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Abstract—Current and future developments in the power system
industry demand fast power flow solvers for larger power flow
problems. The established methods are no longer viable for such
problems, as they are not scalable in the problem size.
In this paper, the use of Newton-Krylov power flow methods is

proposed, and a multitude of preconditioning techniques for such
methods are discussed and compared. It is shown that incomplete
factorizations can perform very well as preconditioner, resulting
in a solver that scales in the problem size. It is further shown that
using a preconditioned inner-outer Krylov method has no signif-
icant advantage over applying the preconditioner directly to the
outer iterations. Finally, algebraic multigrid is demonstrated as a
preconditioner for Newton-Krylov power flow and argued to be the
method of choice in some scenarios.

Index Terms—Algebraic multigrid, flexible inner-outer Krylov
methods, incomplete factorizations, Newton-Krylov methods,
power flow analysis, preconditioning.

I. INTRODUCTION

I N recent years the power systems industry is experiencing
a radical change, driven by the imperative to shift to a

more competitive and less carbon intensive energy system. As
the penetration of variable renewables and distributed energy
sources increases, and power markets get more integrated,
existing infrastructures are expected to evolve in two major
directions [1]:
1) Supergrids: much longer and higher rated transmission
lines are needed to transport renewable energy from dis-
tant areas, and to enable the coupling of power markets.
This increased interconnection dictates the integrated
management of power systems of continental scale.

2) Smartgrids: ICT technologies and local energy storage will
allow the integration of intelligence in the demand, and
enable large scale demand response actions in the system.
Distribution networks will be transformed into active net-
work clusters (smartgrids), consisting of loads and local

Manuscript received June 15, 2012; revised November 06, 2012 and February
04, 2013; accepted March 07, 2013. Date of publication April 19, 2013; date
of current version October 17, 2013. This work was supported in part by JRC
Institute for Energy and Transport. Paper no. TPWRS-00672-2012.
R. Idema, D. Lahaye, and C. Vuik are with the Delft Institute of Applied

Mathematics, Delft University of Technology, Delft, The Netherlands.
G. Papaefthymiou is with the Power Systems and Markets Department,

Ecofys Germany GmbH and with the Electrical Power Systems Department,
Delft University of Technology, Delft, The Netherlands.
L. van der Sluis is with the Electrical Power Systems Department, Delft Uni-

versity of Technology, Delft, The Netherlands.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TPWRS.2013.2252631

generation and storage, which will assume a significant
role in the management of the power system.

In the light of this system transformation, new computational
algorithms are needed that allow the simulation of continental
wide systems in short time, for operational purposes. The
integrated operation of transmission and distribution systems,
spanning vast geographic areas—as dictated by the above-men-
tioned developments—translates into the need for analysis and
simulation of very large networks.
Typically, operational security assessment involves offline

contingency analysis [2], resulting in a large number of power
flow simulations for slightly modified network configurations.
In the new competitive environment, system security assess-
ment has to be performed as close as possible to real time, with
sufficient speed to either trigger an automatic control action, or
to allow time for the operator to react [3]. Further, the incorpo-
ration of variable renewable generation creates uncertainty in
the expected infeeds, and thus in the conditions for the chosen
network configurations. To include this uncertainty, Monte
Carlo techniques can be employed, which consist of the sam-
pling of stochastic infeeds and the simulation of a large number
of system states [4]. For all these tasks the main computational
burden lies in the repetitive simulation of slightly modified
versions of a power flow problem.
For the typical size of networks analyzed in control rooms

today, classic power flow solvers offer good performance. How-
ever, these solvers are not so efficient when the problem size is
increasing, and they become extremely slow for very large net-
works. An approach in dealing with the computational burden
of operational tasks, is to distribute computations among mul-
tiple servers [5].
Taking into account the size of future networks, new solvers

are needed that are scalable in the problem size. In this paper
we propose the use of Newton-Krylov power flow methods,
and analyze a multitude of preconditioning techniques to opti-
mize performance. The good results of incomplete LU factoriza-
tions [6] are explained, and extended with incomplete Cholesky
factorizations. Further, inner-outer Krylov methods are investi-
gated as linear solver for Newton power flow. And finally, Al-
gebraic multigrid (AMG) is introduced as a preconditioner for
Newton-Krylov power flow methods.
The presented methods perform much better than classic

methods for large network sizes, and are better suited for
operational tasks as they allow more information to be reused
when solving similar problems. Algebraic multigrid is also
well-suited for a parallel computing environment.
Newton-Krylov solvers with factorized preconditioners have

frequently been suggested for power flow problems [6]–[11].
Further, in [12] an inner-outer Krylov method was suggested.
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Preconditioned Krylov methods have also been suggested for
fast decoupled load flow [13], [14], but in the discussion of [14]
it was already suggested that future research should focus on
Newton power flow.
With this paper we aim to contribute the following:
• Introducing the preconditioner matrix Φ that allows the
use of Cholesky factors and CG in Newton power flow,
which were generally reserved for FDLF only.

• Introducing Algebraic Multigrid as a scalable paralleliz-
able preconditioner for Newton-Krylov power flow.

• To give proper consideration to tolerance settings, in the
form of forcing terms for Newton-Krylov methods and
inner iteration accuracies for inner-outer Krylov methods.

• Distinguishing between minimal residual Krylov methods
and Krylov methods with short recurrences, and using
them based on the quality of the preconditioner.

• Performing numerical experiments on very large test cases,
to show the potential of the presented methods to be used
on such large cases in the future.

II. POWER FLOW PROBLEM

The power flow equations, are equations that relate the power
to the voltage in each bus in the power system. Let be the
voltage magnitude, the voltage angle, the active power,
the reactive power, and the admittance matrix.

Further, define . The power flow equations in bus
can then be written as

(1)

(2)

Combining the power flow equations (1), (2) in all buses,
yields a nonlinear system of equations

(3)

where is known as the power mismatch function.
Given the supply and demand in the power system, the power

flow problem (3) can be solved to reveal the steady-state volt-
ages in the power system. For more information on power sys-
tems and power flow, see for example [15].
Traditionally, the power flow problem is solved using the

Newton-Raphson method with a direct solver [16], [17], or
using the fast decoupled load flow (FDLF) method [18]–[20].
In [6] we showed that the LU factorization—which is used by
both these traditional methods—is not viable for very large
power flow problems. As an alternative, we proposed the use
of Newton-Krylov methods: inexact Newton methods that
incorporate Krylov methods to solve the linear problems.

III. INEXACT NEWTON METHODS

The Newton-Raphson method, for the solution of nonlinear
systems of equations, is an iterative method that updates the it-
erate in each iteration by adding a Newton step. The Newton
step is calculated by solving the linearized system in the cur-
rent iterate, i.e.,

(4)

where is the Jacobian matrix of the power mismatch .

Inexact Newton methods use the same principle, except that
the linear system (4) is not solved to full accuracy. Instead, a
solution is calculated that satisfies

(5)

The values are called the forcing terms.
It has been proven that—if the forcing terms are chosen

correctly—inexact Newton methods exhibit the same quadratic
convergence as the Newton-Raphson method [21]. Too large
forcing terms lead to slower convergence, whereas choosing
the forcing terms too small leads to oversolving. Especially
in early iterations, the forcing terms can be chosen quite large
without compromising convergence. In the numerical exper-
iments presented in this paper, the forcing terms are chosen
using the method by Eisenstat and Walker [22].
It is very important to choose the forcing terms with care. A

bad choice can not only lead to slow convergence, or wasting
computational time on oversolving, but can also invalidate the
comparison of different methods. For example, when choosing
the forcing terms implicitly by setting a fixed number of Krylov
iterations, there is bound to be either oversolving in early iter-
ations or slow convergence in later iterations. Moreover, when
comparing two preconditioners with a fixed number of Krylov
iterations, a higher quality preconditioner leads to smaller
forcing terms. Any observed differences in convergence will
be due to the implicit forcing terms, and give no indication
on which preconditioner would perform better when proper
forcing terms are used.
Further note that the exact Newton step is generally not the

best of all the steps that satisfy (5). An inexact solution of the
Jacobian system may lead to a slightly worse iterate than the
exact solution; however, it may also very well lead to a better
iterate. If the convergence of two Newton methods differs a lot
for the same nonlinear problem, then either one of the methods
got luckywith the iterates, or one of themethods is using forcing
terms that are too large.

IV. KRYLOV METHODS AND PRECONDITIONING

Krylov subspace methods are iterative linear solvers that
generate iterates within Krylov subspaces based on the linear
system of equations [23]. For a linear system with
given initial iterate , the initial residual is , and
the Krylov subspace of dimension is defined as

(6)

A Krylov method produces iterates such that

(7)

Krylov methods that calculate the best iterate within the
Krylov subspace—in the sense that the residual
is minimized—are referred to as minimal residual methods.
Another desirable property for Krylov methods is that of short
recurrences. An algorithm is said to have short recurrences, if
in each iteration only data of a fixed low number of previous
iterations is needed. It has been proven that Krylov methods
cannot have both the minimal residual property and short
recurrences [24], [25]. Bi-CGSTAB [26], [27] and IDR
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[28] are examples of methods that have short recurrences, but
not the minimal residual property. GMRES [29] is a minimal
residual method, but the amount of data and work grows with
every iteration. It is possible to restart GMRES after a certain
amount of iterations to reset the amount of data and work, but
then the minimal residual property is lost.
Preconditioning is a technique that changes the Krylov

subspace, and thus the iterates produced by a Krylov method.
Good preconditioning is essential for the performance of
Krylov methods [23]. In the numerical experiments presented
in this paper, we use right preconditioning. This means that
instead of solving the original linear system , the
preconditioned system

(8)

is solved, after which the solution to the original system is cal-
culated by solving . The advantage of right precondi-
tioning is that the residual of the preconditioned system is the
same as that of the original system.
The closer the preconditioner matrix resembles the coef-

ficient matrix , the faster Krylov methods can be expected to
converge. However, a linear system of the form has to
be solved in every iteration, and one more such system at the
end to obtain the solution of the original problem. Thus it is im-
perative that such systems can be solved efficiently.
Krylov methods usually expect the preconditioner to be

the same in each linear iteration. However, so-called flexible
Krylov methods allow the preconditioner to vary. Examples of
such methods are GMRESR [30] and FGMRES [31].

V. PRECONDITIONING THE POWER FLOW PROBLEM

In each Newton iteration, a preconditioner is needed for
the Jacobian system (4). This gives the linear system

(9)

from which the Newton step is calculated by solving

(10)

In this paper we investigate LU and Cholesky factorized ma-
trices as preconditioner, preconditioned Krylov methods as pre-
conditioner (also known as inner-outer Krylov methods), and
Algebraic Multigrid as preconditioner. Newton-Krylov power
flow with factorized preconditioners was previously explored in
[6] and [9]–[11]. In [12] GMRES as preconditioner for Newton-
Krylov power flow was investigated.
All the treated preconditioners are based on one of three ma-

trices: the coefficient matrix , the initial Jacobian , or the
matrix Φ , a special symmetric positive definite M-matrix de-
rived from the fast decoupled load flow method.
The FDLF matrix Φ is constructed as follows. Shunts are

removed from the power system model, transformer ratios are
set to 1, and the phase shifts of phase-shifting transformers are
set to 0. For this modified model the fast decoupled load flow
matrices and are calculated, according to the BX scheme.
Then

Φ (11)

In the absence of negative reactances, the result is a symmetric
positive definite M-matrix (see also [13]).
The special structure of the matrix Φ allows the use of

a Cholesky factorization, the conjugate gradient (CG) [32]
method, and algebraic multigrid. If the power system model
contains negative reactances, some extra adaptations may be
needed to use these methods. These methods cannot be used
when or is used as base matrix for the preconditioner.
Factorizations of matrices similar to Φ were already shown

to be good preconditioners in [6], [9], and [33]. Our experi-
ments indicated that preconditioning with Φ was not notice-
ably worse than with the unmodified version that was used in
[6].
Note that the preconditoner is constant in many of our ex-

periments, but the Jacobian matrix is not. There is no reason to
approximate the Jacobianmatrix, as it can be assembled cheaply
from the values that are calculated to evaluate .

A. Factorizations

Preconditioners in the form of a triangular factoriza-
tion—like the LU or Cholesky factorization—are popular
because can be solved with just a forward and
backward substitution, which is very fast. The Cholesky factor-
ization is more memory efficient, as only a single factor needs
to be stored, but requires to be symmetric positive definite.
For large matrices, calculating the factorization is computa-

tionally very expensive. Also, for sparse matrices the factors
generally contain many more nonzero entries than the original
matrix. This not only increases memory usage, but also the com-
putational cost of the forward and backward substitution oper-
ations. Smart reordering of the rows and columns of the matrix
can significantly reduce the fill-in.
Incomplete factorizations [34], [35] are factorizations that

merely approximate the original matrix. The aim is to reduce
the computational time needed to calculate the factors, and re-
duce the fill-in, while retaining a good approximation. When
used as a preconditioner, an incomplete factorization generally
leads to slower convergence compared to the full factorization.
However, for large problems the extra iterations of the linear
solver are generally much cheaper than the extra computational
cost of a full factorization.

and factorizations use the number of levels
to determine the approximation quality. Higher gives a better
approximation, but takes longer to calculate and also leads to
more fill-in.
Note that both the calculation of a factorization, and the for-

ward and backward substitution operations, are inherently se-
quential. A block diagonal approximation of the matrix can be
used to parallelize factorizations, at the cost of some of the
quality of the preconditioner.
In [6] we showed the following:
• LU factorizations (and thus also direct solvers) are not vi-
able for large power flow problems, but factoriza-
tions scale very well in the problem size.

• The approximate minimum degree (AMD) [36] reordering
should be used for all factorizations. It reduces the fill-in
for both complete and incomplete factorizations, and im-
proves the quality of incomplete factorizations.
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• A single factorization of a well-chosen preconditioner ma-
trix should be used throughout all Newton iterations.

Therefore, in this paper we consider factorizations of
, and factorizations of Φ , with AMD reordering, as

preconditioners. Complete LU factorizations, also with AMD
reordering, are only used as a reference.

B. Krylov Methods as Preconditioner

The application of any number of iterations of a Krylov
method forms an operator that can be used as a preconditioner.
The iterations of the method used to solve the Jacobian system
are called the outer iterations, while the iterations of the method
that is used as preconditioner are called the inner iterations.
Note that it is usually desirable to use preconditioning on the
inner Krylov method also.
Most Krylov methods are non-stationary, meaning that the

operation that results from a fixed number of iterations is gen-
erally not the same for all right-hand side vectors. When using
a non-stationary iterative method as preconditioner, the outer
Krylov method needs to be flexible, like FGMRES.
In general it does not make sense to only do a single inner

iteration, or to solve the inner problem to such high accuracy
that the outer method converges in a single iteration. As long
as the accuracy of the inner solve is somewhere well between
these extremes, the overall speed of the outer solve is usually
not very sensitive to the precise inner accuracy.
Special care should be taken if the inner iterative solver op-

erates on a different coefficient matrix than the outer Krylov
method, e.g., if the Jacobian system is solved using FGMRES
preconditioned with CG on theΦ matrix. This causes a similar
situation to that of Newton-Krylov methods, where a full accu-
racy linear solve leads to oversolving. There is only a certain
amount of convergence that can be achieved in each outer iter-
ation. Solving the inner problem up to an accuracy higher than
that, is a waste of computational effort.
In this paper we consider GMRES on and CG onΦ as pre-

conditioners, with FGMRES to solve the Jacobian systems. The
GMRES preconditioner is in turn preconditioned with
factorizations of , and the CG preconditioner is precondi-
tioned with factorizations of Φ . The results are com-
pared with using incomplete factorizations as preconditioner on
the outer iterations directly.

C. Algebraic Multigrid

Multigrid methods [37] are iterative methods that originate
from the field of solving discretized differential equations.
Multigrid methods are optimal in the sense that the conver-
gence is independent of the number of grid points.
A single multigrid cycle consists of the repeated application

of a pre-smoother and restriction operator down to coarser grids,
and an interpolation operator and post-smoother going back up
to finer grids. On the coarsest grid, the remaining small linear
system is solved with a linear solver of choice. Provided that
smoothers and a coarse grid solver are used that allow effective
parallelization, multigrid cycles are very well-suited for parallel
computing.
Multigrid can be used as an iterative linear solver, but also as

a preconditioner. If a stationary solver is used on the coarsest
grid, then multigrid is a stationary solver itself. Therefore, if a

TABLE I
POWER FLOW TEST PROBLEMS

fixed number of cycles is used as preconditioner, there is no need
to use a flexible Krylov solver.
In geometric multigrid methods, the grids and the corre-

sponding restriction and interpolation operators are constructed
based on the geometry of the problem. For structured grids
such operators are readily available, but for unstructured grids
the construction may be very challenging.
In AMGmethods, the construction of the grids and restriction

and interpolation operators is automated, based on the properties
of the coefficient matrix. The classical Ruge-Stüben approach
to AMG needs a symmetric positive definite M-matrix as co-
efficient matrix. However, modern implementations of this ap-
proach often show some leniency regarding this requirement.
The power flow problem is not a discretized differential equa-

tion, but has a similar structure. It is not immediately clear how
to construct restriction and interpolation operators based on the
geometry of the problem, thus AMG is a logical choice. AMG
cannot be used directly as a solver for the Jacobian systems,
due to the requirements on the coefficient matrix. Instead, we
solve these systems using GMRES, preconditioned with a fixed
number of AMG cycles on the modified FDLF matrix Φ .

VI. NUMERICAL EXPERIMENTS

In this section, numerical experiments with the discussed
preconditioning techniques are treated. The test cases used
are based on the UCTE winter 2008 study model.1 The model
has been copied and interconnected to create larger test cases.
Table I shows the number of buses and branches for each test
problem, and the number of nonzeros in the Jacobian.
The power flow solver is implemented in using PETSc

[38]. All experiments were performed on a single core of a ma-
chine with Intel Core i5 3.33-GHz CPU and 4 Gb of memory,
running Slackware 13 64-bit Linux. The problems were solved
from a flat start, to an accuracy of p.u.

A. Factorizations

In this section, experiments are presented with fac-
torizations of and factorizations of Φ as precondi-
tioner, as discussed in Section V.A. For the factorization levels
, the numbers 4, 8, and 12 are demonstrated. Lower levels led
to significantly slower solution times, due to the reduced speed
of convergence of the linear solver. Higher levels led to more

1UCTE is a former association of transmission system operators in Europe.
As of July 2009, the European Network of Transmission System Operators for
Electricity (ENTSO-E), a newly formed association of 42 TSOs from 34 coun-
tries in Europe, has taken over all operational tasks of the existing European
TSO associations, including UCTE. See http://www.entsoe.eu/.
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Fig. 1. Comparison of Newton-Krylov power flow preconditioned with
factorizations of , and Newton power flow with a direct solver.

Fig. 2. Comparison of Newton-Krylov power flow preconditioned with
factorizations of Φ , and Newton power flow with a direct solver.

expensive factorizations, and more fill-in, without significantly
improving convergence.
Bi-CGSTAB is used when preconditioning with factoriza-

tions with 4 levels. With these preconditioners, a significant
amount of linear iterations is needed in later Newton
steps. The short recurrences property of Bi-CGSTAB makes it
outperform GMRES for these cases. For factorizations with 8
and 12 levels, less iterations are needed per Newton step, and
GMRES outperforms Bi-CGSTAB.
Figs. 1 and 2 show the solution time in seconds, when using

factorizations of and factorizations of Φ ,
respectively. In both figures the results are compared with
Newton power flow with a direct linear solver.
All of the presented incomplete factorizations are scalable in

the problem size. The factorizations with 12 levels give the best
results, with those with 8 levels right behind. The experiments
clearly illustrate that a direct solver is not viable for very large
problems.
Table II shows a breakdown of the computation times for the

largest test case. The reported times are for the calculation of

TABLE II
COMPUTATION TIMES FOR THE UCTEW256 TEST CASE

factorizations (PCSetUp), the forward and backward substitu-
tions (PCApply), the total time spent on linear solves (KSP-
Solve), and the total time to solve the problem.
The total time is made up for the better part of linear solves.

The remaining time is mostly spent on the calculation of the
powermismatch function and Jacobianmatrix. The linear solves
are made up from factorizations, forward and backward substi-
tution, and other operations of the GMRES algorithm. Note that
direct linear solves only consist of a factorization and a forward
and backward substitution.
The results show that leads to a slightly better precon-

ditioner than Φ , in the sense that less GMRES iterations are
needed to solve the problem. On the other hand, the factorization
of Φ is faster, and 68 applications are still faster than 58 appli-
cations of the factorization of . Overall, the factor-
ization of Φ leads to a slightly faster solution, because it only
needs 6 Newton iterations, instead of 8. As the forcing terms are
properly handled for both cases, this is mostly due to luck (see
Section III).

B. Krylov Methods as Preconditioner

In this section, experiments with a preconditioned Krylov
method as preconditioner—as discussed in Section V-B—are
presented. To support this type of preconditioning, FGMRES is
used as outer Krylov method. GMRES on and CG on Φ are
both tested as inner Krylov methods. As preconditioner for the
inner iterations, incomplete factorizations with 4 levels are used.
With higher level factorizations, convergence is too fast to have
both inner and outer iterations perform a meaningful amount
of iterations. Lower level factorizations were also tested, and
yielded similar results.
When using GMRES on as preconditioner, the Jacobian

system can be solved in one outer iteration by solving to high
accuracy in the inner iterations. However, since the desired ac-
curacies for the outer iterations, i.e., the forcing terms, are gen-
erally between and , it makes no sense to solve the
inner iterations beyond an accuracy of 0.1. The method proved
insensitive to the inner iteration accuracy between 0.5 and 0.1,
as this ensures that a meaningful amount of inner iterations was
executed without ever oversolving the accuracy desired in the
outer iterations. The results presented in this section are for an
inner tolerance of 0.3.
When using CG on Φ as preconditioner, the convergence

of one outer iteration can never be better than when applying
an LU factorization of Φ as preconditioner directly. Solving
the inner iterations beyond that convergence factor would lead
to oversolving. In our experiments this factor was found to be
around 0.6, and the best results were attained using this very
value as tolerance for the inner iterations.
Fig. 3 shows the solution times for these two techniques, as

well as the solution times when applying the used incomplete
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Fig. 3. Comparison of Newton-Krylov power flowwith 4-level incomplete fac-
torizations as preconditioner, and with Krylov methods as preconditioner that
are preconditioned with the same incomplete factorizations.

factorizations as preconditioner for the outer iterations directly.
For these test cases, preconditioned Krylov methods as precon-
ditioner do not give significantly better results than applying the
incomplete factorization as preconditioner directly.

C. Algebraic Multigrid

This section reports on experiments with AMG on Φ as
preconditioner for Newton-Krylov power flow, as discussed in
Section V-C.
Similar to when using preconditioned CG on Φ as precon-

ditioner (Section VI-B), setting up the AMG preconditioner to
be too good only leads to oversolving. In our experiments, the
best results were attained using a single V-cycle with a full
Gauss-Seidel sweep as both pre-smoother and post-smoother.
On the coarsest grid a direct solver was used, so that the re-
sulting AMG method is stationary. The coarse grid solution is
only a minor part of computational time of each V-cycle.
Fig. 4 compares AMG with the factorization of Φ

as preconditioner. The AMG preconditioner scales very well in
the problem size. This is to be expected, because the defining
operations of a V-cycle scale linearly in the number of nonzeros
in the coefficient matrix, and multigrid convergence is indepen-
dent of the problem size. However, preconditioning with the

factorization is still faster than using the AMG pre-
conditioner. Bothmethods need about the same amount of linear
iterations to converge, but—provided that the fill-in is low—for-
ward and backward substitution operations are much faster than
an AMG V-cycle. Note, though, that AMG cycles are easier to
parallelize than factorizations, andmay therefore be preferred in
parallel computing environments, including GPU computing.
Multigrid solvers are known to be the best available method

for some types of problems, e.g., for Poisson equations dis-
cretized on a structured grid. The reason that AMG precondi-
tioning here is slower than preconditioning with an incomplete
factorization, is likely due to the structure of the network. If
a power system network consists of many smaller clusters of
buses, that may be tightly connected within the cluster but only
have a few branches between clusters, then the Jacobian matrix

Fig. 4. Comparison of Newton-Krylov power flow preconditioned with the
factorization of Φ and with AMG on Φ .

can be reordered to a near block diagonal structure. Such a struc-
ture is very beneficial for factorizations, as it leads to little fill-in.
Thus for power systems networks of this type, incomplete fac-
torizations are expected to perform very well as preconditioner.
If, on the other hand, the entire network is tightly connected,
then factorizations generally lead to a lot of fill-in, which gets
worse the larger the problem becomes. AMG does not share this
issue, and can be expected to perform better for such networks,
especially for very large problems.
Our test cases are based on a model of the European grid.

Since different countries are generally only connected by very
few branches, the structure of our test cases is of the type that fa-
vors factorizations. For more tightly connected power systems,
AMG is expected to outperform factorization methods for large
power flow problems.

VII. REACTIVE POWER LIMITS AND TAP CHANGING

For any practical power flow solver, it is very important to
be able to efficiently deal with solution adjustments. Here, solu-
tion adjustments due to reactive power limits of generators, and
those due to transformer and phase-shifter taps, are discussed in
the context of Newton-Krylov power flow solvers.
Generally speaking, all adjustments that can be handled using

a direct solver can also be solved using preconditioned Krylov
methods, by making a new preconditioner based on the Jaco-
bian in every iteration. In [6] we already showed that solving
power flow problems in such a way, using an incomplete LU
factorization of the Jacobian as preconditioner, is much faster
than using a direct solver for large power flow problems. It was
further shown, that even more speed-up can be gained by using
a single preconditioner for multiple Newton iterations. Below
we discuss the possibilities of keeping the preconditioner con-
stant through solution adjustments.
Reactive power limits of generators are usually handled by

checking for violations during the Newton iterations. When a
violation is detected, the representation of the corresponding
generator is changed from a PV bus to a PQ bus with reac-
tive power Q equal to the violated bound. If the power flow
method is implemented to eliminate reactive power equations of
PV buses, then this bus-type switching changes the dimensions
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of the linear system. It is not directly clear how to reuse the pre-
conditioner then. However, there are several ways to implement
a power flow solver that keeps the dimensions constant. The re-
active power equation of a PV bus can be kept, but with a very
large value on the corresponding diagonal entry of the Jacobian,
as also described in [39]. However, this may negatively impact
the conditioning of the Jacobian. A better method, in the context
of preconditioned Krylov methods, would be to keep the diag-
onal element as-is, but set the other entries for that equation to 0,
including the right-hand side value. The resulting equations are
very simple to deal with for factorization methods, leading to
hardly any increase of computational effort compared to elimi-
nation.
Tap changing transformers and phase-shifters can be dealt

with in two ways: automatic adjustment or error-feedback ad-
justment. Automatic adjustmentmethods change the power flow
equations to incorporate the tap settings as variables [40]. As a
result, the structure of the Jacobian changes, and it is not directly
clear how to use an FDLF based matrix as preconditioner. How-
ever, preconditioners based on the Jacobian itself can be applied
as normal. Error-feedback adjustments do not change the struc-
ture of the Jacobian, but adjust the equations between Newton
iterations [41]. As such, all the presented methods of precondi-
tioning can still be used.
Note that no reactive power limits or tap changing have been

used in the numerical experiments presented in this paper.

VIII. CONCLUSION

In this paper, Newton-Krylov power flow solvers for large
power systems have been investigated. Preconditioning based
on factorizations, preconditioned Krylov methods, and AMG
were discussed, the proper choice of tolerances was treated, and
the methods were tested and compared for power flow prob-
lems with up to a million buses. Further, the impact of solution
adjustments on the preconditioned Newton-Krylov power flow
methodology was discussed.
For the available set of test problems, the best results were

attained when using incomplete LU (ILU) factorizations of the
initial Jacobian , or incomplete Cholesky (ICC) factorizations
of the modified FDLF matrix Φ as preconditioner. Using an
inner Krylov method—preconditioned with an incomplete fac-
torization—as preconditioner for the outer Krylov iterations, did
not provide a fundamental improvement over applying that in-
complete factorization as preconditioner to the outer iterations
directly.
AMG on the modified FDLF matrix Φ performed very well

as preconditioner, but was slower than the best performing in-
complete factorizations. It was argued that the used test cases
favor factorizations because they consist of a number of loosely
connected subnetworks. For more densely connected networks,
factorizations may suffer from much higher fill-in, and AMG is
expected to perform better. AMG is, further, much better suited
for parallel computing than factorizations.
From the results of our research on solvers for large power

flow problems, the following recommendations can be made.
In a sequential computing environment, use a Newton-Krylov
method, preconditioned with incomplete factorizations as de-
tailed in this paper. Preconditioners based on have the added
benefit that they allow automatic adjustment methods for tap

changing transformers and phase shifters. If the fill-in ratio of
the factorization grows too large, AMG can be used as an al-
ternative. In a parallel computing environment, we also recom-
mend using AMG on the modified FDLFmatrixΦ as precondi-
tioner. Preconditioners based on Φ require that error-feedback
methods are used to handle tap changing transformers and phase
shifters.
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