements
as found before with “Standard” deflation. The only difference is the projection
norm; from an algorithmic point of view, either should work. Figure 4.7, however,
shows something quite different. Not only does the “GMRES” deflated method
converge much slower than the equivalent “Standard” deflated method, conver-
gence has even gotten worse than that of the original, non deflated method. From
the point of view that deflation should at the very worst not contribute anything,
deterioration is completely unsatisfactory.

In search of what exactly causes this bad convergence, the eigenvector spectra of
the two deflated matrices have been compared. The deflation subspace used in



Chapter 4. Numerical results 81

0.01

0.1

1

not deflated

0
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8

0.01

0.1

1

standard deflated

0.2
0.3
0.4
0.5
0.6

16 18 20 22 24
0.01

0.1

1

GMRES deflated

0
0.1
0.2
0.3
0.4
0.5

16 18 20 22 24

Figure 4.8. Eigenvalue spectra of the preconditioned and deflated matrices used
in Figure 4.7. The insets show the lower range of the spectrum, counting from 17
for both deflated matrices due to a 16 dimensional null space. Standard deflation
is shown to be quite effective in removing the lower part of the spectrum, whereas
GMRES deflation does not make any substantial changes.

Figure 4.7 has dimension sixteen, which means that both deflated matrices should
have a null space of equal dimension. One possible explanation of bad convergence
could be that due to rounding errors the “GMRES” deflated matrix is not actually
singular, instead has a few small but significant eigenvalues that actually hinder
convergence instead of improve it. Such would be caused by an ill conditioned
‘small matrix’ (ZT AT AZ) inside the projection operator, which as a result would
no longer qualify to be a projection at all. This possibility of a numerical cause is
suggested by the well known property that for Laplace the product AT A is highly
ill conditioned compared to the matrix A. This has been confirmed for the problem
used in Figure 4.7, in which case a factor 356 difference was found.

The spectra of the non deflated and both deflated matrices are shown in Figure 4.8.
For both deflated matrices the sixteen smallest eigenvalues have been skipped; they
all proved to be of order 10−16, which discards the theory of a numerical problem.
Indeed, the condition number of the small matrix inside “GMRES” projection was
found to be only about twice as large as “Standard” projection, not by far enough to
cause problems in the inversion. The remaining part of the spectrum, however, sug-
gests that the nature of the problem is mathematical. While “Standard” deflation
has effectively lowered the condition number by discarding the smallest eigenvalues
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1. “Standard” projection on “Subdomain” subspace; blend=true, linear=true

‖b−Ax0‖2 = 1.41

2. “GMRES” projection on “Subdomain” subspace; blend=true, linear=true

‖b−Ax0‖2 = 1.33

Figure 4.9. Visualization of the projected solutions (left) and the corresponding
residual (right) for twice the same 48 dimensional linear deflation subspace. The
first row shows the result of “Standard” projection, the second that of “GMRES”
projection; the former clearly has a smaller error, the latter a smaller residual.

and leaving the rest of the spectrum more or less in place, “GMRES” deflation has
shifted the remaining eigenvalues back to the position of the old extremes where
they keep the condition number of the matrix at its old high value.

Although the observed difference in convergence behaviour can now be related to
the different condition number of the two deflated matrices, an explanation of this
difference has not yet been found. The ideas underlying both methods are the same,
the only difference is the norm that measures the distance to the exact solution. To
get insight in the qualitative differences of these two norms, Figure 4.9 compares the
two in a projection of the exact solution onto a sixteen subdomain linear deflation
subspace, similar to Figure 4.3. Immediately the qualitative difference shows: the
point where the two Neumann boundary conditions meet is much too low for the
“GMRES” projection, compared to the exact solution in Figure 4.1, whereas for
“Standard” projection it is exactly where it should be: halfway. Although the
former has a lower residual — by construction, the lowest possible — the latter
clearly has the smallest error.

Figure 4.9 shows very clearly that minimum error and minimum residual do not
coincide. This makes the projection in AT A norm very ineffective — for this
problem at least — which seems to be a likely cause for the slow convergence
observed in Figure 4.7. After all, Algorithm 2.3 showed that in each iteration
the projected solution is used as the point from which the new search vector is
constructed. When this projection is unnecessarily far off, the new search vector
will lack accuracy as well and so the whole iterative process will take much longer.
It is possible that the deflation subspace projection looses its accelerating effect and
reduces to a merely improved initial guess; the spectrum of the deflated matrix will
hence be the same, which indeed seems to be the case in Figure 4.8.
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The question rises why the above problem does not show in GMRES, which is based
on the same projection norm, when compared against CG. Two answers can be
named. First, Theorem 2.2 states that the built Krylov subspace is independent of
which projection norm is used. The projection therefore does not affect convergence,
its only influence is in the creation of the iterates during convergence. Looking purely
at the residual, such as is done in all convergence plots in this section, no problem
shows. The method convergences fast, and the iterates formed by GMRES have
slightly smaller residuals than those formed by CG. Figure 4.9 suggests that the
latter will have a smaller error, but in practice there will be no way of checking this.

The second answer to why the GMRES method does not suffer from the same
problem as “GMRES” deflation is that the AT A norm in Section 2.3.4 involved the
preconditioned matrix. Therefore, instead of minimizing the residual, the projection
actually minimizes the approximate error. Although the quality of the approximation
depends on the quality of the preconditioner, the result can expected to be better
than that shown in Figure 4.9. Quick tests have shown that deflation based on
this norm does indeed converge faster, but the difference seems to be moderate. A
reason for this can be that preconditioners — block preconditioners especially —
in general leave the slowly varying eigenvectors of the matrix virtually unchanged,
which suggests that it will not much effect the projection onto a subspace of a
similarly slowly varying nature.

The disappointing results with “GMRES” deflation are a setback, because the matrix
resulting from the VMS method introduced in Chapter 1 is asymmetric. This means
that, theoretically at least, “Standard” deflation does no longer apply. The question
now is if “Standard” deflation will still be able to aid convergence, despite this theory,
and if “GMRES” deflation will keep failing.

4.2 The Variational Multiscale method

The previous section showed that the created deflation solver is capable of acceler-
ating convergence for the discretized Laplace equation. It showed that the deflation
subspaces can even be chosen such that in an increasingly parallel environment this
acceleration balances the failing quality of the preconditioner, which makes the so-
lution method insensitive to scaling. These findings correspond closely to various
reference articles on this subject, which led to conclude that the deflation method
has been implemented correctly. This means that attention can finally return to the
reason that deflation was implemented in the first place: the Variational Multiscale
(VMS) method.

The VMS method was introduced in Chapter 1. To recapitulate, this method allows
for accurate solving of the system of non-linear Navier-Stokes equations by making
effective use of a high order finite element basis. This method has been successfully
implemented and has proved to be superior in many cases to competing methods
— as far as flow accuracy is concerned. A serious problem, however, is that the
linearized systems resulting from this method are very ill conditioned, and therefore
demand a high quality preconditioner in order to get reasonable convergence. In
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4 6

2

Figure 4.10. Spatial domain of the VMS planer channel flow test problem. Periodic
boundary conditions apply in streamwise (distance 6) and spanwise (distance 4)
direction, thus simulating an infinite domain. No-slip and constant temperature are
imposed on the walls (distance 2).

parallel computing environments especially, due to the various restrictions that apply,
this high quality preconditioner is not feasible which means that convergence in these
situations is slow. Deflation has been suggested as a possible means of improving
this situation.

The test problem that will be used for convergence experiments throughout this
section is the planar channel flow problem; a widely used test case for turbulent
flow research which assumes that flow is passing between two infinitely large parallel
planes, driven by a constant pressure gradient. Numerically, the infinity is simulated
by imposing periodic boundary conditions in streamwise and spanwise direction,
over a region that is large enough to ensure that the turbulence is sufficiently
decorrelated in both directions. The result is a rectangular domain of dimensions
shown in Figure 4.10. In wall normal direction a no-slip condition is imposed, and
the temperature at the walls is held constant. The total simulation involves five
flow field variables: three velocity components, temperature, and density.

The planar channel flow problem will be solved using VMS, which means that a high
order finite element basis needs to be defined on the domain shown in Figure 4.10.
For this the three spatial dimensions are divided in eight cells, forming a total of 512
elements. A stretched mesh is used in wall-normal direction to increase resolution in
the vicinity of the wall. On these elements a second order modal p-type expansion
basis is formed; P = 2 in Equation 1.20, corresponding to two first order and one
second order mode in each direction which brings the total number of basis function
per element to 33 = 27. For separation of scales this is the absolute minimum, but
it is fine for numerical testing. After reduction due to continuity constraints and
serendipity expansion, the total degrees of freedom of the resulting system is found
to be 19712.

Note that the thus defined finite element basis is purely spatial. Planar channel flow
is turbulent, hence non-stationary, which means that a time dependent simulation
is required. Section 1.3 showed how the VMS method uses a fourth dimension for
simulation in time, forming so called time-slabs. All elements can be though to
be extruded by a certain amount in time. No separation of scales is required for
this dimension, hence no high order expansion is required. A first order expansion
suffices, which still doubles the number of basis functions per element. Since the
jump condition enforces a value on half of these, however, the total degrees of
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Figure 4.11. Visualization of a three dimensional velocity field computed via VMS,
showing only the streamwise component; velocity contours are shown both on the
walls and as three dimensional surfaces within the domain. Copied from the Engi-
neering Mechanics website.

freedom does not change.

The planar channel flow problem does not have an exact solution in the same
sense that the Laplace problem from the previous section had one. The simulated
turbulent flow will depend heavily on the initial condition and small (numerical)
perturbations, which means that quantitatively, the computed flow field at a certain
point in time is not really meaningful. Instead, in practice the computed solution
will be used to gather statistical data about the turbulent flow and the influence
it has on its surroundings. Qualitatively, an image of the flow field can be useful,
but being three dimensional it is complicated to visualize. A possible way is shown
in Figure 4.11, which shows the result of a similar, though more accurate VMS
simulation of planar channel flow. For deflation, however, it was not deemed useful
to create similar images; analysis will be purely residual based.

4.2.1 Deflation results

To confirm that the current VMS method does indeed suffer from bad paralleliza-
tion, Figure 4.12 shows the convergence of the non-deflated method decomposed in
one, four and sixteen subdomains. The three stacked figures are three subsequent
Newton iterations for the solution of one time slab. Recall that the VMS method



Chapter 4. Numerical results 86

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

sc
al

ed
re

si
d
u
al 1 block ILU

4 block ILU
16 block ILU

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16

iterations

Figure 4.12. GMRES convergence of the planar channel flow test problem, com-
paring 1, 4 and 16 block ILU preconditioning. The three stacked plots show conver-
gence of the three consequent Newton iterations that are required for computing a
single time slab solution. The plot shows that block ILU deteriorates quickly as the
number of blocks increases.

results in a system of non-linear equations, which are solved using Newton lineariza-
tion. During these iterations the Jacobi matrix is not recreated; the performance
gain can not outweigh the considerable amount of work required for forming this
matrix. After three Newton iterations, each solved with precision 10−3, the solution
is considered accurate enough and the simulation proceeds to the next time slab.
Even then, the Jacobi matrix is not recreated.

Figure 4.12 illustrates the experienced parallelization problems. Even more than ob-
served with Laplace, the convergence speed drops drastically due to deterioration of
the block ILU preconditioner. With sixteen subdomains, almost four times as many
iterations are required compared to one domain, for all three Newton iterations.
This, however, is still markedly better than a diagonal scaling preconditioner. An
attempt to solve the system using this preconditioner had to be aborted when the
first Newton iteration had not converged in 2000 iterations. This illustrates how ill
conditioned the Jacobi matrix really is, and why it is so sensitive to the quality of
the preconditioner.

In a first attempt to improve this situation, deflation has been tried against the
worst case shown in Figure 4.12; that of sixteen subdomains. A constant subdomain
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Figure 4.13. GMRES convergence of the planer channel flow test problem, compar-
ing “Standard” and “GMRES” projected constant subdomain deflation, combined
with 16 block ILU preconditioning.

subspace has been formed using only the linear basis functions in the expansion. Be-
cause separate deflation vectors are formed for all five computed flow field variables,
the constant subdomain subspace has dimension 5 · 16 = 80. It would seem that
a subspace of this size should be able to contribute something to the convergence
of the iterative method. Unfortunately, Figure 4.13 shows otherwise. The figure
compares convergence for both the “Standard” and “GMRES” variants of deflation,
of which only the latter is theoretically sound due to the asymmetry of the Jacobi
matrix — but neither shows improvement. On the contrary, “GMRES” deflation
completely destroys convergence, even more than it did with the Laplace problem.
“Standard” deflation does not help either, but at least the original convergence is
maintained.

In an attempt to gain some insight in what is causing the observed behavior, the
three subsequent Newton iterations shown in Figure 4.13 will be examined more
closely.

1. In the first Newton iteration, “Standard” deflation appears to have a bad
start. After ‘improving’ the initial condition (which is zero) with the projected
solution, the scaled residual becomes nearly four times as large. However,
after three Krylov iterations the deflated method has caught up with original
convergence due to instant linear convergence. “GMRES” deflation maintains
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the residual, but it does so for the first eight iterations long, after which
improvement very reluctantly sets in.

2. The second Newton iteration is different from the first in that both “Standard”
and “GMRES” deflation are able to bring down the initial residual. Only the
former is able to maintain this gain throughout the iterative process, however
small it may be. The latter looses it in two iterations, and again it will wait
for another six iterations before convergence finally starts.

3. The third and last Newton iteration, neither of the two methods change the
initial residual. In fact “Standard” deflation does not seem to affect anything
at all as convergence is identical to that of the non-deflated method. “GM-
RES” deflation, once again, starts with a stationary period of ten iterations.

Because “GMRES” deflation explicitly minimizes the residual of the projected vec-
tors, each newly formed iterate must have a residual that is as most as large as the
previous one. Figure 4.13 shows that this condition is indeed satisfied. Unfortu-
nately, the figure shows that the residual is very often exactly equal to the previous
one, or only slightly smaller. The reason for this is not clear. The previous section
suggested that the bad convergence of “GMRES” deflation may be caused by a
weak connection between the residual and the actual error. In the first Newton
iteration, although the “Standard” projection leads to a higher residual, the actual
error may still be close to original one. The further convergence behaviour seems
to support this. The other way round, the “GMRES” projection has only slightly
changed the residual, but it may well have increased the error, with apparent con-
sequences. Note that this is mere speculation; further investigations are clearly
required. As things stand, however, “GMRES” deflation is not usable and will not
be considered any further.

Although “Standard” deflation has lost its mathematical grounds since the asym-
metric Jacobi matrix does not induce a valid norm, the results obtained with con-
stant deflation still look interesting. Granted, the examined subspace does not
contribute anything, but an even richer deflation subspace may be a able to make
a difference. Table 4.14 shows convergence results for one, four and sixteen subdo-
mains combined with different deflation subspaces, similar to Tables 4.1 and 4.2 in
the previous section. Results for the last “Subdomain” variant are missing due to
singularity of the small matrix that is part of the projection operator. The reason
for this singularity has not been investigated because it does not seem to be related
to the experienced convergence problems. Based on experience with Laplace, the
“Basis” deflation types will provide comparable information.

The largest deflation subspace listed in Table 4.14 has dimension 320. Yet even
this subspace does not lead to changed convergence, in either direction; two itera-
tions difference is the largest difference, occurring once, and disfavouring deflation.
Figure 4.3, which displays the results for sixteen subdomains, leads to the same
conclusion. It must therefore be concluded that none of the deflation variants that
are provided by the current solver are capable of aiding VMS convergence. Not
even slightly.
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Figure 4.14. GMRES convergence of the planar channel flow test problem, com-
paring three variants of deflation with 16 block ILU preconditioning. The displayed
variants are marked with an asterisk in Table 4.14 below.

no deflation “Subdomain” deflation “Basis” deflation
blend=true

linear=false linear=true nodes=3 nodes=4

(0, 0, 0∗) (5, 20, 80∗) (20, 80,320) (135,135,135∗)(320,320,320∗)
10−1 2 4 8 2 4 7 2 5 - 2 5 7 2 5 8
10−2 3 6 12 3 6 12 3 7 - 3 7 12 3 7 12
10−3 5 9 16 5 9 17 5 9 - 5 10 17 5 10 17
10−1 1 3 3 1 2 3 1 2 - 1 2 2 1 2 2
10−2 1 4 7 1 4 6 1 4 - 1 4 6 1 4 6
10−3 3 6 11 3 6 11 3 6 - 3 6 11 3 6 11
10−1 1 3 6 1 3 6 1 3 - 1 3 6 1 3 6
10−2 3 5 11 3 6 11 3 6 - 3 6 11 3 6 11
10−3 4 7 15 5 8 16 5 8 - 5 8 16 4 9 16

Table 4.3. Number of iterations required to reach various levels of accuracy (the
first column) measured as the residual over right hand side ratio. The three sets of
rows show three subsequent Newton iterations. The first of three columns show the
number of iterations required by 1, 4 and 16 block ILU preconditioners, respectively.
The next four blocks compare the same three preconditioners combined with various
variants of deflation, the subspace dimension shown in braces.
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Based on the wide range of numerical experiments that have been performed, the
question whether deflation can increase the parallel efficiency of the Variational Mul-
tiscale (VMS) method will have to be answered negatively. None of the examined
deflation subspaces have led to improved convergence of the linearized systems.
However, in want of a clear explanation of these findings, no definitive judgement
can be made. Deflation has been shown to be a close interplay between the deflation
subspace and the projection norm, both of which can be varied with reasonable free-
dom. There may well be a combination of two that does aid VMS convergence, but
this has to be a subspace other than those considered in this report, or a different
projection, or both.

In order to construct a better deflation subspace or projection norm, it will first
need to be clear why all current attempts have failed. Unfortunately, a definitive
explanation has not been found. Both components were based on seemingly sound
theory; the subspaces were constructed such that slowly varying eigenvectors can be
approximated, the projection such that this approximation is accurate. Experiments
on the Laplace equation, however, did suggest a high sensitivity to the latter. For
this problem it has been shown that minimizing in A-norm led to a much smaller
error than minimizing in AT A-norm, that would be applicable to general matrices.
This lesser accuracy is likely to cause slower convergence, but whether this can
explain the very large differences that have been found is questionable.

For the VMS method, the explanation of failed accuracy can be supported for both
examined projections, for different reasons. The “Standard” projection is based on
the A-norm, which in the case of a VMS Jacobian matrix does not qualify to be
a norm at all because it is not SPD. Failing the positivity property, the distance
between a vector and its projection can be zero without being equal. This can
not be good for accuracy. The “GMRES” projection based on the AT A-norm was
introduced for exactly this reason, because this norm is valid for general matrices.
However, the Laplace results have shown that this norm does not constitute an
accurate projection either, mainly because the minimum error and minimum residual
do not coincide. This may still be the case for VMS; judging by the convergence
data, it may be worse.

These above explanations are all mere speculation. To leave this speculative stage
and to get a clear idea of what would make a fitting deflation preconditioner for the
VMS method, further investigations will be required. In particular, the following

90
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two questions require an answer:

1. Why does “GMRES” deflation perform as bad as it does, in general?

Although the suggested explanation of an inaccurate projection is plausible, it has
one potential flaw: “GMRES” deflation has been used before, and with success.
Deflation has been introduced in Section 2.4 as a natural extension of the Krylov
subspace methods, starting from a predefined subspace instead of an empty one.
Morgan [9] has designed a modified ‘augmented’ GMRES algorithm that stays very
close to this idea, using a single projection for the entire search space. The deflation
method used in this report, on the other hand, is based on a splitting of the the
projection operator into a deflation projection and a Krylov projection, ow which
the former has been changed into a preconditioner. It has been argued that the
resulting methods relate in the same way as left and right preconditioned methods
do, and that convergence behaviour of the two should be equal.

Unfortunately, augmented GMRES has not been tested on Laplace, which makes
direct comparison impossible. Instead it has been applied to a number of specifically
designed problems. Furthermore, the augmented GMRES method has not been used
with constant or linear deflation subspaces, but with Ritz vectors that are obtained
from previous GMRES iterations before restarting. Both the test problems and the
Ritz vectors can be used in the current Jem/Jive solver, however, and it will be very
interesting to see if this way the results found by Morgan can be reproduced. In that
case, this suggests that the “GMRES” projection performs well in combination with
a Ritz subspace, which would be really interesting. If on the other hand the results
can not be reproduced, this would mean that the reasoning behind the equivalence
of the two is flawed.

It will also be interesting to reverse the experiment, and try to reproduce the Laplace
results from Section 4.1 using the augmented GMRES method. Although this
method has been used solely in combination with Ritz vectors, to aid convergence
after restarting, there is no reason why it can not be used with other subspaces as
well. Again the results are expected to be equal — this is the reason why focus
has been completely on preconditioned deflation. However, if for some reason they
are not equal, augmented GMRES will be interesting for further investigation with
VMS because of its applicability for general matrices.

2. Why do all variants of deflation fail when used in VMS?

An important question here is if the problem is caused by the deflation subspace, the
projection operator, or both. To answer this question, a useful experiment will be
to compute the exact eigenvectors for the lower part of the spectrum, and use these
to form a deflation subspace. If convergence improves then the subspace is at least
part of the problem; if it does not, the projection is to blame. The quality of the
projection can be tested by comparing it against a projection in Euclidean norm, that
is, directly minimizing the error. Note that this projection will necessarily involve
solving the complete system. If the resulting error is much smaller, this indicates
an accuracy problem which means that the projection should be improved.

Starting with the projection norm, an obvious attempt of improvement that has



Conclusions 92

already been mentioned in the discussion of the Laplace results is to use the pre-
conditioned matrix in “GMRES” projection. Instead of minimizing the residual,
the projection will then minimize the approximate error. Depending on the quality
of the preconditioner this can be expected to bring some improvement. Another
possibility worth examining is to use the residuals of the five simulated quantities
separately (three speed components, temperature, and density) and define a pro-
jection that somehow minimizes these. This will have to be within the restriction
that the unknown solution can be projected by making use of the right hand side.

The deflation subspace can fortunately be constructed more freely. When the exact
eigenvectors prove to be useful, it may be worthwhile to visualize these vectors and
try to extract qualitative information. Exact computation of the eigenvectors is
not feasible, but it may be possible to cheaply construct a set of vectors that span
approximately the same subspace. A similar approach has been followed by Vuik et
al. [19], who have constructed a deflation subspace based on an inferred relation
between eigenvectors and earth layers. Similar relations may be possible for VMS.

Another way of staying close to the real eigenvectors has already been suggested in
question one. After a number of GMRES iterations, Ritz vectors can be formed that
approximate precisely those eigenvectors that are interesting for deflation. This may
not seem very interesting at first as these vectors will be available only after the
solution has been found; restarting should not be necessary. Note, however, that the
Jacobian matrix will not be changed very often, not even for different time-slabs.
This means that when a set of approximate eigenvectors has been computed, they
can be used for many iterations that follow until a new Jacobian matrix is formed
— and one GMRES procedure later the new set of Ritz vectors will be available.
Of all the suggestions made in this section, this Ritz subspace is probably the most
promising idea.
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Deflation source code

A.1 DeflationSolver.h

1 #ifndef JIVE SOLVER DEFLATIONSOLVER H
2 #define JIVE SOLVER DEFLATIONSOLVER H
3

4 #include <jive/solver/Preconditioner .h>
5 #include <jive/solver/ IterativeSolver .h>
6

7 JIVE BEGIN PACKAGE( solver )
8

9 // DeflationPrecon class

Matrix that behaves as the preconditioner P = (I − PZ)M−1 in Equation 3.3,
plus additional functions for preparing the right-hand side. Important private
variables:

• precon : nested preconditioner M−1

• conmat : constrained matrix A

• coords : normalized coordinates of all items

• subspace : deflation vectors Z

• projection : projection vectors (Y T AZ)−1Y T (see Section 3.3.2)

The class does not provide the usual makeNew / declare pair because the
preconditioner is not suitable for standalone use; it will be used exclusively by
the DeflationSolver. The preconditioner will hence not be registered at a factory.

10

11 class DeflationPrecon : public Preconditioner
12 {
13 public :
14

15 JEM DECLARE CLASS( DeflationPrecon, Preconditioner );
16

17 typedef jem::mp::Context Context;
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18 typedef jive :: mp::VectorExchanger VectorExchanger;
19 typedef jive :: util :: DofSpace DofSpace;
20

21 DeflationPrecon
22

23 ( const String& name,
24 Ref<AbstractMatrix> matrix,
25 Ref<Constraints> cons,
26 Ref<VectorSpace> vspace,
27 Ref<Preconditioner> precon );
28

29 virtual Shape shape () const;
30

31 virtual void configure
32

33 ( const Properties& props );
34

35 virtual void getConfig
36

37 ( const Properties& props ) const;
38

39 double getResidual
40

41 ( const Vector& lhs ,
42 const Vector& rhs ) const;
43

44 void improve
45

46 ( const Vector& lhs ,
47 const Vector& rhs ) const;
48

49 virtual void matmul
50

51 ( const Vector& lhs ,
52 const Vector& rhs ) const;
53

54 virtual void init ();
55

56 protected:
57

58 void initSubspace ();
59

60 Matrix (DeflationPrecon ::∗getSubspace )
61

62 ( const IntVector& idofs ,
63 const IntVector& iitems ) const;
64

65 Matrix getEmptySubspace
66

67 ( const IntVector& idofs ,
68 const IntVector& iitems ) const;
69

70 Matrix getSubdomainSubspace
71
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72 ( const IntVector& idofs ,
73 const IntVector& iitems ) const;
74

75 Matrix getBasisSubspace
76

77 ( const IntVector& idofs ,
78 const IntVector& iitems ) const;
79

80 void initProjection ();
81

82 Matrix (DeflationPrecon ::∗ getProjection )
83

84 ( ) const;
85

86 Matrix getStandardProjection
87

88 ( ) const;
89

90 Matrix getGMRESProjection
91

92 ( ) const;
93

94 void newValuesHandler ();
95

96 void newStructHandler ();
97

98 virtual ˜DeflationPrecon ();
99

100 private :
101

102 Ref<Preconditioner> precon ;
103 Ref<ConstrainedMatrix> conmat ;
104 Ref<VectorSpace> vspace ;
105 Ref<VectorExchanger> vex ;
106 Ref<DofSpace> dofs ;
107 Ref<Context> context ;
108 Matrix coords ;
109

110 Vector smallvec ;
111 Vector largevec ;
112

113 Matrix subspace ;
114 bool subspaceReady ;
115 String subspaceType ;
116 StringVector subspaceDofs ;
117 struct
118 {
119 bool linear ;
120 bool blend;
121 int cells ;
122 } subspaceProps ;
123

124 Matrix projection ;
125 bool projectionReady ;
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126 String projectionType ;
127 };
128

129 // DeflationSolver class

Solver that uses a nested solver to solve a deflated system, as in Equation 3.3.
Simply forwards all function calls to the nested solver except for solve and
improve, which first call the deflation preconditioner’s improve function.
Importent private variables:

• precon : deflation preconditioner

• solver : nested solver

The solver has been designed to have no knowledge of the linear system it
solves.

130

131 class DeflationSolver : public IterativeSolver
132 {
133 public :
134

135 JEM DECLARE CLASS( DeflationSolver, IterativeSolver );
136

137 typedef jem:: io :: FileWriter FileWriter ;
138

139 static const char∗ TYPE NAME;
140 static const char∗ SOLVER PROP;
141 static const char∗ PRECON PROP;
142

143 DeflationSolver
144

145 ( const String& name,
146 Ref<Solver> solver ,
147 Ref<DeflationPrecon> precon );
148

149 virtual void configure
150

151 ( const Properties& props );
152

153 virtual void getConfig
154

155 ( const Properties& props ) const;
156

157 virtual void solve
158

159 ( const Vector& lhs ,
160 const Vector& rhs );
161

162 virtual void improve
163

164 ( const Vector& lhs ,
165 const Vector& rhs );
166

167 virtual void setMaxIterCount
168
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169 ( int n );
170

171 virtual int getMaxIterCount () const;
172

173 virtual void setMode
174

175 ( int mode );
176

177 virtual int getMode () const;
178

179 virtual void setPrecision
180

181 ( double eps );
182

183 virtual double getPrecision () const;
184

185 static Ref<Solver> makeNew
186

187 ( const String& name,
188 const Properties& conf,
189 const Properties& props,
190 const Properties& params,
191 const Properties& globdat );
192

193 static void declare ();
194

195 protected:
196

197 virtual ˜ DeflationSolver ();
198

199 void nextIterHandler
200

201 ( int iiter ,
202 double err );
203

204 void restartHandler
205

206 ( int iiter ,
207 double err );
208

209 private :
210

211 Ref<DeflationPrecon> precon ;
212 Ref< IterativeSolver > solver ;
213

214 Ref<FileWriter> plotFile ;
215 String plotFilename ;
216 double rscale ;
217 };
218

219 JIVE END PACKAGE( solver )
220

221 #endif
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A.2 DeflationSolver.cpp

222 #include <jem/base/assert.h>
223 #include <jem/base/System.h>
224 #include <jem/base/ClassTemplate.h>
225 #include <jem/base/Array.h>
226 #include <jem/base/Float.h>
227 #include <jem/base/IllegalArgumentException.h>
228 #include <jem/io/PrintWriter.h>
229 #include <jem/io/FileWriter.h>
230 #include <jem/util/Event.h>
231 #include <jem/util/Properties.h>
232 #include <jem/mp/Context.h>
233 #include <jem/mp/UniContext.h>
234 #include <jem/mp/Buffer.h>
235 #include <jem/numeric/algebra/LUSolver.h>
236 #include <jem/numeric/algebra/matmul.h>
237 #include <jem/numeric/algebra/utilities .h>
238

239 #include <jive/fem/NodeSet.h>
240 #include <jive/util/ utilities .h>
241 #include <jive/util/Constraints .h>
242 #include <jive/util/DofSpace.h>
243 #include <jive/util/PointSet.h>
244 #include <jive/mp/VectorExchanger.h>
245 #include <jive/mp/XBorderSet.h>
246 #include <jive/algebra/VectorSpace.h>
247 #include <jive/algebra/MPMatrixObject.h>
248 #include <jive/solver/ConstrainedMatrix.h>
249 #include <jive/solver/SolverFactory .h>
250 #include <jive/solver/SolverParams.h>
251 #include <jive/solver/GenericConstrainer .h>
252 #include <jive/solver/ DeflationSolver .h>
253

254 JEM DEFINE CLASS( jive::solver::DeflationSolver );
255 JEM DEFINE CLASS( jive::solver::DeflationPrecon );
256

257 JIVE BEGIN PACKAGE( solver )
258

259 // DeflationPrecon constructor

Initializes conmat , dofs , vspace , precon , vex , context , coords ,
subspaceReady and projectionReady . The latter two are set to false to signify
that subspace and projection are uninitialized, respectively. Also, connects two
events from the nested preconditioner to local handers.

260

261 DeflationPrecon :: DeflationPrecon
262

263 ( const String& name,
264 Ref<AbstractMatrix> matrix,
265 Ref<Constraints> cons,
266 Ref<VectorSpace> vspace,
267 Ref<Preconditioner> precon ) :
268
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269 Super( name )
270

271 {
272 using jem::mp::UniContext;
273 using jem::mp::RecvBuffer;
274 using jem::mp::SendBuffer;
275 using jem::mp::MIN;
276 using jem::mp::MAX;
277

278 using jive :: algebra :: MPMatrixObj;
279 using jive :: mp::newXBorderSet;
280 using jive :: mp::SEND RECV BORDERS;
281 using jive :: util :: ItemSet;
282 using jive :: util :: PointSet;
283 using jive :: util :: GroupSet;
284

285 jem::System:: info () << myName
286 << ” : Initializing deflation preconditioner ...\ n”;
287

288 JEM PRECHECK( matrix != jem::NIL );
289 JEM PRECHECK( cons != jem::NIL );
290 JEM PRECHECK( vspace != jem::NIL );
291 JEM PRECHECK( precon != jem::NIL );
292

293 conmat = jem::newInstance<ConstrainedMatrix>( matrix, cons );
294 dofs = cons−>getDofSpace();
295 vspace = vspace;
296 precon = precon;
297

298 Ref<MPMatrixObj> mpmatrix = jem::dynamicCast<MPMatrixObj>( matrix );
299 if ( mpmatrix != jem::NIL )
300 {
301 vex = mpmatrix−>getExchanger();
302 context = vex −>getMPContext();
303 jem::System:: info () << ” ∗ multi process: ” << context −>size() << ’\n’;
304 }
305 else
306 {
307 jem::System:: info () << ” ∗ single process\n”;
308 context = jem::newInstance<UniContext>();
309 vex = jem::newInstance<VectorExchanger>(
310 context ,
311 dofs ,
312 newXBorderSet( SEND RECV BORDERS, dofs −>getItems() )
313 );
314 }
315

316 Ref<ItemSet> itemset = dofs −>getItems();
317 JEM PRECHECK( itemset != jem::NIL );
318

319 Matrix trueCoords;
320 Ref<PointSet> pointset = jem::dynamicCast<PointSet>( itemset );
321 if ( pointset != jem::NIL )
322 {
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323 jem::System:: info () << ” ∗ dofs are connected to nodes\n”;
324

325 trueCoords. ref ( pointset−>toMatrix() );
326 }
327 else
328 {
329 jem::System:: info () << ” ∗ dofs are connected to elements\n”;
330

331 Ref<GroupSet> groupset = jem::dynamicCast<GroupSet>( itemset );
332 JEM PRECHECK( groupset != jem::NIL );
333

334 itemset = groupset−>getGroupedItems();
335 pointset = jem::dynamicCast<PointSet>( itemset );
336 JEM PRECHECK( pointset != jem::NIL );
337

338 Vector coord( pointset−>rank() );
339 IntVector ipoints ( groupset−>maxGroupSize() );
340 trueCoords. resize ( pointset−>rank(), groupset−>size() );
341 for ( int iitem = 0; iitem < groupset−>size(); iitem++ )
342 {
343 int count = groupset−>getGroupMembers( ipoints, iitem );
344 trueCoords( ALL, iitem ) = 0.0;
345 for ( int i = 0; i < count; i++ )
346 {
347 pointset−>getPointCoords( coord, ipoints[ i ] );
348 trueCoords( ALL, iitem ) += coord / double( count );
349 }
350 }
351 }
352 JEM PRECHECK( trueCoords.size( 1 ) == dofs −>itemCount() );
353

354 coords . resize ( trueCoords.shape() );
355 int dimCount = 0;
356

357 jem::System:: info () << ” ∗ bounding box:”;
358 for ( int idim = pointset−>rank() − 1; idim >= 0; idim−− )
359 {
360 double xmin = jem::min( trueCoords( idim, ALL ) );
361 double xmax = jem::max( trueCoords( idim, ALL ) );
362

363 context −>allreduce( RecvBuffer( &xmin, 1 ), SendBuffer( &xmin, 1 ), MIN );
364 context −>allreduce( RecvBuffer( &xmax, 1 ), SendBuffer( &xmax, 1 ), MAX );
365

366 jem::System:: info () << String::format( ” %.1f:%.1f”, xmin, xmax );
367 if ( ! jem:: Float :: isTiny( xmax − xmin ) )
368 {
369 coords ( dimCount, ALL ) = (trueCoords( idim, ALL )−xmin) / (xmax−xmin);
370 dimCount++;
371 }
372 }
373 jem::System:: info () << ’\n’;
374 if ( dimCount < trueCoords.size( 0 ) )
375 {
376 jem::System:: info () << ” ∗ discarded ” << trueCoords.size( 0 ) − dimCount
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377 << ” empty dimensions, leaving ” << dimCount << ’\n’;
378 coords .reshape( dimCount, coords . size ( 1 ) );
379 }
380

381 subspaceReady = false ;
382 projectionReady = false ;
383

384 connect( precon −>newValuesEvent, this, & Self::newValuesHandler );
385 connect( precon −>newStructEvent, this, & Self ::newStructHandler );
386

387 jem::System:: info () << myName
388 << ” : Initialization complete.\n”;
389 }
390

391 DeflationPrecon ::˜ DeflationPrecon ()
392

393 {}
394

395 // newValuesHandler, newStructHandler

Event handlers, connected to corresponding events from the precon object.
The handlers take no action other than re-emitting the event from this
DeflationPrecon object, forming a bridge between the (private) nested
preconditioner and the nested solver.

396

397 void DeflationPrecon :: newValuesHandler ()
398

399 {
400 newValuesEvent.emit( ∗this );
401 }
402

403 void DeflationPrecon :: newStructHandler ()
404

405 {
406 newStructEvent.emit( ∗this );
407 }
408

409 // configure

Configures the deflation preconditioner based on two defation-specific run time
properties:

• subspace.type: “Empty” / “Subdomain” / “Basis”

• projection.type: “Standard” / “GMRES”

At configuration time conmat will not be ready for use, which means necessary
preparations can not be made. Instead the addresses of relevant functions are
stored in getSubspace and getProjection , postponing final preparations until
first use.

410

411 void DeflationPrecon :: configure ( const Properties& props )
412

413 {
414 Super:: configure ( props );
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415 precon −> configure( props );
416

417 Properties myProps = props.findProps( myName );
418

419 subspaceType = ”Empty”;
420 myProps.find( subspaceType , ”subspace.type” );
421 if ( subspaceType == ”Empty” )
422 {
423 getSubspace = &getEmptySubspace ;
424 }
425 else if ( subspaceType == ”Subdomain” )
426 {
427 getSubspace = &getSubdomainSubspace ;
428 subspaceProps . linear = false ;
429 myProps.find( subspaceProps . linear , ”subspace. linear ” );
430 subspaceProps .blend = false ;
431 myProps.find( subspaceProps .blend, ”subspace.blend” );
432 }
433 else if ( subspaceType == ”Basis” )
434 {
435 getSubspace = &getBasisSubspace ;
436 subspaceProps .nodes = 2;
437 myProps.find( subspaceProps .nodes, ”subspace.nodes” );
438 }
439 else
440 {
441 throw jem::IllegalArgumentException( JEM FUNC,
442 ” invalid subspace type: ” + subspaceType );
443 }
444

445 subspaceDofs . ref ( dofs −>getTypeNames() );
446 myProps.find( subspaceDofs , ”subspace.dofs” );
447

448 projectionType = ”Standard”;
449 myProps.find( projectionType , ” projection .type” );
450 if ( projectionType == ”Standard” )
451 {
452 getProjection = &getStandardProjection ;
453 }
454 else if ( projectionType == ”GMRES” )
455 {
456 getProjection = &getGMRESProjection ;
457 }
458 else
459 {
460 throw jem::IllegalArgumentException( JEM FUNC,
461 ” invalid projection type: ” + projectionType );
462 }
463 }
464

465 // getConfig

Creates props based on configuration.
466
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467 void DeflationPrecon :: getConfig ( const Properties& props ) const
468

469 {
470 Super:: getConfig( props );
471 precon −> getConfig( props );
472

473 Properties myProps = props.makeProps( myName );
474

475 myProps.set( ”subspace.type”, subspaceType );
476 myProps.set( ”subspace.dofs”, subspaceDofs );
477 if ( subspaceType == ”Subdomain” )
478 {
479 myProps.set( ”subspace. linear ”, subspaceProps . linear );
480 myProps.set( ”subspace.blend”, subspaceProps .blend );
481 }
482 else if ( subspaceType == ”Basis” )
483 {
484 myProps.set( ”subspace.nodes”, subspaceProps .nodes );
485 }
486 myProps.set( ” projection .type”, projectionType );
487 }
488

489 // shape

Returns the rows and columns of the preconditioner matrix as a two-element
array.

490

491 DeflationPrecon :: Shape DeflationPrecon:: shape () const
492

493 {
494 return precon −>shape();
495 }
496

497 // init

Initializes the preconditioner. Calls either initSubspace and initProjection ,
initProjection only, or nothing, depending on subspaceReady and
projectionReady . After init both subspace and projection are initialized.

498

499 void DeflationPrecon :: init ()
500

501 {
502 if ( ! subspaceReady || ! projectionReady )
503 {
504 conmat −>update();
505

506 if ( ! subspaceReady )
507 {
508 initSubspace ();
509 }
510 if ( subspace . size ( 1 ) > 0 )
511 {
512 initProjection ();
513 }
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514 largevec . resize ( subspace . size ( 0 ) );
515 smallvec . resize ( subspace . size ( 1 ) );
516

517 subspaceReady = true;
518 projectionReady = true;
519 }
520 }
521

522 // initSubspace

Initializes subspace . For each configured DOF type, calls the configured
getSubspace function with indices and items. Non-empty vectors are added to
subspace .

523

524 void DeflationPrecon :: initSubspace ()
525

526 {
527 jem::System:: info () << myName
528 << ” : Initializing ‘” << subspaceType << ”’ deflation subspace ...\n”;
529

530 jem::System:: info () << ” ∗ processes: ” << context −>size() << ’\n’;
531 jem::System:: info () << ” ∗ dimensions: ” << coords .size( 0 ) << ’\n’;
532

533 IntVector idofs ( dofs −>dofCount() );
534 IntVector iitems ( dofs −>dofCount() );
535

536 int vectorCount = 0;
537 for ( int iname = 0; iname < subspaceDofs .size (); iname++ )
538 {
539 String name = subspaceDofs [ iname ];
540 jem:: Slice compare;
541 if ( name.back() == ’∗’ )
542 {
543 compare = jem::Slice( 0, name.size() − 1 );
544 }
545 else
546 {
547 compare = ALL;
548 }
549

550 int size = 0;
551 for ( int itype = 0; itype < dofs −>typeCount(); itype++ )
552 {
553 String name2 = dofs −>getTypeName( itype );
554 if ( name2[ compare ] == name[ compare ] )
555 {
556 jem:: Slice range( size , idofs . size () );
557 size += dofs −>getDofsForType( idofs[ range ], iitems [ range ], itype );
558 }
559 }
560

561 int added = 0;
562 if ( size > 0 )
563 {
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564 Matrix vectors ( ( this−>∗getSubspace )( idofs[ slice ( 0, size ) ], iitems [ slice ( 0, size ) ] ) );
565 subspace .reshape( vspace −>size(), vectorCount + vectors. size ( 1 ) );
566 for ( int icol = 0; icol < vectors . size ( 1 ); icol ++ )
567 {
568 Vector column( vectors( ALL, icol ) );
569 conmat −>initLhs( column, column );
570 double norm2 = vspace −>product( column, column );
571 if ( ! jem:: Float :: isTiny( norm2 ) )
572 {
573 subspace ( ALL, vectorCount ) = column;
574 vectorCount++;
575 added++;
576 }
577 }
578 }
579

580 int discarded = subspace . size ( 1 ) − vectorCount;
581 jem::System:: info () << ” ∗ added ” << added << ” of ”
582 << added + discarded << ” type ‘” << name << ”’ vectors\n”;
583 }
584 subspace .reshape( vspace −>size(), vectorCount );
585

586 jem::System:: info () << ” ∗ deflation vectors : ” << vectorCount << ’\n’;
587

588 jem::System:: info () << myName
589 << ” : Deflation subspace complete.\n”;
590 }
591

592 // getEmptySubspace

Constructs “Empty” subspace — literally.
593

594 Matrix DeflationPrecon :: getEmptySubspace
595

596 ( const IntVector& idofs ,
597 const IntVector& iitems ) const
598

599 {
600 return Matrix();
601 }
602

603 // getSubdomainSubspace

Constructs “Subdomain” subspace. Creates a set of subdomain-constant vectors
by setting the column corresponding based on the rank to zero. Linear vectors
are created similarly by copying the coords to a position based on the rank.

604

605 Matrix DeflationPrecon :: getSubdomainSubspace
606

607 ( const IntVector& idofs ,
608 const IntVector& iitems ) const
609

610 {
611 int stride = 1;
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612 Vector shift ;
613 if ( subspaceProps . linear )
614 {
615 shift . resize ( coords . size ( 0 ) );
616 shift = 0.0;
617 for ( int i = 0; i < idofs . size (); i++ )
618 {
619 shift += coords ( ALL, iitems[ i ] );
620 }
621 shift /= double( idofs. size () );
622 stride += coords .size( 0 );
623 }
624

625 int icol = context −>myRank() ∗ stride;
626 Matrix vectors ( vspace −>size(), context −>size() ∗ stride );
627 vectors = 0.0;
628

629 for ( int i = 0; i < idofs . size (); i++ )
630 {
631 vectors ( idofs [ i ], icol ) = 1.0;
632 if ( subspaceProps . linear )
633 {
634 vectors ( idofs [ i ], slice ( icol +1, icol+stride ) ) =
635 coords ( ALL, iitems [ i ] ) − shift ;
636 }
637 }
638

639 void (VectorExchanger::∗exchange)( const Vector& vec );
640 if ( subspaceProps .blend )
641 {
642 exchange = &VectorExchanger::scatter;
643 }
644 else
645 {
646 exchange = &VectorExchanger::exchange;
647 }
648

649 Vector weights( vspace −>size() );
650 weights = 1.0;
651 (∗vex .∗exchange)( weights );
652

653 for ( int icol = 0; icol < vectors . size ( 1 ); icol ++ )
654 {
655 (∗vex .∗exchange)( vectors ( ALL, icol ) );
656 vectors ( ALL, icol ) /= weights;
657 }
658

659 return vectors ;
660 }
661

662 // getBasisSubspace

Constructs “Basis” subspace based on Equation 3.4.
663
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664 int intpow( int base, int exponent )
665

666 {
667 int retval = 1;
668 while ( exponent )
669 {
670 retval ∗= base;
671 exponent −−;
672 }
673 return retval ;
674 }
675

676 Matrix DeflationPrecon :: getBasisSubspace
677

678 ( const IntVector& idofs ,
679 const IntVector& iitems ) const
680

681 {
682 Matrix vectors ( vspace −>size(), intpow( subspaceProps .nodes, coords . size ( 0 ) ) );
683 vectors = 0.0;
684

685 for ( int i = 0; i < idofs . size (); i++ )
686 {
687 vectors ( idofs [ i ], ALL ) = 1.0;
688 for ( int idim = 0, stride = 1;
689 idim < coords . size ( 0 );
690 idim++, stride ∗= subspaceProps .nodes
691 )
692 {
693 double pos = ( subspaceProps .nodes − 1 ) ∗ coords ( idim, iitems [ i ] );
694 int div = int( pos );
695 double mod = pos − div;
696 for ( int icol = 0; icol < vectors . size ( 1 ); icol ++ )
697 {
698 int node = ( icol / stride ) % subspaceProps .nodes;
699 if ( node == div )
700 {
701 vectors ( idofs [ i ], icol ) ∗= 1.0 − mod;
702 }
703 else if ( node == div + 1 )
704 {
705 vectors ( idofs [ i ], icol ) ∗= mod;
706 }
707 else
708 {
709 vectors ( idofs [ i ], icol ) = 0.0;
710 }
711 }
712 }
713 }
714

715 return vectors ;
716 }
717
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718 // initProjection

Constructs the projection vectors (Y T AZ)−1Y T , with Y obtained from the
configured getProjection .

719

720 void DeflationPrecon :: initProjection ()
721

722 {
723 jem::System:: info () << myName
724 << ” : Initializing ‘”
725 << projectionType
726 << ”’ projection operator ...\ n”;
727

728 projection . resize ( subspace .shape() );
729

730 Matrix vectors ( ( this−>∗getProjection )() );
731 Matrix coarsemat( subspace . size ( 1 ), subspace . size ( 1 ) );
732 Vector v( vspace −>size() );
733

734 for ( int i = 0; i < subspace . size ( 1 ); i++ )
735 {
736 conmat −>matmul( v, subspace ( ALL, i ) );
737 vspace −>project( coarsemat( i , ALL ), v, vectors );
738 }
739

740 jem::System:: info () << ” ∗ inverting coarse matrix\n”;
741

742 double d;
743 if ( ! jem::numeric::LUSolver:: invert ( coarsemat, d ) )
744 {
745 throw jem::Exception( myName , ”singular deflation matrix” );
746 }
747

748 jem::numeric::matmul( projection , vectors , coarsemat );
749

750 jem::System:: info () << myName
751 << ” : Projection operator complete.\n”;
752 }
753

754 // getStandardProjection

Returns Z for “Standard” projection.
755

756 Matrix DeflationPrecon :: getStandardProjection () const
757

758 {
759 return subspace ;
760 }
761

762 // getGMRESProjection

Returns AZ for “GMRES” projection.
763

764 Matrix DeflationPrecon :: getGMRESProjection () const
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765

766 {
767 Matrix vectors ( subspace .shape() );
768

769 for ( int i = 0; i < subspace . size ( 1 ); i++ )
770 {
771 conmat −>matmul( vectors( ALL, i ), subspace ( ALL, i ) );
772 }
773

774 return vectors ;
775 }
776

777 // getResidual

Returns residual of lhs for given rhs. Not used by the preconditioner itself, only
by the solver and only for user output. Defined here because the solver lacks
conmat .

778

779 double DeflationPrecon :: getResidual
780

781 ( const Vector& lhs,
782 const Vector& rhs ) const
783

784 {
785 Vector u( lhs . size () );
786 Vector b( lhs . size () );
787 Vector r( lhs . size () );
788

789 conmat −>initLhs( u, lhs );
790 conmat −>getRhs( b, rhs );
791 conmat −>matmul( r, u );
792 jem::numeric::axpy( r , b, −1.0, r );
793

794 return sqrt ( vspace −>product( r, r ) );
795 }
796

797 // improve

Improves the initial lhs x0 by adding the projection PZ(x− x̃0)
798

799 void DeflationPrecon :: improve
800

801 ( const Vector& lhs,
802 const Vector& rhs ) const
803

804 {
805 JEM PRECHECK( subspaceReady && projectionReady );
806

807 Vector u( lhs . size () );
808

809 conmat −>initLhs( u, lhs );
810

811 if ( subspace . size ( 1 ) > 0 )
812 {
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813 conmat −>getRhs( largevec , rhs );
814 vspace −>project( smallvec , largevec , projection );
815 jem::numeric::matmul( largevec , subspace , smallvec );
816 u += largevec ;
817 }
818

819 conmat −>getLhs( lhs, u );
820 }
821

822 // matmul

Computes lhs = (I − PZ)M−1 rhs.
823

824 void DeflationPrecon :: matmul
825

826 ( const Vector& lhs ,
827 const Vector& rhs ) const
828

829 {
830 JEM PRECHECK( subspaceReady && projectionReady );
831

832 precon −>matmul( lhs, rhs );
833

834 if ( subspace . size ( 1 ) > 0 )
835 {
836 conmat −>matmul( largevec , lhs );
837 vspace −>project( smallvec , largevec , projection );
838 jem::numeric::matmul( largevec , subspace , smallvec );
839 lhs −= largevec ;
840 }
841 }
842

843 // DeflationSolver constructor

Initializes solver and precon , and connects two events from the nested solver
to local handlers.

844

845 const char∗ DeflationSolver :: TYPE NAME = ”Deflation”;
846 const char∗ DeflationSolver :: SOLVER PROP = ”solver”;
847 const char∗ DeflationSolver :: PRECON PROP = ”precon”;
848

849 DeflationSolver :: DeflationSolver
850

851 ( const String& name,
852 Ref<Solver> solver ,
853 Ref<DeflationPrecon> precon ) :
854

855 Super( name )
856

857 {
858 solver = jem::dynamicCast<IterativeSolver>( solver );
859 precon = precon;
860

861 JEM PRECHECK( solver != jem::NIL );
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862 JEM PRECHECK( precon != jem::NIL );
863

864 connect( solver −>nextIterEvent, this , & Self :: nextIterHandler );
865 connect( solver −>restartEvent, this , & Self :: restartHandler );
866 }
867

868 DeflationSolver ::˜ DeflationSolver ()
869

870 {}
871

872 // configure, getConfig

Configures the nested solver based on run-time properties.
873

874 void DeflationSolver :: configure ( const Properties& props )
875

876 {
877 Super:: configure ( props );
878 solver −> configure( props );
879

880 Properties myProps = props.findProps( myName );
881

882 plotFilename = ”/dev/null”;
883 myProps.find( plotFilename , ” plotfile ” );
884 plotFile = jem::newInstance<FileWriter>( plotFilename );
885 }
886

887 void DeflationSolver :: getConfig ( const Properties& props ) const
888

889 {
890 Super:: getConfig( props );
891 solver −> getConfig( props );
892

893 Properties myProps = props.makeProps( myName );
894

895 myProps.set( ” plotfile ”, plotFilename );
896 }
897

898 // improve

Solves the linear system by first calling the deflation preconditioner’s and next
the nested solver’s improve function. All the rest is user feedback.

899

900 void DeflationSolver :: improve
901

902 ( const Vector& lhs ,
903 const Vector& rhs )
904

905 {
906 precon −>init();
907

908 jem::System:: info () << myName
909 << ” : Solving for precision ” << getPrecision() << ” ...\n”;
910
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911 Vector nil ( lhs . size () );
912 nil = 0.0;
913 double residual = precon −>getResidual( nil, rhs );
914 jem::System:: info () << String::format( ” ∗ right hand side : %.3e\n”, residual );
915 rscale = 1.0 / residual ;
916

917 residual = precon −>getResidual( lhs, rhs );
918 jem::System:: info () << String::format( ” ∗ initial residual : %.3e\n”, residual );
919

920 ∗ plotFile << ”\n\n# NON DEFLATED\n”;
921 ∗ plotFile << 0 << ’ ’ << residual ∗ rscale << ’\n’;
922

923 precon −>improve( lhs, rhs );
924

925 residual = precon −>getResidual( lhs, rhs );
926 jem::System:: info () << String::format( ” ∗ after deflation : %.3e\n”, residual );
927

928 ∗ plotFile << ”\n# START ITERATIONS\n”;
929 ∗ plotFile << 0 << ’ ’ << residual ∗ rscale << ’\n’;
930

931 solver −>improve( lhs, rhs );
932

933 residual = precon −>getResidual( lhs, rhs );
934 jem::System:: info () << String::format( ” ∗ after iterations : %.3e\n”, residual );
935

936 jem::System:: info () << myName
937 << ” : Done solving.\n”;
938 }
939

940 // solve

Same as improve, but starts improving from an empty vector instead of lhs.
941

942 void DeflationSolver :: solve
943

944 ( const Vector& lhs,
945 const Vector& rhs )
946

947 {
948 lhs = 0.0;
949 improve( lhs , rhs );
950 }
951

952 // nextIterHandler, restartHandler

Event handlers connected to corresponding events from the nested solver.
Re-emitted after writing convergence data to the configured plotFile .

953

954 void DeflationSolver :: nextIterHandler
955

956 ( int iiter ,
957 double resid )
958

959 {
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960 ∗ plotFile << iiter << ’ ’ << resid << ’\n’;
961 nextIterEvent .emit( iiter , resid , ∗this );
962 }
963

964 void DeflationSolver :: restartHandler
965

966 ( int iiter ,
967 double resid )
968

969 {
970 ∗ plotFile << ”\n# RESTART ITERATIONS\n”;
971 restartEvent .emit( iiter , resid ∗ rscale , ∗this );
972 }
973

974 // bridge functions

Forwarded directly to the nested solver.
975

976 void DeflationSolver :: setMaxIterCount ( int n )
977

978 {
979 solver −>setMaxIterCount( n );
980 }
981

982 int DeflationSolver :: getMaxIterCount () const
983

984 {
985 return solver −>getMaxIterCount();
986 }
987

988 void DeflationSolver :: setMode ( int mode )
989

990 {
991 solver −>setMode( mode );
992 }
993

994 int DeflationSolver :: getMode () const
995

996 {
997 return solver −>getMode();
998 }
999

1000 void DeflationSolver :: setPrecision ( double eps )
1001

1002 {
1003 solver −>setPrecision( eps );
1004 }
1005

1006 double DeflationSolver :: getPrecision () const
1007

1008 {
1009 return solver −>getPrecision();
1010 }
1011
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1012 // makeNew

Creates the deflation solver. First aqcuires the matrix, constraints and vector
space from globdat and creates the nested preconditioner. Then uses these in
the creation of the deflation preconditioner, in turn used in the creation of the
nested solver. Both are used in the formation of the deflation solver.

1013

1014 Ref<Solver> DeflationSolver ::makeNew
1015

1016 ( const String& name,
1017 const Properties& conf ,
1018 const Properties& props,
1019 const Properties& params,
1020 const Properties& globdat )
1021

1022 {
1023 Ref<AbstractMatrix> matrix;
1024 Ref<Constraints> cons;
1025 Ref<VectorSpace> vspace;
1026 Ref<Preconditioner> precon = newPrecon(
1027 jive :: util :: joinNames( name, PRECON PROP ),
1028 conf ,
1029 props,
1030 params,
1031 globdat
1032 );
1033

1034 params.get( matrix, SolverParams::MATRIX );
1035 params.get( cons, SolverParams::CONSTRAINTS );
1036 params.get( vspace, SolverParams::VECTOR SPACE );
1037

1038 Ref<DeflationPrecon> deflation = jem::newInstance<DeflationPrecon>(
1039 name,
1040 matrix,
1041 cons,
1042 vspace,
1043 precon
1044 );
1045

1046 params.set( SolverParams::PRECON, deflation );
1047 Ref<Solver> solver = SolverFactory :: newInstance(
1048 jive :: util :: joinNames( name, SOLVER PROP ),
1049 conf ,
1050 props,
1051 params,
1052 globdat
1053 );
1054

1055 return jem::newInstance<Self>(
1056 name,
1057 solver ,
1058 deflation
1059 );
1060 }
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1061

1062 // declare

Registers makeNew at the solver factory as type “Deflation”
1063

1064 void DeflationSolver :: declare ()
1065 {
1066 SolverFactory :: declare ( TYPE NAME, & makeNew );
1067 SolverFactory :: declare ( CLASS NAME, & makeNew );
1068 }
1069

1070 JIVE END PACKAGE( solver )
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