Increasing the parallel efficiency of multi-scale,
space-time simulations of turbulent flows

intermediate report

Gertjan van Zwieten

December 21, 2005

Preface

This report ends the three-month period of preliminary research for the Master
of Science’s degree in Applied Mathematics at the faculty of Electrical Engi-
neering, Mathematics and Computer Science of Delft University of Technology.
The research was carried out at Habanera, a company that develops numerical
software that can be used in computer simulations and other types of scientific
computations.

This master project is closely connected to the research project Variational
Multiscale Large-Eddy Simulation for Deforming Domains at the faculty of
Aerospace Engineering of Delft University of Technology. That project uses
Habanera’s software toolkits Jem and Jive for its simulations of turbulent flows.
Existing code will be available during the next six months of this master project,
in which the mathematical techniques described at the end of this report will
be applied to this problem.

Gertjan van Zwieten

Contents

1 Introduction

2 Turbulence modeling
2.1 The Navier-Stokes equations
2.2 Large Eddy Simulation . . .

2.3 The Variational Multi-Scale method
2.4 Construction of the solution space
2.5 Discontinuous-Galerkin formulation

2.6 Linearization

3 Iterative solution methods
3.1 Basic iterative methods . .
3.2 Krylov subspace methods .

3.2.1 Full Orthogonalization Method
3.2.2 Generalized Minimum Residual Method

3.2.3 GCR, GMRESR . .

3.2.4 Biconjugate Gradient Method

3.2.5 CGS, BICGSTAB .
3.3 Preconditioning

3.3.1 Basic iterative method oo
3.3.2 Incomplete decomposition L

3.4 Domain Decomposition . .
3.4.1 Schwarz methods . .

3.4.2 Schur complement methods

4 Implementation
4.1 Current implementation . .
4.1.1 Preparation
4.1.2 Outer iteration . . .
4.1.3 Inner iteration . . .
4.2 Current problems
4.3 Deflation
4.3.1 Krylov subspace . .
4.3.2 Eigenvalue deflation
4.3.3 Subdomain deflation

5 Future research

18
18
20
22
23
24
25
27
28
29
30
30
31
34

36
36
37
38
39
41
42
45
46
49

51

Chapter 1

Introduction

Predicting fluid-structure interactions is an important aspect in the design of
aircraft and civil structures. The cheapest and also most flexible source of data
is a numerical simulation of the flow around the structure. Unfortunately, in
reality these flows are almost always turbulent, which means that they consist
of fluid motions that vary enormously in scale. This puts such high require-
ments on computing power that a direct numerical simulation of these flows is
not feasible, and is not expected to be in the near future. Therefore, several
alternative methods are developed that manage to reduce these computing re-
quirements, albeit at the cost of accuracy. This report focuses on a method that
was proposed quite recently: the Variational Multiscale (VMS) method.

The purpose of this report is twofold. First, it aims to give a thorough overview
of the VMS method, starting from the governing equations for non-steady, com-
pressible flow and leading all the way to an actual implementation of the method.
This implementation has already been created and tested by the research group
at the faculty of Aerospace Engineering. The tests revealed that under certain
conditions, the current implementation of the method converges very poorly.
Therefore, the second aim of this report is to introduce a new mathematical
technique, deflation, that is expected to improve convergence in these situa-
tions.

The report is divided in four parts. Chapter 2 presents a complete derivation
of the VMS method. Chapter 3 is a general overview of some important nu-
merical topics, such as Krylov subspace methods, preconditioners and domain
decomposition. In Chapter 4 the previous two chapters are combined into a
complete implementation of the VMS method. The problems that were expe-
rienced are mentioned as well. Section 4.3 presents a detailed introduction to
the deflation technique, which is expected to solve some of these problems. The
implementation of this technique is future research, subject of Chapter 5.

Chapter 2

Turbulence modeling

In fluid dynamics, a main distinction is that of laminar and turbulent flows.
Laminar flows are characterized by a smooth and predictable nature, whereas
turbulent flows are more chaotic, with rapid and seemingly random variations
in pressure and velocity. The distinctive difference between the two types of
flow can be seen in Figure 2.1. In practice, most flows are turbulent. Its chaotic
nature makes that this type of flow very hard to simulate numerically, due
mostly to the enormous range of scales of motion in such flows.

This chapter presents the Variational Multiscale (VMS) method, which aims to
accurately describe turbulent flows at a much lower cost than a direct numerical
simulation. Section 2.1 starts with an overview of the governing Navier-Stokes
equations. Section 2.2 is an overview of Large Eddy Simulation, which is similar
to the newer VMS method that is introduced next in Section 2.3. Section 2.4
defines the numerical representation of the flow, and Section 2.5 shows how this
flow is constructed with a discontinuous Galerkin method. Finally, Section 2.6
shows how the resulting non-linear system of equations can be solved.

laminar flow turbulent flow

Figure 2.1: Comparison of laminar and turbulent flow past a sphere in water, copied
from Anderson [1], Figures 6.9 and 6.10. The laminar flow separates readily from the
surface, leaving a large wake. The turbulent flow separates much further back on the
surface.

CHAPTER 2. TURBULENCE MODELING 5

Figure 2.2: Part of Leonardo da Vinci’s Studies of water passing obstacles and falling,
showing a flow field induced by a falling stream. The drawing shows many different
scales of fluid motion.

A note on notation: following common practice in fluid dynamics, the equations
in this chapter are presented in Cartesian tensor notation. This means that
spatial and temporal differentiation are denoted as follows:

_ 99 _ 99
_81’1‘7 _6t.

o o (2.1)
Also, Greek indices occurring twice within a term or product are summed over
that index. This is known as the Finstein summation convention. For example,

the divergence of a vector field u(x) in 3D space is notated as:

Ug,a = U1,1 T U2,2 + U3 3. (2.2)

2.1 The Navier-Stokes equations

Turbulent flows contain an enormous range of fluid motions. See for example
Figure 2.2, the famous Leonardo da Vinci drawing which shows wide circular
motions around a sluice and much smaller whorls near the impact of the stream.
Even the smallest whorls, however, are about five orders of magnitude larger
than the discrete molecules that form the fluid. This molecular nature of the
fluid is therefore assumed to have a negligible effect on the macroscopic flow.
Instead, the fluid is treated as a continuous medium, enabling one to speak in
terms of speed and density at a distinct point in space and time. This important
assumption is known in fluid mechanics as the continuum hypothesis.

The system of equations that describes the motion of a fluid is known as the
Navier-Stokes equations, independently derived by G.G. Stokes and M. Navier
in the early 1800’s. In the incompressible, viscous case the system consists of
five equations: the continuity equation, three momentum equations and the

CHAPTER 2. TURBULENCE MODELING 6

energy equation. These equations are presented here with a short outline of
their origins; those interested in all underlying physics are referred to literature
such as Anderson’s Fundamentals of aerodynamics [1].

1. Continuity equation

An obvious condition that holds for any fluid is that its mass is conserved.
In an arbitrary control volume in space, the net mass flow through the
boundaries should equal the rate of mass production within. In this report
only non-production flow is considered so the latter is zero, yielding the
following relation between the flow density p and speed u:

pt+ (pua),a = 0. (2.3)

2. Momentum equations

Another important law of nature is conservation of momentum, known as
Newton’s second law: force equals rate of change of momentum. Forces
exerted on a fluid fall in two categories. In terms of control volumes: body
forces act on the entire volume (gravity etc., collected in f) while surface
forces act on its boundary (pressure p, shear stress 7;;). The former is
assumed to be known, the latter will be related to the flow field variables
through constitutive relations. This gives three equations, one for each
dimension i:

(pui) ¢ + (puitia = Tia),a = pfi- (2.4)

The following constitutive relations are used:

o T, = —pbij + p(u;; +uj; — %5ijuk,k)
® p=pRT,

where g is the dynamic viscosity of the fluid, T" the temperature and
R the specific gas constant that connects the fluid’s pressure, density and
temperature. The §;; in the shear stress expression is the Kronecker delta,
which is one of i equals j, and zero otherwise.

3. Energy equation

For incompressible flows, where p is constant, the above system of four
equations is complete. For compressible flows, however, an additional
equation is needed for the extra unknown p. This is the energy equation,
which represents the first law of thermodynamics: energy can neither be
created nor destroyed, it can only change form. This means that the rate
of change of the total (internal + kinetic) energy e should balance the
work on the fluid and heat flux g, yielding:

(pe),t + (puae — TapUB + QOz)7a = Pfﬁ“ﬁ, (25)
with again two constitutive relations to close the system:

o gi=—rT;

o c= %uaua + ¢, T.

CHAPTER 2. TURBULENCE MODELING 7

Here k is the thermal conductivity and ¢, the specific heat at constant
volume, related to the specific heat at constant pressure ¢, via ¢, —c, = R.

In vector notation, the above system of five equations can be written compactly
as follows:
Ui+Fya=85, (2.6)

where U(x,t) € R® contains the so-called conservation variables, F.(x,t) €
R® is the flux vector in the a-th direction and S(z,t) € R5 a source vector.
Along with the constitutive relations, (2.6) forms a closed, nonlinear system
that completely describes the flow of a fluid.

The straightforward way to simulate a fluid flow would be to discretize a flow
field and solve the above system numerically. This method is known as Direct
Numerical Simulation (DNS). In practice, however, the smallest length scales
are so small that the cost of such simulation is extremely high. This makes
DNS unfeasible for realistic-size problems. Various models — as opposed to
simulations — are developed to overcome this problem, such as Reynolds Av-
eraged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The model
described in this chapter, the Variational Multiscale (VMS) method, is quite
new. Because of its close relation to the better known LES model the following
section first presents a brief overview of this model.

2.2 Large Eddy Simulation

Large Eddy Simulation (LES) is a numerical method that solves the system
of Navier-Stokes equations on a much coarser grid than required for a direct
numerical simulation. Since this grid obviously can not represent the smallest
scales of fluid motion, a so called eddy-viscosity model is needed to compensate
for this deficient resolution. Such a model tries to reconstruct the influences of
the smallest, unresolved scales on the larger, resolved scales, using only those
resolved scales.

An important idea behind LES is that of the emergy cascade, introduced by
Richardson [13] in 1920. The idea is that turbulence is composed of eddies of
different sizes — an eddy being a certain localized turbulent motion. Richard-
son’s notion is that the large eddies are unstable and break up, transferring their
energy to somewhat smaller eddies, which in turn break up into smaller eddies.
This energy cascade continues until at very small scale the eddy motion is sta-
ble, and kinetic energy is dissipated through molecular viscosity. Richardson
summarized his paper as follows:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity.

CHAPTER 2. TURBULENCE MODELING 8

Looking again at Da Vinci’s drawing, Figure 2.2, it is clear that below a certain
length scale the turbulent motions turn from anisotropic to isotropic, losing all
information about the boundary imposed geometry of the large eddies. This
divides the range of scales into two classes with markedly different properties.
DNS resolves both of these, expending nearly all of its computational effort on
the smallest scales of motion. LES resolves only the largest, exploiting the fact
that the large eddies contain the bulk of the kinetic energy.

Pope [12] identifies four conceptual steps in LES:

1. A spatial filter is defined to decompose the velocity u into a filtered (re-
solved) component uw and a residual (unresolved) component 4. The fil-
tered velocity field @ represents the motion of the large eddies.

2. The filter is applied to the system of Navier-Stokes equations to derive a
new system for the filtered velocity field w. Problems arise at the nonlinear
terms, since those can not be expressed exclusively in terms of the filtered
velocity w. This is known as the closure problem.

3. Closure is obtained by replacing the velocity w in the non-linear terms
with the filtered velocity @ and correcting this with a model term: the
closure.

4. The new system is solved for @, which provides an approximation of the
large scale motions in the turbulent flow.

Although LES does give quite good results for certain flow problems and in fact
is widely used, the method has its drawbacks. For instance at step 2, the filter
operation does not commute with spatial differentiation on non-uniform grids,
restricting the method to relatively simply geometries. Other problems arise
at the walls, where the filter will either have to shrink or extend beyond the
boundary. The major source of problems, however, is step 3. The closure term
often fails to realistically model the influence of the neglected smallest eddies,
in particular near the walls. Since this model applies to all large scale motions
LES fails to converge to the true DNS solution, which in the worst case may
lead to a result that is qualitatively different.

2.3 The Variational Multi-Scale method

The Variational Multi-Scale method (VMS), described a.o. by Hughes et al. [5],
Collis [2] and Munts et al. [9], was designed to address some of the shortcomings
of the previously described LES method. Both methods use a similar approach;
the system of Navier-Stokes equations is solved on a grid that is much too
coarse to represent the small scales of fluid motion, and a model is used to
compensate for the inability to simulate the smallest eddies. Instead of a single
decomposition in resolved and unresolved scales, however, VMS goes one step

CHAPTER 2. TURBULENCE MODELING 9

further and identifies large and small resolved scales. This division is reflected
by a corresponding division in function spaces:

V=VaVvae)y, (2.7)

where V is the problem’s solution space, containing space-time representations
of the flow, and V, V and V represent the large, small and unresolved scales,
respectively. The first two are resolved and as such finite dimensional. For
brevity the resolved space is denoted as:

V=VaV. (2.8)

The system of Navier-Stokes equations was presented in strong form in Sec-
tion 2.1 as Equation (2.6). Vectors U and F, can be expressed in any set of
five flow field variables, joined in a solution vector Y (x,t). This choice of vari-
ables defines the solution space V. For practical reasons, it is chosen to define
the flow field by density, speed and temperature:

Y = {p,us,us,us3, T} € V. (2.9)

Using the inner product (f,g) = fQ fTg dQ, the inner product with an arbi-
trary test function W € V transforms Equation (2.6) to its weak form:

/wﬂam+5@@dQ=/wﬂsaQVVVeu (2.10)
Q Q

or, expressed in Y:
B(W,Y)=(W,S) VW eV, (2.11)

for some operator B : V x V — R, that is linear in its first argument and
non-linear in its second. The weak formulation is generally the first step of a
solution procedure, such as a finite element method. Indeed, when the Navier-
Stokes equations are reformulated in the VMS framework, this procedure will be
continued in Section 2.4. The reason that the weak formulation is presented here
already is that it is an essential part of VMS as well, because the test functions
W are used to separate the large, small and unresolved scales. According to
Equation (2.7), Equation (2.11) can be written as:

BW+W+W.Y+Y +Y)=(W+W+W,S)
VW eV, WeV,WeW. (212)

Taking only one element W, W or W non-zero at a time, the following system
of three equations is obtained:

BW,Y+Y +Y)=(W,S) VWeV
BW,Y+Y +Y)=(W,S) VWeV (2.13)
BW,Y+Y +Y)=(W,S) VWe).

CHAPTER 2. TURBULENCE MODELING 10

Equation (2.12) implies Equation (2.13) by construction. Since all terms in
(2.13) are linear in their first argument, summing the three equations trans-
forms the system back to (2.12). This proves the reverse implication, so Equa-
tions (2.13), (2.12) and hence (2.11) are all equivalent formulations of the orig-
inal, exact Equation (2.6).

Reviewing the above procedure, the original system is reformulated in terms
of unresolved, small and large scales by making a corresponding division in
function spaces and writing the solution Y as a sum of its elements. The weak
formulation acts as a kind of ‘projection’ of Y onto V, V and V. This is a
striking difference with the LES method; the three scales are separated without
the use of any filtering operation. As a consequence, the obtained formulation is
still exact. Using test functions for the splitting eradicates all problems caused
by the spatial filter (at the wall, on unstructured grids), without introducing a
substitute operation as these test functions will be part of the solution procedure
anyway.

The exactness of Equation (2.13) is lost when the unresolved scales Y are ig-
nored, which is necessary as these can not be represented on a coarse grid. The
influence of these scales is present in both of the remaining large and small scale
equations. However, according to Richardson’s energy cascade introduced in
Section 2.2, eddies influence mostly their nearby scales. Therefore, the influ-
ence of the unresolved scales on the largest scales is assumed negligible, so there
the Y term drops out. The unresolved scales dissipate energy from the small
scales, so terms involving unresolved scales in the small scale equation will have
to be modeled. Under these assumptions, the remaining nonlinear system can
be written as:

BW,Y+Y)=(W,S) YWeV 014
BOW.¥ +¥) + M(W.¥) = (W.5) ¥W e, (214)

where M is the model term that acts on the small scales only. Summing the
large and small scale equation yields the final, nonlinear system of equations:

B(W.,Y)+M(W,Y)=(W,S) YW eV. (2.15)

Here Y is the (finite dimensional) solution vector of the numerical scheme. In
the following only finite dimensional approximations will be considered, and
the distinction with the exact solution Y will be made no more. Therefore,
from now on V will denote the solution space containing resolved scales, and
its elements are Y and W. The tilde does not change meaning; it will still
denote the small components of the resolved scales. With these redefinitions,
Equation (2.15) reads in integral form:

/WT(U,t + Fo.0) dQ +/WTFZZQ dQ = /WTS dQ VW eV, (2.16)
Q Q Q

where F;n is a model term. The tilde denotes its dependence on Y. A final
comparison with the exact Equation (2.10) gives a clear picture of the resulting
VMS procedure: the unmodified Navier-Stokes equations are solved in weak

CHAPTER 2. TURBULENCE MODELING 11

Q

Figure 2.3: Schematic overview of the division of a space-time domain @ into suc-
cessive time-slabs @,,. Note that in reality, the spatial domain §2 is three-dimensional.

form on a coarse grid, and an extra term F', models the effect of the eddies
that can not be resolved on this grid. Since this model term is a function of the
small resolved scales only, the solution space V should be constructed such that
it allows an easy separation of scales.

2.4 Construction of the solution space

Equation (2.16) will be solved using a finite element method. Therefore, first
the solution space V has to be defined. Since Y represents a solution in both
space and time, its domain () is four-dimensional. In order to reduce the size
of the final calculations this domain is first divided into a series of so called
time-slabs @, on which the restrictions Y'|g, can be calculated successively:

Qn = x (tnatn+1)

2.17
Pn:FX (tnytn+1)a ()

where €2 denotes the spatial domain with boundary I' and ¢, and t¢,4; are
successive points in time. Figure 2.3 gives a schematic overview of this setup.
Next, following standard finite element procedure, these time-slabs are subdi-
vided into sub-domains @, ;) — the finite elements — such that U;Q, ;) = Qn
and Qi) N Q(n,5) = D if i # j. The solution space V can now defined via its
restriction on these finite elements:

= Z N(n,i,a)y(n,z’,a)v (218)
acA

1= Y‘
Q(n,i)

where A is an index set, N(;, ;.q) : @(n,s) — R are polynomial basis functions and
Y(nyia) € R® are element vectors corresponding to time-slab n, element 4, basis
function a. The only restriction that is imposed on the element vectors is that
the resulting function Y must be continuous within each time-slab. Continuity
over successive time-slabs is not required, as shall be discussed later on.

The previous section pointed out that the function space V should allow easy
separation of scales, because the model term in Equation (2.16) depends on

CHAPTER 2. TURBULENCE MODELING 12

0.3 T T

Up(€)

02 —

-0.3 | | |
-1 -0.5 0 0.5 1

3

Figure 2.4: Polynomial Legendre expansion, corresponding to a« = =0 and P =8
in (2.21). The solid lines correspond to the highest order modes p = 5,6,7. In this
graph it is clear that high order modes represent small length scales.

the small scales Y’ only. Equation (2.18) suggests to choose the basis functions
N(n,i) in such a way that each function can be identified with a certain scale;
in that case the small-scale function space V can be defined as a sum over a
subset of these basis functions:

V> Y‘ Z N(’n,i.,a)y(n7i,a)’ (219)

Qniy
(0 acA

where A D A contains the indices of the basis functions that can be identified
with small scales. Defined like this, ¥ and Y share the same element vector
Y(n,i,a)» Which clearly makes it very easy to relate the one to the other in a
numerical setting.

The construction of polynomial basis functions on a multi-dimensional domain
is described in Chapter 3 of Karniadakis et al. [7]. Given a set of P polynomials
¥p : [—1,1] — R, the expansion on a four-dimensional domain is given by the
tensor product:

Ppgrs (&1, 62, €35 €4) = ¥p(§1)10q(§2)10r (€3)10s (€a).- (2.20)

A set of P* basis functions is created for each element Q(n,iy by mapping &§; —
&4 onto the finite element. For these basis functions to correspond to a range
of scales, by construction the same must hold for the polynomial expansion set
p from which they are derived. A hierarchical modal p-type expansion has this
property, because its high order modes can be identified with small scales. This
expansion is defined as follows:

CHAPTER 2. TURBULENCE MODELING 13

full expansion serendipity expansion

L
“‘ ‘4"

> .
RS S S RA RS (S5 22

Figure 2.5: Two-dimensional modal p-type expansion of order P = 4, copied from
Karniadakis et al. [7], Chapter 3. Left the full expansion, right the reduced serendipity
expansion in which only 17 of the total 25 elements are retained. In more dimensions,
the reduction is even more significant.

Ju—
72

= p=0
Up(6) = SEEEPM(e) 0<p<P (2.21)
% p=PF,

where Ppo"ﬁ(é) represents Jacobi polynomials of order p, for example Legendre
(o = B = 0) or Chebychev (o« = = —%) polynomials. The scale separation
property is clearly visible in Figure 2.4, which shows a Legendre expansion with
the highest orders highlighted. This property is propagated via Equation (2.20)
to the basis functions N, ; q)-

An attractive side effect of the modal expansion is that, according to Karni-
adakis et al. [7], its hierarchical nature “permits the use of a reduced number
of expansion modes as compared with those in the full tensor space”, which is
shown in Figure 2.5. The reduction of this so called serendipity expansion is
especially significant in higher dimensions, like a four-dimensional space-time
discretization. Consequently, this leads to a significant reduction in size of the
final system of equations.

2.5 Discontinuous-Galerkin formulation

Now that the solution space V has been defined, the final system is obtained
by substituting its elements Y and W into Equation (2.16), which is already in
weak form due to the scale separating procedure applied in Section 2.3. Rewrit-
ing the left-hand terms using the divergence theorem yields:

/(WT|t:L+1U|t:L+1 B WT|tiU|t7+L) dQ + /(WTFOl + WTF;n)n(X dp
Q P,
- /(WﬂU +WLF, +W F, +W'8)dQ=0 YWeV, (222
Qn

where n in the second integral is the outward normal on P,, Ul; is shorthand
notation for & — U (x,t) and ¢, and ¢, are the initial and end time of time-

CHAPTER 2. TURBULENCE MODELING 14

slab n, respectively. Note that U and F', are functions of Y, and Fz of Y.
The spatial boundary conditions enter through the second boundary integral,
and the initial condition U| ¢+ in the first integral is formed from the result from
the preceding time-slab, U|t;. This gives rise to the so called jump condition:

/WT|tIU|tI dQ = /WT|tIU|t; dQ YW e, (2.23)
Q Q

where ¢ denotes the initial time in time-slab n and ¢, the end time of the
preceding slab n — 1. This weakly enforced initial condition allows the solution
to be discontinuous over the time-slabs, as noted in the previous section at
the definition of V. For this reason, this method is called a time-discontinuous
Galerkin method.

The solution Y and test functions W are completely determined by their el-
ement vectors Y, ; ,) and W, q) via Equation (2.18). These element vec-
tors are joined per time-slab in global vectors y,, and w, of length N, from
which they can be extracted by multiplication with a sparse, boolean matrix
M ia) € RN*5 called the location operator:

Ynia) = M(n,ia)Yn

(2.24)
W(n,i,a) = M(n,i,a)wn~

Location operators for adjacent elements may extract common values from y,,
and w,, in order to satisfy the continuity condition. Note from Equation (2.21)
that there are only two elements that have a non-zero value on the boundary:
1o and ¥p. This would suggest that the continuity constraint affects only a
small subset of the final collection of basis functions. Regrettably, in multiple
dimensions this does not hold, as many elements will be non-zero on the edges
connecting two nodes. For instance in Equation (2.20), if ¢, # 0 on the edge
&1 =1, all combinations of ¢4, ¢, and ¢, will produce basis functions that have
non-zero values on this edge.

Combining Equations (2.19) and (2.24), the test functions W can be expressed
in terms of their global vectors w,,:

V> W‘ - Z N(”vi»a)M(n,iya) Wn. (2.25)
Qe a€A

The small-scale functions W are identical, except that the polynomials are
summed only over the subset A. These expressions for W and W can now
be substituted into the rewritten system of equations, Equation (2.22), but
this requires the integrals to be split into subintegrals over the separate finite
elements because the polynomials N, ; o) are defined per element Q(, ;) only.
For brevity, these subintegrals will be denoted as vectors v(, ;) and V(n i q),
the former dependent on Y, the latter on Y. When Z,, denotes the index set of
elements in time-slab n, Equation (2.22) transforms to:

T T T ~ _ N
w, Z Z M(n’iya)v(ny,;ﬁ) + Z M(n,i,a)v(n,i,a) =0 V w, € R 5
i€L, | a€A acA

(2.26)

CHAPTER 2. TURBULENCE MODELING 15

or, more compactly:
Wi G(Y,, Y1) =0 Vw, RV, (2.27)

where G : RY x RY — RY is a non-linear operator, composed of all separate
element integrals v, ; ,) and (, ;) that are put in place by the location oper-
ators M, ; 4)- Its dependence on the previous time-slab solution y,, ; is due to
the jump condition, Equation (2.23). With operator G defined, the requirement
that wl'G is zero for any vector w,, € RY leads to the final, non-linear system
of N equations:

Gy, Yn_1) =0. (2.28)

For sake of completeness, the complete expressions of the subintegrals v, ; q)
and D (n,i,q) are presented below. These will not be used further in this report.

V(ni,a) = / (N<n,zza>\t;HU\t;H — N txU|t,:) @2
Qi)
+ / Nni,a)Fanag dP
Prn.i)
- / (N(n,i,a),tU + N(n,i,a),aFoz + N(n,i,a)S) dQ7
Qn,i)

V(ni,a) = / N i) F o ne dP
P i)

2.6 Linearization

Non-linear equations such as Equation (2.28) are generally solved with an iter-
ative solution method. Such an iterative method starts with an initial guess y9
and uses a recurrence relation to construct a sequence of approximations yﬁ that
converges to the exact solution y,,, assuming that this solution is unique. The
iterations can be stopped when y* is considered a good enough approximation
of y,,:

Gy Y1)l <€, (2.29)

where || - || is an appropriately chosen norm and e is a measure of the desired
precision. The solution on the preceding time-slab vy,,_; is known. It seems like
an obvious choice to use this previous solution as a starting vector y2 for the new
iterations. Note, however, that the jump condition from Section 2.5 does not
require meshes on successive time-slabs to correspond in any way. Even if y,,_,
has the same length as y,,, it can represent a completely different flow on both

CHAPTER 2. TURBULENCE MODELING 16

time-slabs. This is for example a point of concern for VMS implementations
that deal with time-changing domains.

A widely used root-finding algorithm is Newton’s method, which is based on a
Taylor expansion. For a scalar function f : R — R, the first two terms of this
expansion read:

f(x+h) = f(z)+hf'(z) + O(R?), (2.30)

where O is Landau’s order symbol. If = 4+ h is a root of f, and x is an approx-
imation of this root, the error h will be small. Under these assumptions, the
above expression can be rewritten as:

. f)
My

Here h is an approximation of the error, because the high order terms of the
Taylor expansion are neglected. Therefore, adding this error to an approximate
solution will not result in an exact root of f. It will, however, result in a much
improved approximation of this root. Each time that this procedure is repeated
the error decreases, ever more justifying the neglection of high order terms. The
resulting, rapidly converging algorithm is described by the following recurrence
relation:
f(zr)

fran)
This recurrence depends only on the most recent approximation xx, so previ-
ous approximations do not have to be kept in memory. This short recurrence
property becomes important when Newton’s method is generalized to vector
functions, which arguments can be very large. For such functions the deriva-
tive is replaced with a Jacobian matrix. Applied to Equation (2.28), Newton’s
method reads:

(2.31)

LT+l = Tk — (2.32)

k1 _ ok 9G R
n =Yn — ay (yn7 Y- 1) G(yna yn—l)v (233)
Where € R¥*¥N 5 the Jacobian matrix of G. Recall that G is very large,

contammg equations for every degree of freedom on the four-dimensional grid.
And even though its Jacobian will be a sparse matrix, its inverse will not. This
has major consequences on both memory usage and computing time, which
makes it impossible to use the Newton iterations in the above form. Instead,

yk+1 will be calculated as follows:
Y =y, - (2.34)
where x solves
(5o W)) 2= Gl o) (2.35)

This is a linear system of the form Ax = b, where A and b change with every
iteration. Solving this system with a direct method is infeasible for the same
reasons that impede the direct inversion of the Jacobian. Besides, apart from
these practical problems it is a clear waste of computing time to solve y* with
machine precision, since it is only an intermediate step in Newton’s method. An

CHAPTER 2. TURBULENCE MODELING 17

iterative solution procedure within each Newton iteration is the natural choice,
since it calculates y* with controllable precision, while exploiting the sparsity
of the Jacobian matrix.

For linear systems, a large number of iterative solvers are available. However,
many of those apply only if the matrix has certain properties, like symmetry, or
they are known to work especially well or to break down under certain condi-
tions. To find out which solvers apply to the problem under consideration, more
information is needed on the Jacobian of G. By Equations (2.26) and (2.27),
the Jacobian matrix can be written as:

8£ = Z { Z M?;z,i,a)&g;m + ZM{n,i,a)M}7 (2'36)

Ay, i€T, acA acA On

where 85"7@ € R**N and % € R>*Y are the Jacobian matrices of v, ; o)
and 6(%1@; respectively. Since v, ;) and ¥, ;) consist of integrals over a
single finite element i, only a subset of y,, — the element vectors y, ; ;) —
produces non-zero derivatives. Hence, the Jacobian of v, ;) can be written
o OV (. OV (.

V(n,i,a) _ (n,3,a) M(n b (237)
9y, =1 Y (nib) ”

where ﬁ € R5%5 is a subset of the full Jacobian matrix, corresponding to

the derivatives of y,, ; ;). The location operator moves its five columns to their
positions in the full Jacobian matrix. A similar expression holds for ¥, ; q),
where b can even be restricted to A because U(n,i,a) depends only on the small
scales Y. Substitution into (2.36) yields a new expression for the Jacobian
matrix:

T
Reviewing this expression, it is clear that if gZi"’f“;; = (g:(("“’))) , and idem
for ¥y, 4,q), then the Jacobian matrix is Symmetrié: This is not the case. What
does follow from this observation is that the sparsity pattern is symmetric. The
matrix itself, however, is not. This excludes a lot of solution methods from the
list of candidates, like the popular Conjugate Gradient method. The methods

that remain will be reviewed in the next chapter.

Chapter 3

Iterative solution methods

When faced with a large system of equations, a possible approach to solve it is to
make an initial guess and improve it, time and again, until it becomes a satisfac-
tory approximation of the exact solution. This is the approach used by iterative
solution methods, which form an important area of numerical mathematics.
Many different iterative methods have been developed, designed to perform
well (often exclusively) under certain conditions, or to have other favourable
properties such as a large degree of parallelization.

This chapter gives an overview of the most important iterative methods available
for general, non-symmetric matrices. Section 3.1 describes the class of basic
iterative methods and Section 3.2 that of the more advanced Krylov subspace
methods. Most information for these sections is obtained from Yousef Saad’s
Tterative Methods for Sparse Linear Systems [14]. Section 3.3 gives an overview
of preconditioning techniques aim to accelerate convergence by modifying the
coefficient matrix, and finally Section 3.4 shows how the same can be achieved
by running some calculations in parallel on multiple machines.

3.1 Basic iterative methods

An equation of the form Ax = b, where A is an N x N coefficient matrix, b
a right-hand side vector and « a vector of unknowns, represents a system of N
equations:

a1z + -+ a Ty = by

an1z1 +---+annNTN = bn.

Several direct methods exist to solve this system. Mostly used is Gaussian
elimination. This method solves the first equation for x; and substitutes the

18

CHAPTER 3. ITERATIVE SOLUTION METHODS 19

solution into the following equations, then solves the second equation for xs,
and so on until at the N-th equation the value of xy is obtained. Then this
value is substituted back into the previous equations, yielding zn_1, zy_2 and
so on, down to x1. This procedure has some serious drawbacks:

1. It may break down, if no preventive measures are taken. For instance if
a1,1 = 0, the first equation can not be solved for z; and the methods fails,
whether the system has a solution or not. This can be fixed by pivoting
the equations, reordering them in such a way that the procedure does not
break down. This is always possible, but is does require extra work that
should be accounted for.

2. Floating point errors can accumulate, with detrimental effects on the final
solution. This can occur even for well conditioned matrices. This too can
be remedied through pivoting.

3. For sparse matrices, the required amount of memory can be considerably
larger than needed to store A. In many applications, many of the coeffi-
cients a; ; are zero and thus do not have to be stored. However, during the
Gaussian process, many of these elements will become non zero. Again,
pivoting can reduce the amount of fill-in, but it may still be significant.

For large, sparse systems, iterative methods are often better suited. These
methods repeatedly improve an approximate solution. The coefficient matrix
A is used only in the context of matrix-vector multiplication so its sparsity can
be fully exploited, which is beneficial for both work and memory. For problems
in three or more dimensions, the amount of work is often — though not always
— considerably less then that of direct methods, because the iterations can be
stopped as soon as the error is considered small enough. Often it does not
make sense to calculate & beyond a certain accuracy, as matrix A is itself the
result of an approximation. With direct methods this is unavoidable since no
approximate solution can be formed during the process.

Starting with an initial guess (x1,...,2n)7, a straightforward iterative solution
procedure is to solve each equation for one of the unknowns, keeping the other
unknowns at their old value. When the first equation is solved for x1, the second
for xo, and so on, the following iterative scheme is obtained:

(m+1) _ b1 a2 (m) a1,N (m)
Ty = - — %y — - — Ty
1.1 a1 a1.1
(m+1) DN an1 (m) AN,N-1 _(m)
Ty =Ty T TNy

aN,1 anN; an,1

When M is a diagonal matrix with the diagonal elements of A, then this scheme
can be written in vector notation as @,,.1 = M (b — (A — M)x,,). The
component b — Ax,, is called the residual vector, which is a measure of the
closeness of &, to the exact solution x as can be seen by writing it as A(x—x.,).
Denoting this residual by 7,,, the iterative scheme simplifies to:

Tomt1 =z + M r,. (3.1)

CHAPTER 3. ITERATIVE SOLUTION METHODS 20

This is the general form of a basic iterative method (BIM). Various other choices
for the iteration matriz M are possible. The above case where M is the diagonal
matrix of A is known as the Gauss Jacobi iteration. Another option is to use the
lower diagonal part of A, including the diagonal. This results in the Gauss Seidel
iteration, which corresponds to solving each equation with the most recently
calculated values of ;. This generally leads to a much better convergence rate.

Convergence of any of these methods, however, can be guaranteed only under
certain conditions. Note that if M equals A, the procedure converges to the
exact solution in a single iteration: ®,,11 = @y + A_l(b — Azx,,) = A7 'b.
Generally speaking, a basic iterative method converges if matrix M is close
enough to A in some sense. This is defined as follows. Let the error of an
approximation be denoted as e,, = © — x,,. With this notation, the residual
becomes r,, = b — Ax,, = Ae,,. Substitution in Equation (3.1) yields:

emi1 = I — M 'A)e,, = (I - M1 A)" e, (3.2)

Clearly, the error converges to zero if all eigenvalues of I — M ™' A are smaller
than one in absolute value. It follows that the convergence requirements for A
depend on the iteration matrix M, hence on the iterative method used. For
Gauss Jacobi, for instance, a sufficient condition is that A is strictly diagonal
dominant.

From Equation (3.2) it also follows that the convergence rate depends on the
largest eigenvalue, or spectral radius, of I — M ' A. To exploit this, the Succes-
sive Over-Relazation (SOR) method is introduced. This is a variant of Gauss
Seidel, in which the iterates are a linear combination of old and new values.
In matrix notation this corresponds to scaling the off-diagonal elements of M
with a factor w. The optimal value of w is the minimizer of the spectral radius
p(I — M_'A). Since this involves eigenvalue calculations, the exact optimum
is hard to determine in practice, but estimation schemes do exist.

SOR is a generalization of Gauss Seidel, and therefore in general the fastest of
the three iterative methods mentioned. However, its convergence properties are
still much worse than that of the more advanced methods that will be described
next. Nowadays, basic iterative methods are seldom used the way they are
presented here. They still have a role to play though: Section 3.3 shows how
these methods have found a new use as preconditioners.

3.2 Krylov subspace methods

Krylov subspace methods, like basic iterative methods, are solution methods
that solve a system of the form Ax = b by iteratively improving an approximate
solution @,,. The main difference is the way in which they are derived. Krylov
subspace methods are based on the idea that the inverse of a matrix A can be
approximated by a polynomial of A:

A~ &~ p(A). (3.3)

CHAPTER 3. ITERATIVE SOLUTION METHODS 21

The approximate solutions follow from & = A™'b ~ p(A)b. Since often a
good initial guess x(is available, the system is first rewritten as A(x — xo) =
b— Axy = rg. Then, when p,, denotes a polynomial of maximum order m — 1,
the iterates of a Krylov subspace method can be written as:

Ty = To + P (A)T0. (3.4)

The construction of a polynomial p,,, of order less than m corresponds to finding
an element k from an m-dimensional subspace KC,,,(A, 7o) such that @, = xo+
k ~ x, where KC,,,(A, rg) is the m-th order Krylov subspace defined as:

Km(A,70) = span{rg, Arg, A%rq,..., A" g}, (3.5)

When no ambiguity is possible, the Krylov subspaces will be denoted simply
as K. By construction, the m-th subspace is m-dimensional, meaning that
it can be spanned by m basis vectors v;. When these basis vectors are joined
in a matrix V,,, = (’Ul ... vm), each Krylov subspace element k € K,, can
be mapped to a vector y € R™ via k = V,,y. Hence, given a basis V,,, the
iterates of any Krylov subspace method can be written as:

T =0+ Vil (3.6)
and its residuals b — Ax,, as:
rm =10~ AV Y, (3.7)

where y,, is a real-valued, m-element vector. Many methods for finding an
optimal or near-optimal y,, are developed, collectively called Krylov subspace
methods. A common element of these methods is the construction of useful set
of basis vectors vy, ..., v, for K. The basis suggested by (3.5), v; = A'r,
can easily be expanded from one Krylov subspace to the next by applying A
to the ‘latest’ vector v,,, and adding the result to the basis. The following
Theorem states that this property is not specific for this particular set of bases,
but holds for any increasing set of basis vectors:

Theorem 1. Let vi,vs,... be a collection of basis vectors such that IC,, =
span{vy, ..., vy} for all m. Then K1 = Ky, @ span{Av,, }.

Proof: this can be shown by induction. The first basis vector v; is necessarily
a multiple of 7, so the theorem is clearly true for m = 1. From (3.5) it follows
that Kpy1 = K1 & AKX, where AK,, = {Av V v € K,,}. Given that the
theorem is true for all m < j, repeated application of the theorem shows its
validity for m = j:
Kj+1 =K1 AK:J

=Ky @ span{Av,,... Av;}

= K2 @ span{Av,, ... Av;}

=... since K,, @ span{Av,,} = K,,11 Vm < j

= K; ®span{Av,}

CHAPTER 3. ITERATIVE SOLUTION METHODS 22

3.2.1 Full Orthogonalization Method

Theorem 1 implies a large freedom in constructing a basis for &C,,. One of such
constructions is Arnoldi’s method, which uses an orthogonal projection to make
each newly calculated vector Awv,, perpendicular to the basis vectors vy, ..., Vm,.
The result is normalized. This procedure corresponds to solving v,,+1 from:

A’Um = hl,mvl + 4 hm7m'vm + hm+1,mvm+17 ’UlJ_ ‘e J_Um+1. (38)

The coefficients can be calculated sequentially: h; ,, = vl Av,, for each i <m
and hpp1m = ||[Vmtillyt (lastly) to normalize the remaining vector. This
procedure breaks down if v,,11 = 0, but it will be shown that this is not a
problem. The new basis vector is orthonormal to all previously calculated basis
vectors. Since the span has not changed, the result is an orthonormal basis for
Km+1. When the first m basis vectors are joined in a matrix V,,, the first m
Arnoldi iterations can be written as:

AV, =V, H, +hpi1mVmii€h, (3.9)

where e, is the last unit vector in R” and H,, is the m x m Hessenberg matrix
built of the coefficients h; ;:

hl,l h1’2 Ce hl,m
H,, - | "1 - . (3.10)
0 hm,mfl hm,m

It was noted earlier that the first basis vector vy is a multiple of r¢ in every
basis, so rg can be written as fv, = fV ,,e1, where e; is the first unit vector
in R™ and (8 a real constant. Together with the expression for AV, from
Equation (3.9), the residual Equation (3.7) transforms into:

Tm = Vm(ﬁel - Hmym) - vm-"—l(e%ym)' (3'11)

When the Arnoldi procedure breaks down due to a zero basis vector v,,,+1, this
expression reduces to r,,, = V,,,(fe1 — Hpy,,). Matrix H,, is non singular,
which means that there exists a vector y,, for which the residual is zero — in
other words, a solution is part of the Krylov subspace. Consequently, Arnoldi
breaks down only when the exact solution can be found. This property is called
‘lucky breakdown’.

A Krylov subspace method that is based on Arnoldi’s procedure is the Full
Orthogonalization Method (FOM). This method chooses y,, € R™ in such a
way that the corresponding residual r,, is perpendicular to each element in the
Krylov subspace K, so Vﬁrm = 0. Since the basis vectors are orthonormal,
it follows directly from (3.11) that

H,y,, = fel (3.12)

and consequently:
T = OmUm1, (3.13)

CHAPTER 3. ITERATIVE SOLUTION METHODS 23

To

.

AV’Hlynl

AK,

Figure 3.1: Schematic picture of equation (3.14) from the GMRES method. Solution
y,, minimizes the residual r,, = ro — AV ,,y,,, which corresponds to making r,,
perpendicular to AIC,,.

where 0, = —ely, . This confirms that the exact solution is found the mo-
ment that Arnoldi breaks down. At any time during the orthonormalization
process, an iterate x,, can be constructed by solving Equation (3.12) for y,,
and substituting the solution into Equation (3.6). Efficient solution procedures
are possible due to the Hessenberg structure of matrix H,,. However, explicit
calculation of x,, during the iterative process is not necessary. Convergence can
be measured by the size of the residual which, according to Equation (3.13), is
simply the last element of y,,.

3.2.2 Generalized Minimum Residual Method

Another Krylov subspace method that is based on Arnoldi orthonormalization
is the Generalized Minimum Residual Method (GMRES), which defines y,,, as
the minimizer of the residual r,,, Equation (3.7), measured in the the 2-norm:
Y,, = argmin ||ro — AV ,y|2. (3.14)
yER™
This is a least squares problem; vy, is the best possible solution for the overde-
termined system AV ,,y = ry. From linear least squares theory it is known that
the solution is optimal if rq — AV ,,y,, is perpendicular the the space spanned
by AV ,y for all y € R™, which is AKC,,. See also figure 3.1. Therefore, GM-
RES is very similar to FOM, the only difference being that GMRES makes 7.,
perpendicular to AIC,, instead of IC,,.

It is convenient to reformulate Equation (3.9) as:
AVm = Vm—i-lﬂm,y (315)

where H ,,, is an (m+1) xm matrix that consists of matrix H,, and an additional
row, containing the coefficient hy,41m:

hl,l N hl,m
H, = iz (3.16)
O hm—i—l,m

Analogous to Equation (3.11), the residual can now be written as:

Tm = Vm—&-l(ﬁel - -Hmym) (317)

CHAPTER 3. ITERATIVE SOLUTION METHODS 24

The orthogonality condition thus becomes (AV ,,)Tr,, = H "vT 1Tm = 0.

m "’ m-+

Since V,T,LHVmH equals identity, the GMRES analogue to Equation (3.12) is:
_ T - _ T
(HmHm)ym = ﬂHmel- (318)

In practice, however, y,, is not computed this way. Instead, a series of matrix
transformations called Givens rotations is applied during the GMRES method
in order to make H,, triangular, thus transforming the least-squares problem
corresponding to Equation (3.14) into a triangular system. The residual is
obtained ‘for free’ in the process, so this solution y does not even have to
be calculated until after the iterations. The full details of this procedure are
described in Section 6.5.3 of Saad [14].

The optimality property, Equation (3.14), assures that GMRES will return the
exact solution when Arnoldi breaks down so GMRES, like FOM, has lucky
breakdown. The optimality makes it also possible to prove all kinds of conver-
gence theorems, such as Theorem 2 in Section 3.3. In many cases, convergence
is even super linear. The downside of the algorithm is that it depends on all
previously calculated basis vectors, which implies that the required memory and
the amount of work per iteration increase with each iteration. This problem ap-
plies to all Krylov methods that are based on Arnoldi’s method, since the basis
vectors are needed in the orthonormalization procedure, Equation (3.8).

Consequently, in order to find a Krylov method that has the nice short recur-
rence property, a different basis for C,,, will have to be formed. Regretly, as
was proven by Faber et al. [3], it is impossible to obtain a Krylov method for
general matrices that has both the short recurrence and the optimality prop-
erty. It is therefore known in advance that any method based on this alternative
procedure will not produce optimal solutions.

3.2.3 GCR, GMRESR

In practice, the memory problem makes it often necessary to restart the GMRES
method after every m iterations, denoted GMRES(m), or to truncate the set
of search vectors so that only the most recent n vectors are kept. Standard
GMRES is not suitable for truncation, so it will need to be modified. Truncation
is generally less detrimental than restarting, but either way, convergence will
slow down considerably.

One method that is suitable for truncation is the Generalized Conjugate Residual
(GCR) method. This method is mathematically equivalent to GMRES, but it
constructs an approximate solution x,, during the process instead of afterward.
Old basis vectors are therefore used only for constructing new search vectors,
and may be dropped after n iterations at the cost of losing optimality. However,
since &,, and 7, are constructed simultaneously, GCR requires a double set of
vectors in memory. Therefore, real gains are obtained only if the number of
iterations is large. Still, the GCR method is in many respects more flexible
than GMRES, and there are situations in which GCR is the better choice for
reasons other than memory.

CHAPTER 3. ITERATIVE SOLUTION METHODS 25

The GMRESR method has been proposed in an attempt to combine the strong
points of GCR and GMRES. The method is identical to GCR, except that the
search vectors are constructed from a second GMRES(m) loop. The idea is
that m consecutive basis vectors can be condensed into a single search vector
without losing too much information. Since the outer GCR loop uses only
these condensed vectors, the memory requirements will be considerably reduced
compared with GCR. Moreover, if it is still necessary to truncate GMRESR,
the effect will be much smaller.

3.2.4 Biconjugate Gradient Method

When the Arnoldi algorithm is applied to symmetric matrices, matrix H,,
becomes tridiagonal. This follows directly from H,, = VﬁAVW which is
symmetrical if A is, and since H,, is also Hessenberg by construction it must
be tridiagonal. Consequently, for symmetric matrices, equation (3.8) simplifies
to:

A'Um = hm—l,mvm—l +hm7mvm+hm+17mvm+17 Um—-1 L Um L Um+1- (319)

This special case of Arnoldi’s method is known as the Lanczos algorithm. The
above three-term recurrence relation guarantees — at least in exact arithmetic
— orthonormality of all basis vectors. Apparently, for symmetric matrices it
is possible to have both optimality and short recurrences. Indeed, when A is
symmetric positive definite, imposing the FOM condition r,, L KC,, leads to the
Conjugate Gradient Method (CG), which has both these properties.

For general, non-symmetric matrices, the above three-term recurrence can not
be used. There exists, however, a similar algorithm for general matrices, known
as the Bi-Lanczos Algorithm. This algorithm constructs a pair of biorthonormal
bases for the subspaces K,,,(A,v1) and K, (AT wy). These spaces are identical
if A is symmetrical and v; = w;, in which case a single, orthonormal basis is
formed. Therefore, the Bi-Lanczos algorithm is a generalization of the Lanczos
algorithm.

The Bi-Lanczos algorithm is described by the following, implicit recursion:

Avm = Bmvmfl + apmvy, + 6m+1vm+l

’UZT’UJJ' = 5ij7 (320)

T
A Wy, = 5mwm—1 + apway, + ﬁm-i—lwm-&-l

from which v,,11 and w,,4+1 can be solved. It follows that «a,, = wTTnAvm.
Coefficients 3, and §,, are known from the previous iteration. The new G, 11
and 6,,+1 must be chosen such that vﬁ 11Wmq41 = 1, which is a single condition
for two unknowns so there are numerous ways to choose them.

A problem occurs when v,,4; and w,,4+1 are (nearly) perpendicular, in which
case the normality condition can not be met and the method breaks down. If
either one of the vectors is zero, the exact solution is part of the Krylov subspace
so this is ‘lucky breakdown’, as found before with FOM and GMRES. However,
when the method breaks down due to a zero inner product while both vectors

CHAPTER 3. ITERATIVE SOLUTION METHODS 26

are non zero, a solution has not yet been found. This situation is called ‘serious
breakdown’ and is of major concern for all Krylov methods that are based on
this algorithm.

When the two generated bases are denoted as V,,, and W,,, the first m Bi-
Lanczos iterations can be written as:

AVm =V, T+ 5m+1vm+1eg;

Viw, =1, 3.21
AW, =W, TL + 81w el (3:21)

where I is the identity matrix and T, an m x m tridiagonal matrix which
diagonals are formed by the coefficients «, § and §:

ay B
T, —|%2 @ = . (3.22)
) . ﬂ'fﬂ

Om Qm

The Biconjugate Gradient Method (BCG) is based on this algorithm. Like
the Conjugate Gradient Method, this method is mathematically equivalent to
FOM: the residuals are made perpendicular to the Krylov subspaces. Since the
Bi-Lanczos algorithm is a generalization of the Lanczos algorithm, this means
that the BCG method is a generalization of the CG method.

Using the bi-orthonormality of the generated bases V,, and W,,, the same
result as Equation (3.12) is found that was derived earlier for FOM. The Hes-
senberg matrix H,, is replaced by the tridiagonal matrix T',,. Substitution into
Equation (3.6) yields the following expression for the BCG iterates:

T =0 + VT, Ber. (3.23)

When the tridiagonal matrix T, is decomposed in an upper diagonal matrix U,
and a lower diagonal matrix L,,, such that T',, = L,,U,,, the iterates can be
written as x,, = xg+ VmU:nlzm, with L,,z,, = Be;. Because of the structure
of L,,, successive vectors z,, differ only in the last element: z,, = (2L _,,(n)7T.
This makes it possible to iteratively update the solution and the residual — an
obvious necessity for an algorithm that targets short recurrences. Defining a
new matrix P,, = VmU;L1 with columns p,, the iterates x,, and residuals r,,
can be written as:

T = Tm-1 — CnAD,,- (3.25)

In order to exploit the biorthonormality of the basis vectors produced by the
Bi-Lanczos algorithm, the BCG method simultaneously solves a dual system
ATz* = b*, with residuals 7%, 1 K,,(A”,w;). Defining a new matrix P}, =
WmL;@T with columns p}, these residuals can again be updated iteratively:

rh o =rh_q — AP (3.26)

According to Equation (3.13), the residuals are multiples of the basis vectors v,
and w,y,, which are biorthonormal. Since V,, = P,,U,, and W,, = P* LT

m m?

CHAPTER 3. ITERATIVE SOLUTION METHODS 27

the residuals can be expressed in terms of search vectors p,, and p},, which
are A-conjugate: (P})T AP,, = I. This follows directly from the Bi-Lanczos
relation WﬁAVm = T,,. Combined, the following recursive expressions can
be obtained:

f)m-‘rl =Tm + Bmi)m =~ (r;kna"'m)

- Bm = 4, (3.27)
f’:l+1 = 7’; + ﬁmi):n (Tm—h rm—l)

where p,, and p;, are multiples of p,,, and p*,, respectively:

I L (3.28)
Note in Equations (3.24)—(3.26) that the search vectors p,, and p¥, are used
only in combination with ¢, and (},. Therefore it suffices to form the modified
search vectors via Equation (3.27) and calculate the residuals from these. The
factors &.,, and Bm are used for both the original and the dual system, so the
solution of this dual system does not double the cost of an iteration.

The resulting Bi-Conjugate Gradient algorithm iteratively updates x,,, r,, and
r},, using the modified search vectors formed from Equation (3.27). Only the
most recent search vectors need to be stored, and the two most recent residuals
for the calculation of 3,,. As was noted before, this short recurrence property
can not be united with optimality, except when A is symmetrical, in which case
BCG is equivalent to CG. An important problem is the possibility of serious
breakdown, inherited from the underlying Bi-Lanczos method. Some look-ahead

strategies are developed that allow the algorithm to continue in most cases.

3.2.5 CGS, BICGSTAB

The BCG method simultaneously solves two systems: Az = b and AT x* = b*.
The extra calculations involved in solving this dual system are wasted if the dual
solution is not used, which is generally the case. Moreover, these calculations
involve a multiplication with A”, which can pose problems in situations where
A is not explicitly available. For these reasons, variants of the BCG method are
developed that do not require this inverse multiplication. These methods use a
different procedure to create the basis V', one that does not depend on a dual
basis W,,. This leads to an often faster convergence compared to the original

BCG method.

One such method if the Conjugate Gradient Squared (CGS) method, in which
T, and 7}, are polynomials of A and AT | respectively. The resulting method
does not contain the transposed matrix, and often converges about twice as fast
as the BCG method, while using about the same amount of work per iteration.
A problem is the highly irregular nature of its convergence, which can lead to
a substantial build-up of rounding errors. The Biconjugate Gradient Stabilized
method (BICGSTAB) is a variation on CGS that was developed to remedy this
problem by stabilizing the convergence of the original algorithm.

CHAPTER 3. ITERATIVE SOLUTION METHODS 28

Im /,/’—‘ . ‘\‘\

N
, \

/’, o \

(C ,' . R \l

| Re
R
\ /
\\ //

Figure 3.2: Smallest circle containing the spectrum of a matrix A. According to
Theorem 2, the fraction R/C forms an upper limit for the convergence of the GMRES
method.

3.3 Preconditioning

The convergence rate of Krylov subspace methods depends largely on the eigen-
value distribution of the coefficient matrix. In general it can be said that ma-
trices with tightly clustered eigenvalues experience the best convergence. For
GMRES, due to its optimality property, Equation (3.14), this notion can be
mathematically supported with the following theorem from Saad [14]:

Theorem 2. Let A be a diagonizable matriz such that A = X AX 1, where A
is a diagonal eigenvalue matriz. When Ko(X) denotes the condition number of
X, P, the space of polynomials of degree less then m and o(A) the spectrum
of A, then the residual norm at the m-th GMRES step satisfies the inequality

[P llz < Ka(X)e™ |72, (3.29)
where

(m) — mj NIF 3.30

€ %1; s Ip(A)] (3.30)

If, moreover, the eigenvalues are enclosed in a circle with center C € R and
radius R < C, like in Figure 3.2, then the following upper bound holds:

() < (g)m, (3.31)

Proof: recall from Section 3.2, Equation (3.4), that the m-th Krylov iterate is
defined as @y + p(A)ro, where p,, is a polynomial of maximum order m — 1.
Using the diagonalization A = XAX ™!, the iterates can be written as

T = xo + Xpm(A) X 'rg, (3.32)
and their residuals as
P = X (I — App(A) X rg. (3.33)

The polynomial p,,, depends on the Krylov subspace method used to construct a
solution. For GMRES, p,, is the polynomial that minimizes the residual norm:

Irmllz = min [X(I - Ap(A)X ~rofla = min [Xp(A)X Irolla. (3.34)

p(0)=1

CHAPTER 3. ITERATIVE SOLUTION METHODS 29

Equation (3.29) follows directly from repeated application of the matrix norm
property [Mvllz < [M|a]v]l2, with € = minye, yo)-1 [p(A)]l2. Since
p(A) is a diagonal matrix, its 2-norm equals the absolute largest diagonal ele-
ment |p(A)|, which gives Equation (3.30). The upper bound (3.31) is a direct
application of Zarantonello’s lemma, presented in Saad [14] as Lemma 6.4, Sec-
tion 6.11.2.

|

The theorem shows that the convergence speed depends heavily on the radius of
the smallest circle that encloses the eigenvalues of the coefficient matrix. This
motivates to transform the system Ax = b into a system with the same solution,
but with more clustered eigenvalues. This can be done by pre-multiplying the
original system with a suitable, non-singular matrix M ~':

M 'Ax = M 'b. (3.35)

This procedure is known as preconditioning the system. Krylov subspace meth-
ods applied to the new system construct a (near) optimal solution in the Krylov
subspace K., (M ™' A, M~ 'r() instead of K,,(A, 7). Note that if M equals A,
the new coefficient matrix M ~1 A becomes the identity matrix, which eigenval-
ues are all one. In terms of Theorem 2, C' = 1 and R = 0, which means that
GMRES converges to the exact solution in a single iteration.

The full matrix is indeed sometimes used to iteratively refine a solution that was
calculated with a direct method. For iterative methods, however, using A as a
preconditioner is not feasible, as it is much too expensive to calculate its inverse
A~!. If instead M is not identical but in a way close to A, then the eigenvalues
of the new system will still be centered around one. If, moreover, its inverse can
be obtained cheaply, then this matrix M will drastically improve the efficiency
of the iterative method. In fact, the reliability of iterative techniques seems to
depend much more on the quality of the preconditioner, than on the particular
choice of Krylov subspace method.

Several methods of constructing a more suitable preconditioning matrix are
developed, the most important of which are discussed below.

3.3.1 Basic iterative method

Recall from Section 3.1 that the desired properties for M, closeness to A and
easy invertability, are the same as found for the iteration matrices of basic
iterative methods. From Equation (3.2) it followed that the absolute eigenvalues
of I — M~ A should be close to zero, or at least smaller than one. Hence,
the eigenvalues of M~*A are concentrated around C' = 1, within a radius
R < 1. This makes the iteration matrices of Gauss Jacobi, Gauss Seidel and
SOR suitable candidates to be used as preconditioner.

From a different point of view, one can also say that basic iterative methods
are accelerated by Krylov subspace methods. This view will prove useful when
discussing domain decomposition methods in Section 3.4.

CHAPTER 3. ITERATIVE SOLUTION METHODS 30

3.3.2 Incomplete decomposition

Another way of defining a preconditioner is to perform a decomposition of the
original matrix A. The two phases in Gaussian elimination, described in Sec-
tion 3.1, correspond to solving the lower triangular system Ly = b and the
upper triangular system Ux = y, where LU = A. This decomposition of A
in a lower and upper triangular matrix is known as LU decomposition. This
process is very expensive in terms of work and memory due to fill-in of zero
elements. However, it is found that the absolute value of this fill-in often de-
creases rapidly as the distance to the non-zero elements of A increases. This
observation is the main idea behind Incomplete LU (ILU) preconditioners.

The ILU decomposition method is identical to LU decomposition, except that in
the Gaussian elimination process a fixed subset of zero elements of A is always
kept zero. Let these elements be denoted by an index set P. On all positions
not in P, A is reconstructed completely from the resulting matrices L and U':

A=LU+R, (3.36)

where L and U are a lower and upper triangular matrix such that I;; = u;; =0
if (¢,7) € P, and R is the residual matrix satisfying r;; = 0 if (¢,7) ¢ P. The
idea is that the elements r;; will be small, although this depends largely on the
structure of A and the choice of P. One such choice is to define P as the set
of positions where A is zero: Py = {(i,j)|a;; = 0}. Since this allows absolutely
no fill-in elements to be formed, this particular choice of P is called zero fill-in
ILU, or ILU(0).

In some situations, the accuracy of ILU(0) can be insufficient to yield an ad-
equate convergence rate. In these cases it may be necessary to use a subset
P C Py, at the cost of increased work per iteration and denser matrices L
and U. Ideally, the elements of Py that are removed correspond to the largest
residual elements r;;, but these are obviously not known in advance. Methods
have been developed to predict these locations, based on the sparsity pattern
Po. The resulting preconditioners are denoted as ILU(p), where p is a certain
measure of accuracy.

3.4 Domain Decomposition

In practice, the system to solve is often very large. This is certainly the case for
the system derived in Chapter 2, which represents a high order finite element
discretization in four-dimensional space. This has two major consequences for
the solution methods discussed so far. First, memory becomes a problem. Even
when sparsity of the coefficient matrix is exploited by using an iterative method,
the maximum available memory will limit the size of the simulation. Second,
the computation time increases with the size of the system. The best algorithms
scale linearly, but there will always be a point at which numerical simulations
are no longer feasible due to time constraints.

CHAPTER 3. ITERATIVE SOLUTION METHODS 31

Both memory and computation time can be reduced by decomposing solution
methods into smaller parts that can execute simultaneously on separate com-
puters. The total work load may increase due to this decomposition, but since
work is done in parallel the computation time is expected to decrease. Several
methods that are suitable for parallelization are developed. The most important
can be decomposed into two classes: Schwarz methods and Schur complement
methods. Both classes will be discussed in this section. Most of this informa-
tion is obtained from Domain Decomposition: Parallel Multilevel Methods for
Elliptic Partial Differential Equations by Smith et al. [15].

3.4.1 Schwarz methods

Let € denote the total set of computational nodes, i.e. degrees of freedom of
the system. This set can be divided into a set of interior nodes 2* and a set of
boundary nodes 2°, such that Q®*UQ° = Q and Q*NQ° = @. Schwarz methods
start with decomposing €2 into a number of coherent subdomains §2;, such that
Uif2; = Q°. It follows that for two adjacent subdomains 2§ N Q; # @, hence
the subdomains have a certain amount of overlap.

Several Schwarz methods exist, all based on the same straightforward principle:
the unknowns on a subdomain are calculated using only the equations that
correspond to its interior nodes. When R; is a (boolean) restriction matrix
that selects the elements corresponding to the interior nodes of subdomain €;,
this means that the following subset of equations is selected from the complete
system Ax = b:

R;Ax = R;b. (3.37)

This system is underdetermined; in order to calculate « in the nodes of 27, its
solution in 2\ 2P must be already known. This solution is not available. Instead,
an approximate solution from a previous iteration is used. This effectively means
that the original equation is solved on the smaller domain Q?, with Dirichlet
boundary conditions obtained from previous iterations on surrounding domains.

Let an approximate solution be available as @,,. The solution of Equation (3.37)
can be written as @ = x,, + &;, where §; is the vector that must be added to
x, to solve the system. When new values for x are calculated on 27 only,
the difference vector &; has non-zero values only on these nodes, hence can be
written as 8; = R} dg,. Substitution into Equation (3.37) yields the following
system:

Ao, = Rir,, Al =R;AR], (3.38)

where 7,, is the residual of the approximate solution x,,. Matrix A} is square,
and if it is non singular as well this new system can be solved. The resulting
local difference 6, can then be transformed back into the global difference
vector d; so that it can update the approximate solution x,. Summarizing the
entire procedure in a single equation, the global difference vector is calculated
as follows:

8, =Bir,, B;,=RIA? 'R, (3.39)

CHAPTER 3. ITERATIVE SOLUTION METHODS 32

This difference vector does not correspond to the global error e = A~ r,, not
even on 2?. Therefore, the updated solution vector will not solve the global
system Ax = b. However, it can be shown [15] that if A is symmetric and
positive definite, §; is a projection of e onto the subspace spanned by the rows of
R;, such that the difference is minimal in the A norm given by |[v||a = VvT Av.
This leads to the idea that iteratively correcting the approximate solution with
these projected errors will result in a convergent process, and that this process
converges to the exact solution x.

The iterations can be performed in various ways, resulting in different Schwarz
methods. Two important methods are additive Schwarz and multiplicative
Schwarz. Starting with an approximate solution @, and corresponding residual
Ty, additive Schwarz simply calculates the errors on each subdomain and uses
them to correct the current approximation:

Tpy1 =Tp + Biry + -+ Bpry,. (3.40)

Obviously, the order in which x,, is updated does not influence the result, and
the various errors can be calculated independently These properties make ad-
ditive Schwarz very easy to parallelize. Multiplicative Schwarz, on the other
hand, bases its calculations on the most recent residual:

Tyl =z, + Bir,

Tpy2 =Tpylt Byr, ;1
? ? ? (3.41)

Tyl = wn+p;1 + Bprn+p;1.

This generally leads to much faster convergence, often about twice as fast, but
it lacks the nice properties that additive Schwarz has. Therefore it is much
harder to parallelize the multiplicative Schwarz method. An often used solution
is to assign each domain a colour, in such a way that two domains with the
same colour have no direct influence on each other. This means that domains
with the same colour can be processed in parallel. However, it also means that
convergence is slowed down, due to the colour-imposed ordering, which opposes
the parallel gain. Therefore, an optimal colouring will not contain the fewest
possible colours, but will try to balance these two effects.

Figure 3.3 shows the additive and multiplicative Schwarz method applied to the
one dimensional Laplace equation. The figure shows two things that appear
to be valid in other situations as well. First, as was already mentioned, multi-
plicative Schwarz converges about twice as fast as additive Schwarz. In this two
domain case this relation is even exact, as the multiplicative Schwarz iterates
are a subset of the additive Schwarz ones. The second thing the figure shows is
the dependency of convergence on overlap. Clearly, a large overlap will lead to
faster convergence, whereas no overlap will lead to no convergence at all. Hence
the requirement U, = Q°.

In general, convergence will be poor. Therefore, in practice Schwarz methods
are always used in combination with an accelerator. Note that both Schwarz

CHAPTER 3. ITERATIVE SOLUTION METHODS 33

additive Schwarz) multiplicative Schwarz
o
QNS QINOS Q1nQs Q3n0p

overlap overlap
3

. e

Qs Q3 Qs Qs

Figure 3.3: Four iterations of additive and multiplicative Schwarz on two subdo-
mains with a zero initial guess, applied to the discretized one dimensional Laplace
equation f”(z) = 0 with boundary conditions f(0) = a and f(1) = b. In this example
multiplicative Schwarz converges twice as fast as additive Schwarz. It is clear that for
both methods, a large overlap will lead to faster convergence, whereas no overlap will
lead to no convergence at all.

methods can be written as:

Tpi1 = Tp + Bry, (3.42)
where
_ B+ -+ B, additive (3.43)
(I - (I —-ByA)---(I - BjA)A™" multiplicative. '

This explains the origins of the terms ‘additive’ and ‘multiplicative’. With the
B, as defined in Equation (3.39), matrix B turns out to be the inverse of the
block-diagonal of A for additive Schwarz, and the inverse of the block lower-
triangular matrix for multiplicative Schwarz. Therefore, additive and multi-
plicative Schwarz can be seen as block variants of the Gauss Jacobi and Gauss
Seidel basic iterative methods, respectively.

In practice the matrix B is never composed, since iterative methods need
only compute the product y = Ba, which is performed (in parallel) as Equa-
tion (3.40) or (3.41). However, the Schwarz methods do show a large resem-
blance with the basic iterative methods from Section 3.1. In Section 3.3 it was
argued that these methods can be accelerated by a Krylov subspace method by
using them as a preconditioner. The same can be done with Schwarz methods,
which is the usual way in which they are applied. In this situation, overlap
between subdomains is not strictly required.

A problem arises when the subdomain Equations (3.38) are solved using iterative
methods, since Krylov subspace methods generally require the preconditioner
to be linear and non changing. For non-linear preconditioner, special flexible
Krylov subspace methods such as FGMRES must be used. Experience has
shown that convergence of the outer iteration is also not affected much when
the local problems are solved accurately enough. Another possibility is to use a
fixed number of iterations, which makes the operation linear, or to use another

CHAPTER 3. ITERATIVE SOLUTION METHODS 34

approximate solver such as an incomplete LU decomposition. In that case B
becomes a block ILU preconditioner.

3.4.2 Schur complement methods

In the preceding part on Schwarz methods it was noted that the underdeter-
mined Equation (3.37) can only be solved on Qf if the solution on Q \ Qf is
already known. Actually, it suffices to have a solution on the nodes that are
connected to €2;, since these are the only values that are manifest in the rows
selected by R;. This is evident in Figure 3.3, where the next iteration is de-
termined only by the interface values. Nonetheless, Schwarz methods generate
an approximate solution on the entire domain €2 in order to have these values
available.

Schur complement methods use the fact that only the interface values are needed
during calculations, and solve them separately. The domain €2 is decomposed
into a number of subdomains €2;, this time with zero overlap, Qf N€}; = &. This
means that also the various submatrices A7, as defined in Equation (3.38), have
no elements in common. System Ax = b can therefore be written as follows:

A° AT AT [0 b
AT A 0 | [b

S R (3.44)
A 0 as) \az) \oo

where p is the number of subdomains. From this expression it is clear that
the subdomain equations (3.37) can be solved independently when the interface
values ° are known:

2t = A7 (B - Ar°al) (3.45)

The result is part of the exact solution . Therefore, there is no need to solve
the above system more than once, as is the case with Schwarz methods. Instead,
Schur methods spend most of their work solving the interface equations, either
using a direct or an iterative method. This system of equations is obtained by
substituting the above expressions for @} into the full System (3.44):

<A° -3 A;"A;_lA;O> x°=b"—> AT 'b}, (3.46)

i
or

Sz° =g. (3.47)

Matrix S is known as the Schur complement matriz. When the system is solved
using an iterative method, the individual matrix elements of S are not required;
only multiplications of the form Sx need be performed. Therefore, in that case,
the Schur complement matrix is not actually composed. From Equation (3.46)
it follows that Sz can be computed as follows:

Sx=Ax — AT*v; —--- — A%, (3.48)

CHAPTER 3. ITERATIVE SOLUTION METHODS 35

Schur complement
QN3 Lo

..

o 23

Figure 3.4: The Schur complement method on two subdomains, applied to the same
problem as figure 3.3. The subdomains not longer overlap. The interface value is
solved using an iterative method, and the remaining internal values are solved after
sufficient accuracy is obtained.

where
Ajv; = A’z (3.49)

These subdomain solves can be computed in parallel. The result is an iterative
procedure that computes the interface values x° up to a certain precision. In a
second step, the interior values &} are computed via Equation (3.45). This pro-
cedure is illustrated in Figure 3.4, which shows the same situation as Figure 3.3.

Chapter 4

Implementation

The Variational Multi-Scale method, introduced in Chapter 2, solves problems
of the following kind. Given an initial density, speed and temperature on a
three-dimensional domain 2, simulate the next t. seconds of the flow on this
domain. The eventual goal is to investigate (changing) domains such as the
space surrounding an airplane, or a wing, in order to determine its aerodynamic
properties. While still under heavy development, however, the current focus is
merely non changing, rectangular domains.

Currently, a working implementation of the VMS method already exists. Sec-
tion 4.1 describes this implementation in detail. Numerical experiments have
shown that it performs quite well for small problems that can be solved on a
single domain. Larger problems, however, suffer a significant drop in conver-
gence speed. Section 4.2 tries to explain this phenomenon. A possible solution is
expected to be found in a deflation method, which is introduced in Section 4.3.

4.1 Current implementation

The current VMS implementation combines most of the numerical methods
introduced in Chapter 3. This section describes in detail which methods are
used, and — to some extent — why they were chosen over their alternatives.
The most important results from previous sections are repeated in order to have
a clear overview of the entire procedure. As such, this section can be viewed as
a summary of the foregoing material.

The implementation is described in three parts. Preparation shows what needs
be done once before starting a simulation. Quter iteration describes all that
must be repeated for each separate time-slab, and finally Inner iteration shows
the algorithm that is run in each separate Newton iteration.

36

CHAPTER 4. IMPLEMENTATION 37

Figure 4.1: A cubic domain (2, subdivided in 8 x 8 x 8 spatial elements 2;. The
four-dimensional finite elements @Q; are created by extruding the spatial elements in
time by an amount dt.

4.1.1 Preparation

As described in Section 2.4, the current implementation uses the concept of time-
slabs, which can be viewed as thin time-slices of the four-dimensional space-time
domain Q x (0,t.) on which the flow is simulated. Figure 2.3 on page 11 gives
a schematic overview of this setup. Starting from the initial condition on the
spatial domain 2, the flow during a small time step dt is simulated by solving
the equations derived in Chapter 2 on a single time-slab. The state at the end
of this simulation is used as an initial condition for the next, and this process
is repeated until the required simulation time t. is reached.

While the VMS method is still under development, it is currently applied only
to simple, non changing, rectangular domains, such as shown in figure 4.1. All
time-slabs are created by extruding the three-dimensional spatial domain 2 by a
fixed amount 0t in time: Q = Q2x (0, t). Note that Q) denotes a single time-slab,
not the entire solution space; the suffix n used in Section 2.4 is dropped since all
time-slabs are identical. This also means that there will be no difference between
the successive VMS calculations, other than initial and boundary conditions.

Since (2 is a rectangular domain, it can easily be decomposed into a number
of rectangular elements such that Q = U;Q;. See again Figure 4.1. The finite
elements @Q; are formed by the same straightforward extrusion of €2; in time:
Qi = ; x (0,0t). Recall from Section 2.4 that the solution vector Y : Q — R5,
containing flow field variables density, speed and temperature, is defined as a
sum of locally defined basis functions:

Yo =2 NiwMiawy, (4.1)
acA

where A is an index set, N ,) : @Q; — R are polynomial basis functions de-
fined only on finite element Q;, M (; ,) are location operators corresponding to
element i and basis function a, and y € R" is the solution vector for a single
time-slab. The basis functions are derived from a hierarchical modal p-type
expansion, Equation (2.21), page 13. Since all time-slabs are identical, these
basis functions need to be defined only once.

CHAPTER 4. IMPLEMENTATION 38

4.1.2 Outer iteration

Since it makes no difference if the initial state y,, is specified as an initial condi-
tion or obtained from a previous iteration, the solution procedure is identical on
each time-slab. The solution vector y is calculated using the iterative procedure
derived in Section 2.6:

y =y -z, (4.2)

where « solves 0c
(Fo ' w)) @ = Glu* o) (43)

Yy
The non-linear function G has been derived in Section 2.5. The latter system
is linear, and can be solved using the iterative methods discussed in Chapter 3.
This means that individual elements from the Jacobian matrix %—G are not used.
Instead, only the matrix-vector multiplications need be performed. It is possible

to perform this multiplication without actually composing the Jacobian matrix,

as follows: 5 . .
G G(y" + ev, — G(y*,
< (k’ y0)> v = (y yO) (y yO) (44)

)
€

oy

where € is a small constant. This way, each matrix-vector multiplication requires
only two evaluations of the non-linear function G. However, choosing the right
constant € is a problem. If it is chosen too large, the result will be inaccurate
because it does not resemble the limit. If it is chosen too small, accuracy is
destroyed by rounding errors. Also worth considering is that the transpose
matrix is not available, which hinders the use of the BCG method. Variants
of BCG, such as BICGSTAB, do not require this transpose matrix, so these
methods can be used in combination with the above multiplication.

Since the matrix-vector multiplication needs to be performed multiple times
during the iterative procedure, it depends on the complexity of G if it is cheaper
to compose the Jacobian matrix explicitly or to use the implicit multiplication.
For the problem at hand, numerical experiments have shown that the Jacobian
matrix can be re-used for several Newton iterations, Equation (4.2), without
much affecting convergence. Often, the matrix can even be re-used on successive
time-slabs. This motivates to compose the Jacobian matrix explicitly, using
Equation (2.38) derived in Section 2.6, page 17.

Equation (4.3) must be solved within each Newton iteration. As this is a very
large system, originating from a high-order discretization on a four-dimensional
grid, memory and time constraints force this system to be solved on a parallel
computer. Hence, domain decomposition is needed. Looking again at Fig-
ure 4.1, it is clear that the rectangular domain can be easily split into several,
again rectangular, subdomains, by separating blocks or finite elements @;. The
two main classes of domain decomposition methods, Schwarz and Schur comple-
ment methods, were described in Section 3.4. For Schur methods, the interface
equations need to be solved quite accurately, which becomes problematic on
high dimension spaces. Schwarz methods are besides easier to implement, and
therefore the obvious choice.

CHAPTER 4. IMPLEMENTATION 39

Section 3.4 introduced additive and multiplicative Schwarz. Of those, mul-
tiplicative Schwarz has the best convergence properties, but is essentially a
sequential algorithm. Using a coloring scheme, the equations can be ordered
such that many can be evaluated in parallel, but this considerably weakens con-
vergence. The coloring of subdomains also complexifies the total procedure.
Additive Schwarz is parallel by nature, and therefore much easier to implement.
This is considered to be more important than its weaker convergence, hence the
following algorithm is based on additive Schwarz.

4.1.8 Inner iteration

As mentioned in Section 3.4, in practice, Schwarz methods are almost always
used in combination with a Krylov subspace method. Section 3.2 identified
two different classes of Krylov methods: those with the optimality property
and long recurrences (GMRES, GCR), and those with short recurrences but
no optimality (BCG, CGS, BICGSTAB). It is known that for general matrices,
optimality and short recurrences are mutually exclusive.

Perhaps more important than these two properties, however, is robustness. GM-
RES enjoys ‘lucky breakdown’, which means that the algorithm may break down
due to zero division, but only after the exact solution is found. The BCG-type
methods can break down in other situations as well, so specific measures will
need to be taken in order to prevent this from happening. GMRES is more
reliable in this respect, and since tests for this particular problem have proved
that it converges quite fast on a single domain, the long recurrences do not pose
much of a problem. It is favoured over GCR because of its lower memory usage,
and because truncation will not be necessary.

Section 3.2 presented the equations for non-preconditioned GMRES. Precon-
ditioned with additive Schwarz, the iterates are constructed from the Krylov
subspace KC,,,(BA, Brg) instead of K, (A, 79), with matrix B as defined in Sec-
tion 3.4. This changes the algorithm only little. The initial vector is changed
into Brg, and multiplication by A is replaced by BA. Starting with an initial
guess xg, the complete algorithm becomes:

1. w20
2. for R in subdomains: do
3. solve RAR"Ty = Rb — RAx for y
4. w— w+ RTy
5. enddo.
6. 8 [lwls
7. vy =w/p
8. forj=1,2,...: do
9. w<+—0
10. for R in subdomains: do
11. solve RARTy = RAv; for y
12. w — w + RTy

CHAPTER 4. IMPLEMENTATION 40

13. enddo.

14. fori=1,2,...,5: do

15. hi,j — ('LU,'UZ‘)

16. w «~—w — hi,jvi

17. enddo.

18. hjv1 = [lwll2

19. Vi1 = w/hj1; _
20. solve 1y = minycg; ||[Ber — H y|2
21. if ro < e:

22. break

23. enddo.

24. $<—$0+ij

This algorithm will now be discussed in detail. It starts with calculating vector
w = Brg, lines 1-5. Recall from Section 3.4 that matrix B represents a number
of subdomain solves:

B=> R/(RAR])'R; (4.5)

Lines 3-4 calculate a single term in this addition. Since all terms can be cal-
culated independently of each other, they can be computed in parallel if all
subdomains are hosted on separate processors. The subdomains are defined
entirely by their restriction matrix R. Note in line 3 that matrix A is always
preceded by this restriction matrix, hence each processor needs only store the
element matrices that are relevant to its own subdomain. This is one of the
reasons for using a parallel computer, to reduce the memory load on individual
processors.

Line 7 defines the first search vector to be the just calculated vector w, normal-
ized. Each iteration that follows (lines 8-23) produces a new search vector by
multiplying the most recent search vector v; by BA (lines 9-13) and taking the
orthonormal component to all previously calculated search vectors (lines 14—
19). The latter procedure is Arnoldi’s method, defined implicitly in Section 3.2,
Equation (3.8). The coefficients h; ; are stored in a matrix; they are needed
later on in the construction of the solution x.

The subdomain equations, line 3 and 11, are not solved exactly. Solving these
systems exactly is a lot of work, even though they are much smaller than the
full system, and the solution is merely a search vector for the global GMRES
algorithm. Using a linear, inexact solver does not affect the GMRES convergence
much, and can be much faster. Incomplete LU decomposition was introduced
in Section 3.3 as a preconditioner, but since LU closely resembles matrix A, it
can be used as an inexact solver as well. The resulting solution procedure is non
iterative, yet it does not use nearly as much memory as direct methods usually
do since ILU is defined to have no or little fill-in.

The above process creates only a basis for the Krylov subspace IC;(BA, Bry);
it does not yet construct a solution in this subspace. For that, the linear least
squares problem at line 20 must be solved. Therefore, usually the system is
transformed to upper triangular form by a series of Givens rotations. This

CHAPTER 4. IMPLEMENTATION 41

procedure is described in detail in Section 6.5.3 of Saad [14]. The residual norm
ro is obtained as a by-product of this transformation, which must be performed
every iteration to maintain triangularity of the system. Therefore, this residual
is available at any time during GMRES iterations.

Line 21 monitors the accuracy of the current-best element of the constructed
Krylov subspace. If this accuracy is satisfactory, the loop is broken and the so-
lution is constructed. First y is solved from the least squares problem at line 20,
which is a triangular system due to the Givens rotations applied throughout the
GMRES iterations. When this vector is obtained, a straightforward summation
of Krylov basis vectors yields the solution at line 24.

4.2 Current problems

Consider the situation of a single subdomain ‘decomposition’. In this situation,
the algorithm defined in Section 4.1 simplifies to ILU-preconditioned GMRES.
This becomes clear when all occurrences of the restriction matrix R are removed,
which is allowed since it equals identity in this situation. Numerical experiments
show that for problems small enough to be handled like this, the algorithm
converges very fast. An accurate solution is attained long before GMRES’s long
recurrences start posing difficulties.

Problems arise, however, when larger problems are examined that require a de-
composition in multiple subdomains. The algorithm manages to rapidly smooth
out the error of the approximation over each separate subdomain, but as the
number of subdomains increases, it seems to be getting more and more trouble
to reduce the absolute error. Propagating error information between subdo-
mains seems to be very hard, resulting is such slow convergence that it makes
the current algorithm unsuitable for solving problems of realistic scale.

The usual solution to this problem is to add a new communication channel in
the form of a coarser grid, on which the same problem is solved. Solutions
on both grids are mapped through interpolation and restriction. This smaller
problem can be solved on fewer subdomains, giving the smoothing operation a
more global effect. Consequently, it will be better capable of reducing the error
at reasonable speed. The original, fine grid problem must still be solved in order
to smooth out high frequency components that can not be represented on the
coarse grid. A typical two-level method combines both problems by adding a
coarse grid correction step to every GMRES iteration. This should lead to a
faster convergent algorithm. Even better results can be obtained with multilevel
methods, which use a series of increasingly coarse grids instead of two.

The main problem with two- or multilevel methods is their complexity. Instead
of a single grid, two or several grids will have to be defined, each with a new
set of basis functions and mappings to other grids. Much would be gained from
a method that accelerates convergence without introducing new grids. The
deflation method, subject of the next section, is expected to do just this.

CHAPTER 4. IMPLEMENTATION 42

4.3 Deflation

In this section, Az = b denotes a possibly preconditioned system. Section 3.2
showed that Krylov subspace methods construct approximate solutions of the
form @ = xg + k, where k is a Krylov subspace element. The approxima-
tions produced by GMRES are optimal in the sense that the distance to the
exact solution « is minimized in a certain norm. Consequently, the convergence
problems experienced in the current implementation are caused by the Krylov
subspace, which apparently is not rich enough to approximate the exact solu-
tion to high accuracy, except at very high degree. The convergence problem will
therefore apply to all other Krylov subspace methods as well.

To accelerate convergence, the Krylov subspace must be changed such that it
is better capable of approximating @ — xy. One way of doing this is precon-
ditioning the matrix A, as discussed in Section 3.3, which leads to a totally
different Krylov subspace. However, the current implementation already uses a
combination of Schwartz and ILU preconditioning, and an extra preconditioner
of the types discussed so far is expected to either destroy the parallel properties
brought by Schwarz, or otherwise not to help much.

Another approach is to augment the Krylov subspace with a fixed set of vec-
tors that it seems to lack. For instance, in the domain decomposition setting
brought by the Schwarz preconditioner, a set of vectors z; with constant value
on subdomain ¢ and zeros elsewhere will be able to constitute a global, coarse
grid solution, which the current implementation seems to have trouble finding.
The previous section argued that the Krylov method performs well in reducing
local errors, so together with this global solution the algorithm is expected to
converge quite fast. Note the close resemblance of this approach with the two-
level methods introduced in the previous section, for this particular choice of
augmenting vectors. The actual implementation, however, is quite different.

Let an approximate solution & and its residual » be denoted as:

T=x0+Zp+k, (4.6)
r=rg— AZu— Ak, (4.7

where the columns of Z form a set of linearly independent augmenting vectors,
better known as deflation vectors. The column space of Z is called the deflation
subspace. The vectors p and k define how & is constructed from both the
deflation and a Krylov subspace.

Recall from Section 3.2 that the Full Orthogonalization Method (and deriva-
tives, like the Conjugate Gradient method) sets the residual perpendicular to
the Krylov subspace. Seeing the deflation subspace as an augmentation of
the Krylov subspace, the same condition is imposed on the deflation vectors:
ZTr = 0. 1f Z" AZ is non singular, this system can be solved for p:

w=E"'Z"(ro—Ak), E=2Z"AZ. (4.8)

The non-singularity condition is automatically satisfied if A is positive definite,
since for such matrix ZT AZx = 0 has only the trivial solution. In general,

CHAPTER 4. IMPLEMENTATION 43

Figure 4.2: Example decomposition of a two-dimensional vector « into a component
Pz from the eigenspace of P and a component x — Px from the null-space of P. The
projection operator P is defined in Equation (4.10).

however, E is non singular if and only if
(col Z)* N (col AZ) = 0, (4.9)

where (col Z)* is the orthogonal complement of the deflation subspace col Z in
RY. This is a restriction on the set of possible deflation subspaces. When the
above condition is met, substitution of pu back into Equation (4.7) yields:

r=P(ro— Ak), P=I-AZE 'Z". (4.10)

Matrix P is a projection operator: P? = P, as is easily checked. The following
theorem is a general result for projections:

Theorem 3. Let P € RN*N be a projection operator, i.e. P?> = P. Then:

eigy P ® null P =RY (4.11)
Proof: first two intermediate results will be proved via mutual inclusion.

e cigy P = col P:

If x € eig; P, then Px = x, hence € col P. Reversely, if x € col P,
then = Py for some y, hence Px = Py = x and x € eig; P.

e null P = col (I — P):

If ¢ € null P, then Px = 0 hence (I — P)x = x and « € col (I — P).
Reversely, if & € col (I — P), then x = (I — P)y for some y, hence Pz = 0
and x € null P.

Equation (4.11) now follows directly from x = Pz + (I — P)x.
O

The theorem states that each projection uniquely decomposes a vector x into
an element from its null space and an element from its eigenspace of eigenvalue
one. The projection Px returns the latter component; see also Figure 4.2.
Consequently, re-projecting the result has no effect. This corresponds to the
imposed requirement that P? = P.

The following theorem is specific for the projection of Equation (4.11):

CHAPTER 4. IMPLEMENTATION 44

Theorem 4. Let A be a non-singular matriz, Z a deflation matriz and P the
projection matriz as defined in Equation (4.10). Then:

1. eigy P = (col Z)*
2. null P =col AZ

Proof: the two properties are again proved via mutual inclusion:

e cigi P = (col Z)*:
If € eig; P, then Px = x. From Z'P = 0 follows 0 = Z”x hence

x | Z. Reversely,ifx | Z, then ZTx =0. From Pr =x—AZE 'Z"x
follows Px = x, hence x € eig; P.

e null P =col AZ:

If ¢ € null P then Pz = 0. From Px = — AZE 'Z"x follows & =
AZE'Z" hence € col AZ. Reversely, if ¢ € col AZ then ¢ = AZy
for some y. From PAZ = 0 follows Px = 0, hence = € null P.

O

Note that these theorems correspond well with the non-singularity condition
Equation (4.9): if P is well defined, then E is non singular. Continuing the
normal procedure from Equation (4.10), a Krylov vector k is constructed such
that the approximate solution x is close to the exact solution @, or equiva-
lently, such that the residual r is close to zero. Equation (4.10) shows that this
corresponds to solving the preconditioned, original system:

PAEk = Pr. (4.12)

When standard preconditioned Krylov subspace methods are used, the solution
k is constructed from K(PA, Prg). Note, however, that the second property
of Theorem 4 implies that the preconditioning matrix P is singular. Kaasschi-
eter [6] noted that at least for symmetric and positive definite systems, singular
systems can still be solved with the CG method. This solution is not uniquely
determined. According to Theorem 4 the null space of P equals the column
space of AZ, hence vy — Ak € col AZ, or

k=A"'r,— Zpu, (4.13)
for some arbitrary vector p.

To understand the origin of this arbitrary component, recall that Equation (4.6)
approximates @ — xg by a sum of this Krylov element k and a deflation sub-
space element Zu. If convergence speed was not an issue, the Krylov element
would suffice; the deflation vectors are redundant, introduced only to speed up
convergence. Both elements are connected through Equation (4.8), but a strict
division is not enforced, which explains the arbitrary deflation component in
the solution of Equation (4.12).

CHAPTER 4. IMPLEMENTATION 45

For a heuristic explanation of why the solution of (4.12) is easier to obtain than
that of the original system, consider again the domain decomposition setting
with deflation vectors z; as introduced above: a constant value on subdomain
i and zeros elsewhere. Equation (4.13) shows that the solution of the deflated
system can contain an arbitrary deflation subspace component. Apparently,
subdomain-wide shifts in the solution are ignored, meaning that the solution
method focuses only on local errors, which should be much faster. A more
mathematical explanation will be given later in this section.

Meanwhile, a solution to the problem is still not available due to the unknown
and arbitrary component Zp. Substitution of k into Equation (4.8) shows that
this is in fact the same component as introduced in Equation (4.6), and that
it can be extracted by solving the system Ep = Z7(ro — Ak). Matrix E is
small and possibly dense, depending on the set of deflation vectors, so a direct
method is usually the most suitable choice. When p is obtained, substitution
into Equation (4.6) yields the solution &.

Reviewing the total procedure, the deflation method consists of the following
two steps:

1. The original system is solved in such a way that components from the
deflation subspace are ignored, leaving the solution with an arbitrary de-
flation component.

2. This arbitrary component is then replaced with the correct element from
the deflation subspace, such that the result approximates & — xg.

The idea is that a well chosen set of deflation vectors will lead to a much faster
convergent process. To find out which deflation vectors are most suitable, a
number of possible choices will now be examined.

4.3.1 Krylov subspace

An interesting set of deflation vectors is a set that spans the non-preconditioned
Krylov subspace of dimension m, such that col Z = K,,(A,r¢). The above
procedure suggests that this will not change the total subspace from which a
solution is constructed, compared with non-deflated Krylov subspace methods.
The following theorem supports this notion.

Theorem 5. Let A be a non-singular matriz, Z an m-dimensional deflation
matriz such that col Z = K,,(A,rg) for some residual vector ro and P the
projection operator as defined in Equation (4.10). Then, for any n € N:

Kim(A,r0) ® Kn(PA, Prg) C Kpyn(A, o).

Proof: since K, (A,70) C Kimin(A,70) and K, (A, r0) L K, (PA, Prg) by
assumption, it suffices to proof that K, (PA, Pry) C Knin(A,79). This is
done by induction.

CHAPTER 4. IMPLEMENTATION 46

The Krylov subspace K1 (P A, Prg) can be written as span { Pro}. Since Pry =
T — 14Z.E71ZT7’07 with rg € ’Cl(A,To) and AZEilzT’I"O S AKm(A,'I“()) -
Kim+1(A, 7o) the inclusion I, (PA, Prg) C Kyan(A,ro) holds for n = 1.

Subspace K,1+1(PA, Prg) equals PAK,,(PA, Prg) & K1(PA, Prg). Assum-
ing that the theorem is true for some n, if v € K,,(PA, Pry) C Kyin(A,7r0),
then Av € Kpint1(A,7r9) and AZE1Z%v € Kim+1(A,ro), hence PAv €
Krmant+1(A, o). This proves the inclusion PAK,,(PA, Prg) C Kptnt1(A,10).
By assumption K1 (PA, Prg) C K,11(A, 7o), which proves IC,,+1(PA, Pry) C
Kmint1(A,10).

O

When the Arnoldi process is not broken down, the inclusion becomes an identity
because the dimensions on the left and right hand side are equal. Apparently, for
this choice of deflation subspace, the constructed solution space is identical to
that of a non-deflated Krylov subspace method. Deflation will therefore neither
speed up or slow down convergence, the method will simply start at iteration
m compared to the non-deflated method. Since it will take m iterations to
create the deflation subspace, nothing is gained by this choice of deflation. This
was obvious from the start; it was argued before that to speed up convergence,
the deflation vectors should not occur in the Krylov subspace until after many
iterations. The first m vectors can therefore do no good.

To complete the comparison of deflated and non-deflated Krylov methods, re-
call that the deflation method was based on the perpendicularity condition r» L
col Z = K (A,rp). FOM and CG use the same condition on K, (PA, Pry),
which by Theorem 5 implies that » L K, 1, (A, 70), hence the obtained solu-
tion will be exactly the same for both the deflated and the non-deflated method.
GMRES sets r perpendicular to PAK, (PA, Prg), so for that method the de-
flated variant will produce a different solution. To be identical in this situation,
the deflation condition will have to be changed to r 1 col AZ, which leads to a
new projection operator p:

P=I1-FF'F)'F', F=AZ. (4.14)

4.3.2 FEigenvalue deflation

To get a better insight in the convergence behaviour of deflated Krylov subspace
methods, it is useful to focus on the eigenvalues of the deflated matrix PA. For
a general deflation subspace, the two properties of Theorem 4 are equivalent to:

1. (PA)v=Av & Av Ll colZ
2. (PAv=0 < vecoZ

Let the eigenvectors of A be denoted vy, ..., vy, with corresponding eigenvalues
A1, ..., An. According to the first property, v; is an eigenvector of the deflated
matrix PA as well, with unchanged eigenvalue)\;, if it is orthogonal to the

CHAPTER 4. IMPLEMENTATION 47

deflation subspace col Z. Hence, when the deflation subspace is defined as
the orthogonal complement of the subspace spanned by a set of eigenvectors
Vi,...,Viy_, , the eigenvalues of PA are \;,...,\iy_,, and 0, the latter with
multiplicity m due to property two. The eigenvalues that have disappeared
are said to be deflated, which explains the name of this process: eigenvalue
deflation.

To study the convergence properties of the thus deflated algorithm, let a matrix
V be formed of a subset of linearly independent eigenvectors, V' = (v, ... v,y).
When the deflation subspace is defined as above, col Z = (col V)1, then this
subspace and col V are linearly independent. Since A is non singular, the linear
independence applies to col AZ and col AV as well. Spanned by eigenvectors of
A, the column space of V' is an invariant subspace, which implies that col AV =
col V = (col Z)*. Equation (4.9) now shows that matrix E in the definition of
P is non singular, so the projection operator P is well defined for this particular
deflation subspace.

Since the columns of Z and V are all linearly independent eigenvectors of PA,
the matrix X = (Z V) diagonalizes PA = XAX !, where A is its diagonal

eigenvalue matrix:
_(Az O
) w15

The submatrices Az and Ay contain the eigenvalues corresponding to Z and
V| respectively, such that PAZ = ZAz; and PAV = V Ay. Clearly, Az = 0.
With matrices X and A defined like this, Theorem 2 in Section 3.3 provides an
upper bound for the residual at GMRES iteration m. However, since in Equa-
tion (3.30) the set of polynomials is restricted to p(0) = 1, the zero eigenvalues
in Az seem to render this bound useless.

To obtain a useful upper bound for the convergence of deflated GMRES, some of

the proof of Theorem 2 needs to be redone, using the fact that the deflated resid-
ual Prg is an element of col P = col V. Writing Prg as Vy, Equation (3.34)

reduces to:
z v (") (5)

which leads to the upper bound
[7mlla < €™V]12]lyll2, (4.17)

[7mll2 = min
p(0)=1

= min [[Vp(Av)yl2,
PEPm
2 p(0)=1

(4.16)

where €™ is identical to the constant defined in Theorem 2 except that the
eigenvalues corresponding to the columns of Z are ignored. Note that the fact
that these eigenvalues are zero is not used. Therefore, more generally it can be
said that Theorem 2 can ignore all eigenvalues which corresponding eigenvector
is not part of the initial residual. The same holds for the the upper bound for
(™) Equation (3.31), in which the circle of Figure 3.2 needs only enclose the
remaining eigenvalues.

These findings agree with the general explanation of the super linear conver-
gence that is often found in Krylov subspace methods, namely that eigenvectors

CHAPTER 4. IMPLEMENTATION 48

that are in a way ‘found’ during the process do no longer affect convergence,
leading to a gradually decreasing effective condition number and a correspond-
ingly increasing convergence speed. Eigenvalue deflation can be seen as a means
to point the algorithm at a set of eigenvectors that are notoriously hard to find,
thus lowering the effective condition number from the start. These eigenvectors
typically correspond to the lowest few eigenvalues of the coefficient matrix.

The problem that remains is how to construct a set of deflation vectors such
that their orthogonal complement is an invariant subspace of A, spanned by the
eigenvectors which eigenvalues are not to be deflated. In the special case that
A is symmetric this is simplified a bit by the fact that its eigenvectors form
an orthogonal basis of RY, which means that the deflation subspace must itself
be an invariant subspace corresponding to the deflated eigenvalues. Though
still hard to find, Vuik et al. [18] used a technique called physical deflation to
construct a basis for this subspace in a diffusion problem with strongly varying
coeflicients. A generally applicable technique, however, is not available.

The orthogonality of col Z and col V' that follows from symmetry of A does
enable a completely different solution method, one that does not require the
projection matrix P nor the correction step to remove an arbitrary deflation
subspace component from the solution. Note that in Equation (4.6), k is an
element of the Krylov subspace K(PA, Prg). A key observation is that with
the columns of V' being eigenvectors of both A and P A, the same holds for all
exponentials: (PA)™V = A™V. Since the deflated residual Prg is an element
of col V| it follows that

Kum(PA, Pro) = K (A, Pro). (4.18)

When A is symmetric, P becomes an orthogonal projection. Therefore it is
equal to the projection used by Arnoldi’s method, when it makes a newly cal-
culated vector perpendicular to all previously calculated vectors. Consequently,
when Arnoldi’s method is modified such that it creates an orthonormal basis
for col Z ® K(A, 1), the solution space does not change. When a solution is
constructed by FOM, it will indeed be identical to the one found with eigenvalue
deflation since then r L col Z. For other Krylov methods the results may not
be equal.

The resulting method starts with a set of eigenvectors, constructs an orthonor-
mal basis for the spanned subspace and then switches over to the Krylov sub-
space K(A,rg). Although strictly spoken symmetry is required for Arnoldi’s
method to project vectors to the span of the remaining eigenvectors, this method
seems to yield good results for general matrices as well. Combined with GM-
RES, this is known as augmented GMRES, described a.o. by Morgan [8]. This
method uses information about the eigenvectors that is generated during GM-
RES to construct a set of approximate eigenvectors, corresponding to the small-
est eigenvalues, and uses these to augment the Krylov subspace after a restart.
This way, the detrimental effects that restarting has on convergence can be
reduced considerably.

CHAPTER 4. IMPLEMENTATION 49

4.8.8 Subdomain deflation

The physical deflation vectors found by Vuik et al. [18] for a symmetric matrix
A constitute a base of continuous, piecewise linear vectors. It was found later
[17] that when this set is replaced with a (larger) set that spans the space of
piecewise constant vectors, convergence improves, even though this is no longer
an invariant subspace of A. Apparently this type of deflation still decreases the
effective condition number, meaning that whatever non-zero eigenvalues remain
are more clustered than the original spectrum.

In a domain decomposition setting, the space of vectors that are constant on
subdomains is the column space of the matrix which entries are defined by:

1 i€ QS
Zij = 1 < J (419)
0 i¢Q,

where the 27 are disjoint index sets such that U; Q% = Q°. The matrix E in the
definition of P, Equation (4.10), is defined as Z* AZ. With the above definition

of Z this evaluates to
Cmn = Z aij. (420)
(1,7)€Qp, xQ3,

It follows that if A is a sparse matrix, part of this sparsity will be inherited
by the matrix E. As a system of the form Ev = f must be solved each time
that the deflation operator P is applied, the work that is required for deflating
a vector decreases considerably due to this sparsity.

Note that the above defined deflation subspace was introduced earlier in this
section to clarify some aspects of the deflation method. It was argued that an
element Zp from this subspace represents a global, coarse grid solution, which
means that global errors of this form are ignored by the deflated method. Since
global errors are often the bottleneck for block-preconditioned methods, this
type of deflation, called subdomain deflation, is expected to speed up conver-
gence considerably. Mathematical proofs such as the one obtained for eigenvalue
deflation, however, are much harder to find for this type of deflation.

For symmetric matrices, some proofs do exist. Nicolaides [11] showed that the
effective condition number is at least as small as the condition number of the
original matrix, for a general set of deflation vectors. A stricter bound, specific
for subdomain deflation, was provided by Frank and Vuik [4], under the extra
condition that A is an M-matrix. They inferred that “subdomain deflation effec-
tively decouples the original system into a set of independent Neumann problems
on the subdomains, with convergence governed by the ‘worst-conditioned’ Neu-
mann problem”. This corresponds nicely with the view that subdomain-wide
errors are ignored, and that this causes the deflated method to converge faster.

The fact that Zu can be viewed as a coarse-grid solution makes subdomain
deflation very similar to the two-level methods described in the previous section.
Nabben and Vuik [10] proved, again only for the symmetric case, that when the
same matrix Z is used for both the restriction and interpolation operation, the

CHAPTER 4. IMPLEMENTATION 50

effective condition number of the deflated matrix is always less or equal than
the one with coarse grid correction. This means that the deflated method can
always converge faster, at the cost of increased work per iteration due to the
deflation operation. Since deflation is generally also the simplest of the two
methods in terms of implementation, it makes sense to focus the search for a
solution to the currently experienced VMS problems on deflation methods.

Chapter 5

Future research

The deflation method that was introduced in the previous chapter has been
widely tested, and is shown to give good results in many applications. It is,
however, hard to predict its effectiveness when applied to problems for which no
numerical results are available. This is certainly the case for the non-symmetric
systems that originate from the VMS method described in Chapter 2, because
little is known about the general case. Most theorems apply only to symmetric
matrices, and also most numerical tests are performed on symmetric matrices
only. It will therefore be interesting to see how deflation performs when it is
applied to the VMS method. This chapter lists some points of research.

The deflation method is supposed to solve the convergence problem that arises
from Schwarz-preconditioning the system. This is a domain decomposition
method that makes it possible to perform multiple computations simultane-
ously on separate computers, which should eventually lower computing times.
Also memory requirements will be lower as different parts of the solution can
be hosted on different computers. For problems small enough to fit on a sin-
gle computer, however, the subdomain-deflated algorithm can well be tested
sequentially, i.e. on a single computer. This way the pure performance of the
various algorithms can be measured, not accounting for differences in paralleliz-
ability. These can be examined further after the most promising algorithms
have been identified.

A distinctive element of deflation algorithms is the construction of a defla-
tion subspace. The previous chapter introduced subdomain deflation as the
deflation-counterpart of course-grid correction. This method has the advantage
over eigenvalue deflation that it does not require a set of eigenvectors, and that
the sparsity pattern of A is transferred over to E. Moreover, tests have shown
that subdomain deflation performs often as good or even better than eigenvalue
deflation. Research will therefore focus mainly on this type.

In addition to deflation vectors that are constant over a subdomain, Verkaik [16]
proposed in his master’s thesis to use linearly changing deflation vectors. This

51

CHAPTER 5. FUTURE RESEARCH 52

richer deflation subspace will be better able to approximate eigenvectors cor-
responding to small eigenvalues, and is therefore expected to result in a faster
convergent method. This idea can be extended even further by adding second
and higher order deflation vectors. The basis functions used in this implemen-
tation are of high order as well, and the two may go well together. The system
that must be solved for each application of projection P will, however, increase
drastically in size. The question is therefore which deflation order will yield the
best balance in convergence speed and work per iteration.

Finally there is the question how exactly to apply the deflation technique, be-
cause deflation is not a strict mathematical concept. The method that is most
often used in publications is based on the projection defined in Equation (4.10).
The matrix P is used to precondition the system, and the deflation subspace
component is calculated separately. This method, however, is tested mostly
on symmetric matrices and hence in combination with the Conjugate Gradi-
ent method. The previous chapter showed that the projection matrix looks a
little different when the GMRES method is used in its derivation. Since the
current implementation is based on GMRES, it will be interesting to examine
this projector as well.

Another often used method is augmented deflation, in which no projection is
used but the deflation vectors are added directly to the Arnoldi process. This
method is normally used in combination with GMRES, but not in in a subdo-
main setting. Instead, approximate eigenvectors are are added after a restart to
speed up convergence, so this method is more like eigenvalue deflation. It will,
however, be interesting to see what the effect is of augmented deflation based
on the above described subdomain deflation vectors.

Instead of trying these deflation methods directly in the VMS method, which
is reasonably complicated, useful experience can be gained from a simpler and
better known system. The two-dimensional Laplace equation, discretized using
finite differences on a square grid is an obvious choice. In order to stay close
to the eventual implementation, the symmetry of the coefficient matrix will be
ignored and the system will be solved using GMRES and a block ILU precondi-
tioner. This should provide some experience in the candidate deflation methods,
as well as the programming framework in which they will be implemented.

Next, deflation will be applied to the VMS method. A working VMS implemen-
tation is available and will be used as a testing ground for the various deflation
methods. This implementation is well tested and therefore a trusted data source
against which not only convergence rates can be compared, but also consistency
of numerical results can be checked. A consequence is that the test problems will
be limited to non-changing, rectangular domains such as shown in Figure 4.1,
page 37. From this domain, the upper and lower surface will represent a wall
with no-slip condition; the other four are periodic, so a flow between two in-
finite planes is simulated. Near the walls a higher resolution will be required
because of the small vortices in that area, and the domain must be large enough
to ensure that the turbulence is sufficiently decorrelated in all directions. The
resulting flow problem is known as planar channel flow, which is a widely used
test case for the research of turbulent flow.

Bibliography

[1]

[11]

[12]

John D. Anderson, Jr. Fundamentals of Aerodynamics. McGrawl-Hill, New
York, 2001.

S. Scott Collis. The dg/vms method for unified turbulence simulation. In
32nd AIAA Fluid Dynamics Conference and Exhibit, June 2002.

V. Faber and T. Manteuffel. Necessary and sufficient conditions for the
existence of a conjugate gradient method. SIAM Journal on Numerical
Analysis, 21:356-362, 1984.

J. Frank and C. Vuik. On the construction of deflation-based precondition-
ers. SIAM Journal on Scientific Computing, 23(2):442-462, 2000.

Thomas J.R. Hughes, Luca Mazzei, and Kenneth E. Jansen. Large eddy
simulation and the variational multiscale method. Computing and Visual-
ization in Science, vol. 3(no. 1/2):47-59, 2000.

E.F. Kaasschieter. Preconditioned conjugate gradients for solving singular
systems. Journal of Computational and Applied Mathematics, 24:265-275,
1988.

George Em Karniadakis and Spencer J. Sherwin. Spectral/hp element meth-
ods for CFD. Oxford University Press, Oxford, 1999.

Ronald B. Morgan. A restarted gmres method augmented with eigenvec-
tors. SIAM Journal on Matriz Analysis and Applications, 16(4):1154-1171,
1995.

E.A. Munts, S.J. Hulshoff, and R. de Borst. A space-time variational mul-
tiscale discretization for les. In 8/th AIAA Fluid Dynamics Conference and
Ezhibit, June 2004.

R. Nabben and C. Vuik. A comparison of deflation and coarse grid correc-
tion applied to porous media flow. SIAM Journal on Numerical Analysis,
42(4):1631-1647, 2004.

R. Nicolaides. Deflation of conjugate gradients with applications to bound-
ary value problems. SIAM Journal of Numerical Analysis, 24, 1987.

Stephen B. Pope. Turbulent Flows. Cambridge University Press, Cam-
bridge, 2000.

53

BIBLIOGRAPHY 54

[13]

[14]

[15]

[16]

[17]

[18]

Lewis F. Richardson. The supply of energy from and to atmospheric eddies.
Proceeding of the Royal Society, A97, 1920.

Yousef Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing
Company, 2000.

Barry F. Smith, Petter E. Bjgrstad, and William Gropp. Domain De-
composition: Parallel Multilevel Methods for FElliptic Partial Differential
Equations. Cambridge University Press, Cambridge, 1996.

Jarno Verkaik. Deflated krylov-schwarz domain decomposition for the in-
compressible navier-stokes equations on a colocated grid. Master’s thesis,
Delft University of Technology, 2002.

F.J. Vermolen, C. Vuik, and A. Segal. Deflation in preconditioned conjugate
gradient methods for finite element problems. 2002.

C. Vuik, A. Segal, and J.A. Meijerink. An efficient preconditioned cg
method for the solution of a class of layered problems with extreme con-
trasts in the coefficients. Journal of Computational Physics, 152:385-403,
1999.

Index

additive Schwarz, 32
Arnoldi’s method, 22
augmented GMRES, 48

basic iterative method, 20
BCG, 26

Bi-Lanczos Algorithm, 25
BICGSTAB, 27
Biconjugate Gradient, 26

Biconjugate Gradient Stabilized, 27

BIM, 20

Cartesian tensor notation, 5
CG, 25

closure problem, 8

Conjugate Gradient Method, 25
Conjugate Gradient Squared, 27
conservation variables, 7
continuity equation, 6
continuum hypothesis, 5

deflation subspace, 42
deflation vectors, 42

Direct Numerical Simulation, 7
DNS, 7

eddy, 7

eddy-viscosity model, 7
effective condition number, 48
eigenvalue deflation, 47

Einstein summation convention, 5

energy cascade, 7
energy equation, 6

FOM, 22

Full Orthogonalization Method, 22

Gauss Jacobi iteration, 20
Gauss Seidel iteration, 20
Gaussian elimination, 18
GCR, 24

Generalized Conjugate Residual, 24

Generalized Minimum Residual, 23

Givens rotations, 24
GMRES, 23
GMRESR, 25

ILU, 30
Incomplete LU, 30
iteration matrix, 20

jump condition, 14

Lanczos algorithm, 25
Large Eddy Simulation, 7
LES, 7

location operator, 14

LU decomposition, 30

modal p-type expansion, 12
momentum equations, 6
multiplicative Schwarz, 32

Navier-Stokes equations, 5
Newton’s method, 16

physical deflation, 48
preconditioning, 29

residual vector, 19

Schur complement matrix, 34
Schwarz methods, 31
serendipity expansion, 13
SOR, 20

subdomain deflation, 49
Successive Over-Relaxation, 20

time-discontinuous Galerkin, 14

Variational Multi-Scale, 8
VMS, 8

