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Abstract—The power flow problem is generally solved by the
Newton-Raphson method with a sparse direct solver for the linear
system of equations in each iteration. In this paper, alternatives
based on iterative linear solvers are presented that are faster and
scale much better in the problem size, making them ready for
the ever-growing power systems of the future. For the largest test
problem, with around one million busses, the presented alternative
is over 120 times faster than using a direct solver.

Index Terms—Approximate minimum degree reordering, ILU
k-levels, Krylov methods, LU factorization, Newton-Raphson
method, power flow analysis, preconditioning, scaling.

I. INTRODUCTION

HE power flow, or load flow, computation is the most
T important network computation in power systems. It
calculates the voltage magnitude and angle in each bus of a
power system, under specified system operation conditions.
Other quantities, such as current values, power values, and
power losses, can be calculated easily when the bus voltages
are known. In other words, power flow computations provide a
steady-state simulation of power systems.

The consumption of electricity keeps on rising each year. As
aresult, power systems grow larger and more complex to supply
all consumers.

More and more nationwide power systems are being con-
nected to each other, to be able to exchange cheap excess power.
This results in huge connected power systems, with many times
the busses and transmission lines of the classical systems. A
small set of simultaneous failures could propagate through the
entire system, causing a massive blackout. Therefore, providing
security against overloading is more important than ever.

Another important development in power systems is the in-
corporation of renewable energy sources, such as wind and solar
energy. Traditional generators are connected to the transmis-
sion network. This is referred to as centralized power genera-
tion. Renewable energy generation is often decentralized, i.e.,
connected to the distribution network at consumer level. Also,
renewable sources are mostly natural and often have an uncon-
trollable power output.
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Power flow calculations are generally done on the transmis-
sion network, and the distribution network is aggregated at
busses in the power system model. The decentralized nature of
the renewable energy generation, however, may in time call for
a more complex distribution network that can no longer easily
be aggregated. Then power flow calculations may also have to
incorporate the distribution network, resulting in power flow
problems of sheer massive size.

Traditionally the power flow problem is solved by use of the
Newton-Raphson method, with a direct solver for the linear sys-
tems [1], [2]. It has been recognized that iterative linear solvers
can offer advantages over sparse direct solvers for large power
systems [3]-[7].

The question arises when iterative methods are better than
direct methods for power flow problems. The key to answering
this question is in the scaling of the computational time of the
power flow algorithm in the problem size.

This question is answered in this paper for a test set of power
flow problems ranging up to one million busses. The scaling
of the Newton-Raphson method with a direct solver is tested,
and it is compared with the scaling behavior of the Newton-
Raphson method with an iterative linear solver with a selection
of preconditioners.

We show that direct solvers, and other methods using a com-
plete LU factorization, scale very badly in the problem size.
The alternatives proposed in this paper are faster for all tested
problems and show near linear scaling, thus being much faster
for large power flow problems. Using a direct solver the largest
problem takes over an hour to solve, while our solver can solve
it in less than 30 s, that is 120 times faster.

Furthermore, the proposed methods have more variables to
tune than when using a direct linear solver. As such, they offer
more options to reuse information and tweak settings when
solving many closely related power flow problems, as is done
for example in contingency analysis.

The implementation of our solver is done in C++ using
Portable, Extensible Toolkit for Scientific Computation
(PETSc) [8], a state-of-the-art C library for scientific com-
puting. PETSc can be used to produce both sequential pro-
grams, and programs running in parallel on multiple processors.
The experiments of which the results are presented in this paper
were all executed on a single processor core.

The test set of power flow problems used is based on the
UCTE! winter 2008 study model, which consists of 4253 busses

T'UCTE is a former association of transmission system operators in Europe.
As of July 2009, the European Network of Transmission System Operators for
Electricity (ENTSO-E), a newly formed association of 42 TSOs from 34 coun-
tries in Europe, has taken over all operational tasks of the existing European
TSO associations, including UCTE. See http://www.entsoe.eu/
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and 7191 lines. The smallest problem is the UCTE winter 2008
study model itself, while the larger problems are all constructed
by copying the model multiple times, and interconnecting the
copies with new transmission lines.

II. POWER FLOW PROBLEM

The power flow problem is the problem to determine the
voltage at each bus of a power system, given the supply at each
generator and the demand at each load in the network.

LetY = G+ 5B denote the network admittance matrix of the
power system. Then the power flow problem can be formulated
as the nonlinear system of equations

N
Z [VillVi|(Gix, cos b1 + Bir sin b)) = P; (D
k=1

N
Z [VillVi|(Gik sin 65 — Bix, cos 6;x) = Q; )
k=1

where |V;| is the voltage magnitude, é; is the voltage angle, with
0i; = 6;—0;, P; is the active power, and (); is the reactive power
at bus 2. For details, see for example [9] and [10].

Define the power mismatch function as

Flz) P; = 00, Vil Vil (Gik cos 85 + By sin 6iz,)
) =

Qi — 25:1 [Vil|Ve|(Gir sin 6, — By, cos 6ix,) )
where z is the vector of voltage angles and magnitudes. Then
the power flow problem (1), (2) can be reformulated as finding
a solution vector £ such that

F(z) =o0. “)

This is the system of nonlinear equations that we solve to find
the solution of the power flow problem.

III. POWER FLOW SOLUTION

Our solver is based on the Newton-Raphson method for sys-
tems of nonlinear equations like (4). This iterative method up-
dates the approximate solution &; in iteration ¢ with a Newton
step 8;, calculated from the linear system of equations

Jis; = —F; (5)

where J; is the Jacobian of the power mismatch F'. For details
on the Newton-Raphson method, see for example [11].

In power flow analysis, the classical way to solve the linear
system (5) is with a direct solver. Effectively, this means that .J;
is factorized into a lower triangular factor L;, and an upper tri-
angular factor U;, such that L;U; = .J;. Then the linear problem
L;U;8; = —F; can be solved using forward and backward sub-
stitution, which are both very fast operations.

The LU factorization was originally designed for full ma-
trices, and has complexity n> in the problem size n. It was
adapted very efficiently for sparse matrices, like the Jacobian
matrix J; in the power flow problem. Although the scaling of
the LU factorization’s computational time in the problem size
is much more complex for sparse matrices, it is well-known that
in general it scales worse than linearly for large problem sizes.

This is also clearly illustrated by the numerical experiments in
Section VII. For more information on sparse direct methods, see
for example [12] and [13].

To get a power flow solver that scales better for large prob-
lems, we look at alternative linear solvers for problem (5) in
the form of iterative methods, in particular the Generalized
Minimal Residual method (GMRES) [14]. The reason to use
GMRES is that it, being a minimal residual method, solves the
problem in the least number of matrix-vector multiplications.
Whether other iterative linear solvers, like Bi-CGSTAB [15],
[16] or IDR(s) [17], should also be considered, can be derived
from the performance of GMRES.

With the Newton-Raphson method, there is only a certain ac-
curacy that can be reached in each iteration. Solving the linear
system to an accuracy higher than that needed to reach the best
Newton-Raphson accuracy in the current step would be a waste
of computational time. Therefore, when using an iterative linear
solver, the linear systems should not be solved to full precision.
Instead forcing terms 7); should be determined, and the iterative
linear solver used to solve up to

|Ji8i + Fil| < il Fsl. (6)

This is called an inexact Newton-Krylov method [18].

In [6], we discussed three methods of choosing the forcing
terms 7);. Throughout this paper, the method proposed by Eisen-
stat and Walker [19] is used. This method has been successfully
used in practice on many different problems, and also provided
very good results for us. The method based on [20] gave similar
good results for our test cases, but the method derived in [21]
generally yielded forcing terms that were too small, resulting in
oversolving.

IV. PRECONDITIONING

Essential to the performance of a Krylov method like GMRES
is a good preconditioner. See for example [22] for information
on preconditioning. In our solver, we use right preconditioning,
meaning that we iteratively solve the linear system

J,L-Pi_lzi = —Fi @)

and then get the Newton step 8; by solving P;8; = z;. For fast
convergence, the preconditioner matrix P; should resemble the
coefficient matrix .J;. At the same time, a fast way to solve linear
systems of the form P;u; = v; is needed, as such a system has
to be solved in each iteration of the linear solver.

In this paper, we consider preconditioners in the form of a
product of a lower and upper triangular matrix P; = L;U;.
Any linear system with coefficient matrix P; can then simply
be solved using forward and backward substitution. To get such
a preconditioner, we choose a target matrix (J; and then con-
struct either the LU factorization L;U; = ; or an incomplete
LU (ILU) factorization [23], [24] L;U; of Q;. In the case of
the full LU factorization, this leads to a preconditioner P; =
L;U; = @;, whereas with the ILU factorization, the precon-
ditioner P; = L;U; only resembles the target matrix ();. The
trade-off here is that an ILU factorization is cheaper to build
than an LU factorization, whereas the full LU factorization will
generally result in a better preconditioner.
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There are three choices that are considered for the target ma-
trix ;. These are the Jacobian matrix (); = .J;, the initial Jaco-
bian matrix ; = Jy, and Q); = @, where

B 0
Q= [ 0 B//:| ®)

with B" and B” as in the BX scheme of the Fast Decoupled Load
Flow (FDLF) [25] method as proposed by van Amerongen [26].

The FDLF matrix @ can be seen as an approximate Schur
complement of the initial Jacobian matrix [27]. In previous
studies, ¢ has already proven to be a good preconditioner [3],
[6], while containing only half the non-zeros of the Jacobian
matrix, thus providing benefits in computing time and memory.

Other preconditioners that are known to often work well for
large problems are preconditioners based on iterative methods.
Only stationary iterative methods can be used as a precondi-
tioner for standard implementations of GMRES, Bi-CGSTAB,
and IDR(s). Non-stationary iterative methods, like GMRES it-
self, can only be used with special flexible iterative methods,
like FGMRES [28]. The use of FGMRES with a GMRES-based
preconditioner has been explored in [7].

Algebraic Multigrid (AMG) methods can also be used as a
preconditioner. Running one cycle of AMG, with a stationary
solver on the coarsest grid, leads to a stationary preconditioner.
Such a preconditioner is very well suited for extremely large
problems. For more information on AMG, see [29, App. A].

V. FACTORIZATION

As mentioned in the previous section, complete and incom-
plete LU factorizations of the target matrix ); are used to con-
struct preconditioners. In this section, we consider the quality
and fill, i.e., the number of non-zeros, of the preconditioners
and how to control these properties.

When using a full LU factorization, the quality of the pre-
conditioner is predetermined by the choice of the target ma-
trix, as P; = ;. However, when doing an LU decomposi-
tion on a sparse matrix, the factors L; and U; generally have
more non-zeros than the original matrix @;. This is referred to
as fill-in. The number of non-zeros in the factors divided by the
number of non-zeros in the original matrix is called the fill-in
ratio. The higher the fill-in ratio is, the more memory and com-
putational time is needed for the factorization and the forward
and backward substitutions. It is therefore paramount to try to
minimize the fill-in of the LU factorization.

The fill-in can be controlled by reordering the rows and
columns of the matrix that has to be factored. However, finding
the ordering that minimizes fill-in has been proven to be
NP-hard [30]. Many methods have been developed to quickly
find a good reordering; see for example [12] and [13].

The method of incomplete LU factorization used is ILU(k),
where k is the number of levels of fill-in. This method deter-
mines the allowed non-zero positions in the factors based on
the k-level, and subsequently calculates the best values for these
non-zero positions.

As the fill-in is predetermined, one might think that re-
ordering is not important. However, even if the reordering does
not influence the fill-in for an ILU(k) factorization, it does
influence the quality with which L;U; approximates Q);.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 27, NO. 1, FEBRUARY 2012

TABLE 1
LU FACTORIZATION OF .Jo FOR uctew(032

reordering | none  AMD
factorization time 33.6 0.53
fill-in ratio 35 2.3
TABLE II
POWER FLOW TEST PROBLEMS
busses lines nnz(J)
uctew001 4.25k 7.19k 62.7k
uctew002 8.51k 14.4k 125k
uctew004 17.0k 28.8k 251k
uctew008 34.0k 57.6k 502k
uctew016 68.0k 115k 1.00M
uctew032 136k 231k 2.01M
uctew064 272k 462k 4.02M
uctew128 544k 924k 8.05M
uctew256 1.09M 1.85M 16.1M

In our experiments, using no reordering was compared
with the PETSc implementations of Nested Dissection (ND),
One-way Dissection (1WD), Reverse Cuthill-McKee (RCM),
Quotient Minimum Degree (QMD), and Approximate Min-
imum Degree (AMD). Of these, the AMD reordering [31] was
a clear winner, being the fastest to compute while yielding the
least fill-in with a full LU factorization and the best quality ILU
factorizations at the same time. Reordering methods of UMF-
PACK [32], SuperLU [33], SuperLU_DIST [34], and MUMPS
[35] were also tested, but none yielded an improvement over
the PETSc AMD reordering for our problems.

To illustrate the impact of the AMD reordering, Table I shows
the results of a single LU factorization of the initial Jacobian
matrix Jy for the uctew032 problem (see Table II). The factor-
ization time is measured in seconds.

The influence of reordering on the TLU(k) factorization is
less drastic, but still very useful. For the uctew032 case, when
solving the initial Jacobian system Jy8g = —F with an ILU(k)
factorization of .J as preconditioner, with different choices of
k, GMRES needed around 25% less iterations to converge when
using the AMD reordering, compared to using no reordering.

VI. FLEXIBILITY

In the previous sections, a number of options were discussed,
that have to be considered when solving a power flow problem
with an inexact Newton method with preconditioned linear
solver. These options do not only provide flexibility when
dealing with a single power flow problem, but even more so
when solving many closely related power flow problems, as for
instance in contingency analysis.

For example, after solving a base case, a preconditioner can
be made by factorizing the Jacobian in the solution of the base
case. This preconditioner can then be used for all the derived
power flow cases, saving time in the solution process of each of
those cases.

Further, when solving a high amount of similar problems,
some extra time can be spent on tailoring the preconditioning
and forcing terms to the base case, because a lot of time can be
won overall if each of the derived cases solves a bit faster.
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TABLE III
PRECONDITIONERS
target | reordering | factorizations | fig.
T; AMD LU ILU@) ILU®) ILU(12) | 1
Jo ‘ AMD LU ILU@) ILUE®) ILU(12) | 2
® AMD LU ILU@) ILU®) ILU(12) | 3
TABLE 1V
SOLUTION TIME FOR SMALL TEST CASES
busses | 4.25k 8.5k 17k 34k
direct solver | 0.077 0.157 0.328 0.693
LU of Jo 0.060 0.124 0.255 0.524
LU of & 0.063 0.125 0.260 0.558
ILU(12) of J; | 0.090 0.190 0.393 0.842
ILU(12) of Jo | 0.082 0.176  0.290  0.596
ILU(12) of & | 0.076 0.152 0.318 0.718

VII. NUMERICAL EXPERIMENTS

In this section, we present the results of our numerical exper-
iments. All tests are performed on a single core of a machine
with Intel Core2 Duo 3-GHz CPU and 16-Gb memory, run-
ning a Slackware 13 64-bit Linux distribution. The problems
are solved from a flat start, up to an accuracy of 1076 p.u.

The test cases used are created using the UCTE winter 2008
model, as described in Section I. Table II shows the number of
busses and lines in the test problems, as well as the number of
non-zeros in the Jacobian matrix nnz(.J). The naming conven-
tion used is uctew XXX, where XXX is the number of times the
model is copied and interconnected.

The test problems are solved with inexact Newton-GMRES,
using the Eisenstat and Walker forcing term strategy. We also
report on the use of Bi-CGSTAB instead of GMRES.

Table III shows all the preconditioners reported on in this sec-
tion. Note that ILU factorizations with less than 4 levels resulted
in too slow GMRES convergence to be useful, and ILU with
more than 12 levels took more time to calculate while yielding
no significant improvement in the preconditioner.

A. Small Test Cases

In Table IV, the solution times for the smaller test systems
are shown in seconds. For these systems, using the LU factor-
ization of the initial Jacobian .Jy as a preconditioner is clearly
the fastest. Preconditioners based on ILU(4) and ILU(8) were
slightly slower than those based on ILU(12).

When solving a single power flow problem, all these methods
are acceptable. When using the power flow solver as part of a
larger solver that has to solve many power flow problems, as for
example in contingency analysis, using the LU factorization of
Joy can lead to a significant benefit.

B. Scalability

First, preconditioners based on the Jacobian matrix are con-
sidered, i.e., Q; = J;. Fig. 1 shows the solution time in seconds
versus the number of busses. Note that using a full LU factoriza-
tion in this case is effectively the same as using a direct solver.

It is clear that the direct solver does not scale well in the
problem size. The performance is acceptable up to a problem
size of about 150 k busses, but deteriorates rapidly for larger
problems. The largest problem, uctew256, took over an hour to

100
|
90 - 2 ] "
Bl
804 * \"
704
O
(]
E
c
k=]
=
o
[72]
0' g T T T T T
0 200000 400000 600000 800000 1000000
busses

Fig. 1. Solution time in seconds with Jacobian preconditioner. I: LU of J;, II:
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Fig. 2. Solution time in seconds with initial Jacobian preconditioner. I: LU of
Jo, I: ILU(4) of Jo, II: ILU(8) of Jo, IV: ILU(12) of Jo.

solve with a direct linear solver, whereas the ILU(4), ILU(8),
or ILU(12) factorization of .J; as preconditioner all solved the
problem in less than a minute.

Next, preconditioners based on the initial Jacobian matrix are
tested, i.e., @Q; = Jy. Fig. 2 shows the solution times for these
preconditioners.

Since the preconditioner is the same in each iteration, only a
single factorization has to be made. As the factorization is by far
the most expensive computation, this is much faster than with a
direct solver, where a new factorization has to be made in each
iteration.

After the first iteration, .Jy will not be as good a precondi-
tioner as J;; thus, more GMRES iterations will be needed to
converge. The results show that using ILU(4) of .Jy is slower
than using ILU(4) of J;. This is because the ILU(4) factoriza-
tion is very fast, and most of the time is spend on the GMRES
iterations. With .Jy as preconditioner, the number of GMRES
iteration goes up by more than is saved by having to do only
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one factorization. However, for higher k-levels like ILU(12), the
extra GMRES iterations needed when using .Jy cost less time
than the extra factorizations needed for J;.

Finally, the FDLF matrix is used as basis for the precondi-
tioners, i.e., ; = ®. Fig. 3 shows the results.

Again only a single factorization has to be made, and the
target matrix now has about half the non-zeros of the Jacobian.
Because of this, using the LU factorization can stay competitive
with the ILU(k) alternatives longer, up to about 300 k busses.
However, for larger problems, the LU factorization scales badly
again, and the ILU(12) factorization is a clear winner.

Inspection of the solution times showed that for our test
problems, using preconditioners based on J; (including direct
solvers) was never better than using Q; = Jy or Q; = ®. Fur-
thermore, the ILU(12) factorization performed systematically
better than the other ILU options. Therefore, in Fig. 4 the LU
and ILU(12) factorizations of .Jy and @ are compared.
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Obviously, for the largest problems, the ILU(12) factoriza-
tions perform the best. The variant using ILU(12) of @ is slightly
faster, but close inspection of the solver output shows this is
actually due to the inexact Newton-Krylov solver needing 8
Newton-Raphson iterations when using Jy, against 6 iterations
for @. This has to do with being a bit lucky, or unlucky, at how
the Newton step exactly turns out for a certain problem under
the forcing term condition (6), much more than it has to do with
the quality of the preconditioner.

C. GMRES versus Bi-CGSTAB

To validate the choice of GMRES as iterative solver for our
power flow problems, Bi-CGSTAB was also tested with the
same preconditioners. Bi-CGSTAB should be expected to out-
perform GMRES when a lot of GMRES iterations are needed,
meaning that Bi-CGSTAB will become a better alternative when
the preconditioner becomes worse.

The tests showed that for the largest test problem,
Bi-CGSTAB was faster than GMRES when using ILU(4)
preconditioners, and slightly slower than GMRES with
ILU(12). Using ILU(4) with Bi-CGSTAB was still significantly
slower than using ILU(12) with either iterative linear solver.
The results for ILU(8) were hard to compare because an extra
Newton iteration was needed when using Bi-CGSTAB.

D. Robustness

The Newton-Raphson method with exact linear solver is
known to be locally convergent, meaning that it always con-
verges to a solution provided that the starting point is close
enough to that solution. The method can be made globally
convergent using either line search or trust regions. For details,
see for example [11]. Inexact Newton methods have also been
shown to be locally convergent [18], and can again be made
globally convergent with line search or trust regions.

Convergence of exact and inexact Newton methods are gen-
erally very close. Therefore, to compare the robustness of the
methods, the linear solvers should be compared. As direct linear
solvers are very robust, the focus of attention should be on the
iterative linear solver.

The convergence of Krylov solvers heavily depends on the
condition number of the coefficient matrix of the linear system
to solve. This is exactly why preconditioning is such an impor-
tant part of the solution process. The Jacobian systems of our
test cases are in fact very ill-conditioned. For example, the con-
dition number of the initial Jacobian .Jy of the uctew(QO01 test
case is 1.2 x 10°. This also explains why lower quality precondi-
tioners, like ILU(0), do not lead to convergence. However, with
the preconditioners P; based on LU and ILU(12) factorizations
suggested in this paper, the condition numbers of the precon-
ditioned coefficient matrices J,-Pi_1 drop below 10, leading to
very fast convergence.

To test the robustness of the methods suggested in this paper
experimentally in the context of the power flow problem, we
have run experiments on the uctew032 test case under different
loading levels. Both the Newton-Raphson method with direct
solver and the inexact Newton methods were able to solve the
problem up to a loading level of 160%, but failed to converge
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TABLE V
CONVERGENCE AT DIFFERENT LOADING LEVELS

load N  GMRES iterations g

100% | 6 21 [1,3,2,3,5,7] 3.5
110% | 6  21][1,3,2,3,5,7] 3.5
120% | 6  221[1,3,2,3,5,8] 4.1
130% 7  35[1,3,2,3,6,7,13] 4.6
140% 7 37[1,3,2,4,5.8,14] 54
150% 7 35[1,3,2,4,6,7,12] 6.8
160% 7 34[1,3,2,46,513] 104

at 170% without the help of line search or trust region tech-
niques. It should be noted here that the solution of the power
flow problem at the highest loading levels had such large voltage
angles not to be of practical value, indicating that the solvers are
well up for any practical loading levels of the power system.

Table V shows test results at different loading levels for the
uctew(32 test problem, using the LU factorization of .Jy as
preconditioner. Presented are the number of Newton iterations
N, the GMRES iterations (total, and the number performed
in each Newton iteration), and an estimate 6 of the condition
number of the preconditioned coefficient matrix in the last
Newton iteration.

The solution of the problem with higher loading levels lies
further away from the flat start than with lower load. Since the
preconditioner is based on the Jacobian at a flat start, the Jaco-
bian near the solution also differs more from the preconditioner
for high loading levels. As a result, the condition number of the
preconditioned coefficient matrix in the last Newton iteration
goes up with the loading level. However, overall the condition
number stays very small and GMRES convergence does not de-
teriorate visibly. It does take longer to solve the systems with
high load, but this is due to Newton convergence suffering, and
not the linear solver. Similar results hold for the other precon-
ditioners suggested in this paper.

VIII. CONCLUSIONS

The experiments in this paper clearly illustrate the bad
scaling of the LU factorization in the problem size. Because
of this bad scaling, direct sparse solvers, but also Krylov
methods with preconditioners based on the LU factorization,
are not viable options for the solution of the linear systems that
arise when solving very large power flow problems with the
Newton-Raphson method. For the same reason, the classical
implementation of the Fast Decoupled Load Flow method is
also not viable for very large problems.

To solve very large power flow problems, a scalable solver
to solve the linear systems is needed. In this paper, we
have proposed to use an iterative linear solver, in particular
GMRES, with an ILU(k) factorization of the Jacobian matrix
J;, the initial Jacobian matrix Jy, or the FDLF matrix &, as
preconditioner.

We have shown that a good reordering strategy is essential to
reduce the fill-in of the LU factorization, but also very impor-
tant to improve the quality of ILU factorizations. In [6], we al-
ready showed the importance of choosing good forcing terms for
the inexact Newton-Krylov method. Using the AMD reordering,
and the Eisenstat and Walker forcing terms, we have conducted
experiments on power flow problems up to a million busses.

The experiments show that the ILU (k) preconditioners scale
very well for the tested problem sizes. Factorizing a precondi-
tioner once at the start, i.e., using .Jy or @, generally performed
better than refactorizing in each iteration, i.e., using .J;. For large
problems, the best results were obtained with an ILU(12) factor-
ization of either Jy or @ as a preconditioner, solving the largest
test case with over a million busses in around 30 s.

For smaller problems, using the LU factorization of .Jy as a
preconditioner for GMRES performed best, beating the direct
solver by a substantial margin.

Further, the extra variables of the proposed methods lead to
more flexibility when solving derived problems, like contin-
gency analysis.

Experiments with Bi-CGSTAB showed to be very compet-
itive for large problems. When using lower quality precondi-
tioners, i.e., ILU factorization with lower k-levels, Bi-CGSTAB
led to a faster power flow solver than GMRES with the same
preconditioners. However, the best results were still those of
GMRES with ILU(12)-based preconditioners.

Finally, experiments with a test case at different loading
levels indicated that the proposed methods are equally robust
as Newton-Raphson with a direct solver.
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