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Activities
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Overview
Problem description: maritime applications require large, unstructured
grids

• matrix-free approach for coupled Navier-Stokes system

• only compact stencil for velocity and pressure sub-systems

Proposed solution: solve coupled system with Krylov subspace method
and SIMPLE-type preconditioner

• coupled matrix not needed to build preconditioner

• special treatment of stabilization

Evaluation: SIMPLE as solver versus SIMPLE as preconditioner

• reduction in number of non-linear iterations and wall-clock time?
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Container vessel (unstructured grid)

RaNS equations

k-ω turbulence model

y+ ≈ 1

Model-scale:

Re = 1.3 · 107

13.3m cells

max aspect ratio 1 : 1600
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Tanker (block-structured grid)

Model-scale:

Re = 4.6 · 106

2.0m cells

max aspect ratio 1 : 7000

Full-scale:

Re = 2.0 · 109

2.7m cells

max aspect ratio 1 : 930 000
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streamlines around the stern and the axial velocity field in the wake.
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Discretization
Co-located, cell-centered finite volume discretization of the steady
Navier-Stokes equations with Picard linearization leads to linear system:2666664

Q1 0 0 G1

0 Q2 0 G2

0 0 Q3 G3

D1 D2 D3 C

3777775

2666664
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u2
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p
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3777775 for brevity:

24Q G

D C

35 24u

p
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24f

g

35

with Q1 = Q2 = Q3.

⇒ Solve system with FGMRES and SIMPLE-type preconditioner
Turbulence equations (k-ω model) remain segregated
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Defect correction: cornerstone of FVM
Consider a lower-order scheme (e.g. the upwind scheme)

QUDS u = fUDS

and a higher-order scheme (e.g. central or κ-scheme with limiter)

QCDS u = fCDS

Then a single defect correction becomes

QUDS u
k+1 = fCDS − (QCDS u

k −QUDS u
k)

⇒ matrix QUDS is an M-matrix. Easy to solve. Eccentricity and
non-orthogonality corrections also in defect correction form.
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Series of linear partial differential eqs:

CFD model: non-linear partial differential eqs (Navier-Stokes):

Preconditioner: ÃP−1y = b, x = P−1y

Ãx = b[
Q G
D C

] [
u
p

]
=

[
f
g

]

Momentum:

Qu = f

Pressure:

Rp = g

with R ≡ C −Ddiag(Q)−1G

SIMPLE
P−1 ≡

[
I −diag(Q)−1G
0 I

] [
Q 0
D R

]−1

Picard linearization

Finite Volume discretization

Krylov subspace method

N(x) = 0

(ρu2)(k+1) ≈ (ρu)(k)u(k+1)

x(k+1) = x(k) + ωÃ−1
k (b− Akx

(k))

non-linear iterations

linear iterations

sub-sytem linear iterations

Linear system of algebraic equations:



SIMPLE-method
Given uk and pk:

1. solve Qu∗ = f −Gpk

2. solve (C −DQ−1G)p′ = g −Du∗ − Cpk

3. compute u′ = −Q−1Gp′

4. update uk+1 = u∗ + u′ and pk+1 = pk + p′

with the SIMPLE approximation Q−1 ≈ diag(Q)−1.

⇒ “Matrix-free”: only assembly and storage of Q and
(C −DQ−1G). For D, G and C the action suffices.
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SIMPLER: additional pressure prediction

Given uk and pk, start with a pressure prediction:

1. solve
(C −D diag(Q)−1G)p∗ = g −Duk −D diag(Q)−1(f −Quk)

2. continue with SIMPLE using p∗ instead of pk
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Some practical constraints
Compact stencils are preferred on unstructured grids:

• neighbors of cell readily available; neighbors of neighbors not

Also preferred because of MPI parallel computation:

• domain decomposition, communication

Compact stencil?

3 Matrix Q1(= Q2 = Q3), thanks to defect correction

7 Stabilization matrix C

⇒ modify SIMPLE(R) such that C is not required on the l.h.s.
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Treatment of stabilization matrix
• In SIMPLE, neglect C in l.h.s. of pressure correction equation

(C −Ddiag(Q)−1G)p′ = g −Du∗ − Cpk

⇓

−Ddiag(Q)−1Gp′ = g −Du∗ − Cpk

• In SIMPLER, do not involve the mass equation when deriving the
pressure prediction p∗

(C −D diag(Q)−1G)p∗ = g −Duk −D diag(Q)−1(f −Quk)

⇓

−D diag(Q)−1Gp∗ = −D diag(Q)−1(f −Quk)
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Example of iterative convergence (tanker)

SIMPLE KRYLOV-SIMPLER
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Container vessel

Tables show number of non-linear iterations and wall clock time
needed to converge to machine precision, starting from uniform
flow.

Model-scale Re = 1.3 · 107, max cell aspect ratio 1 : 1600

grid CPU cores SIMPLE KRYLOV-SIMPLER

# its Wall clock # its Wall clock

13.3m 128 3187 5h 26mn 427 3h 27mn
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Tanker
Model-scale Re = 4.6 · 106, max cell aspect ratio 1 : 7000

grid CPU cores SIMPLE KRYLOV-SIMPLER

its Wall clock its Wall clock

0.25m 8 1379 25mn 316 29mn

0.5m 16 1690 37mn 271 25mn

1m 32 2442 57mn 303 35mn

2m 64 3534 1h 29mn 519 51mn

Full-scale Re = 2.0 · 109, max cell aspect ratio 1 : 930 000

grid CPU cores SIMPLE KRYLOV-SIMPLER

its Wall clock its Wall clock

2.7m 64 29 578 16h 37mn 1330 3h 05mn
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Remaining problems
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Outer convergence... ...but inner stagnation(!)

• Larger nb of non-linear iters to compensate for stagnation of linear
iter. Does not happen for academic cases (backward-facing step,
lid-driven cavity, finite flat plate)
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Remaining problems (cont’d)

Main theoretical weakness is the approximation of the Schur
complement S ≡ C −DQ−1G

1. The SIMPLE approximation Q−1 ≈ diag(Q)−1.

2. The stabilization matrix C is moved to r.h.s

3. The matrix −Ddiag(Q)−1G is approximated by a matrix R with
local stencil.

Other weaknesses are on the level of the discretization
(Picard linearization, defect corrections, ...)
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Summary

• Coupled Navier-Stokes system has 10 blocks, we only
assemble and store 2, for the others their action suffices.

• The stabilization matrix C has a wide stencil, we changed
SIMPLE(R) so that its assembly and storage is not needed.

• For maritime applications, we find that SIMPLE(R) as
preconditioner reduces the number of non-linear iterations by 5
to 20 and the CPU time by 2 to 5. Greatest reduction found for
most difficult case.
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Summary (cont’d)
C.M. Klaij and C. Vuik, SIMPLE-type preconditioners for cell-centered, colocated
finite volume discretization of incompressible Reynolds-averaged Navier-Stokes
equations, Int. J. Numer. Meth. Fluids 2013, 71(7):830–849.

Contains details on:

• academic benchmark cases (backward-facing step, lid-driven cavity,
flat plate)

• choice of relaxation parameters

• choice of linear solvers and relative tolerances for sub-systems

• other variants (MSIMPLE and MSIMPLER)

• ...

20


