A parallel deflated Krylov solver for finite element problems

Kees Vuik, Guus Segal and Fred Vermolen
c.vuik@math.tudelft.nl
http://ta.twi.tudelft.nl/users/vuik/

Delft University of Technology

Sparse Days and Grid Computing at St. Girons,

Hotel La Clairiere, St. Girons, France, June 10-13, 2003

Contents

1. Introduction
2. A parallel Krylov method for finite element problems
3. Deflation and Coarse Grid Acceleration
4. Numerical experiments
5. Conclusions

Reinhard Nabben, Jason Frank, Koos Meijerink, Erwin Dufour, Gjalt Wijma, Larbi el Yaakoubi

TU Delft

1. Introduction

Motivation
Knowledge of the fluid pressure in rock layers is important for an oil company to predict the presence of oil and gas in reservoirs.

The earth's crust has a layered structure

TU Delft

Incompressible Navier-Stokes problems

Discretized incompressible Navier-Stokes

- Momentum equations
- Pressure equation
- Transport equation

Coupled problem

$$
\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G} \\
\mathbf{G}^{T} & \mathbf{0}
\end{array}\right)\binom{u}{p}=\binom{b_{1}}{b_{2}}, u \in \mathbb{R}^{n} \text { and } p \in \mathbb{R}^{m}
$$

Solve the system $A x=b$
TU Delft

Literature review

- Robust preconditioners (M)ICCG vd Vorst, Meijering, Gustafsson ILUT Saad, MRILU Ploeg, Wubs Navier-Stokes Elman, Silvester, Wathen, Golub RIF Benzi, Tuma

Literature review

- Robust preconditioners (M)ICCG vd Vorst, Meijering, Gustafsson ILUT Saad, MRILU Ploeg, Wubs Navier-Stokes Elman, Silvester, Wathen, Golub RIF Benzi, Tuma
- Parallel preconditioners Block variants see above ILU Bastian, Horton, Vuik, Nooyen, Wesseling SPAI Grote, Huckle, Benzi, Tuma, Chow, Saad
- Robust preconditioners (M)ICCG vd Vorst, Meijering, Gustafsson ILUT Saad, MRILU Ploeg, Wubs Navier-Stokes Elman, Silvester, Wathen, Golub RIF Benzi, Tuma
- Parallel preconditioners

Block variants see above
ILU Bastian, Horton, Vuik, Nooyen, Wesseling
SPAI Grote, Huckle, Benzi, Tuma, Chow, Saad

- Acceleration of parallel preconditioners CGC Notay, vd Velde, Benzi, Frommer, Nabben, Szyld, Chan, Mathew, Dryja, Widlund, Padiy, Axelsson, Polman
Deflation Nicolaides, Mansfield, Kolotilina, Frank, Vuik Morgan, Chapman, Saad, Burrage, Ehrel, Pohl
FETI Farhat, Roux, Mandel, Klawonn, Widlund

2. A parallel Krylov method for finite element problems

Data distribution

subdomain 2

TUDelft

Parallelization of ICCG

ICCG

$$
\begin{aligned}
& k=0, r_{0}=b-A x_{0}, p_{1}=z_{1}=L^{-T} L^{-1} r_{0} \\
& \text { while }\left\|r_{k}\right\|_{2}>\varepsilon \text { do } \\
& \quad k=k+1 \\
& \quad \alpha_{k}=\frac{\left(r_{k-1}, z_{k-1}\right)}{\left(p_{k}, A p_{k}\right)} \\
& \quad x_{k}=x_{k-1}+\alpha_{k} p_{k} \\
& r_{k}=r_{k-1}-\alpha_{k} A p_{k} \\
& z_{k}=L^{-T} L^{-1} r_{k} \\
& \quad \beta_{k}=\frac{\left(r_{k}, z_{k}\right)}{\left(r_{k-1}, z_{k-1}\right)} \\
& \quad p_{k+1}=z_{k}+\beta_{k} p_{k}
\end{aligned}
$$

TU Delft

Explanation for a $1 D$ example

Building blocks

- vector update
- inner product
- matrix vector product
- preconditioner vector product

$$
-\frac{d^{2} y}{d x^{2}}=f, \quad y(0)=y(1)=0 .
$$

Take $n=5$ and decompose the domain into two subdomains (1 and 2)

Vector update

$$
\begin{array}{lllllll}
\underset{0}{x}=0 & 4 & 2 & 3 & 4 & 5 & { }_{6}^{x}=1
\end{array}
$$

We define $I_{1}=\{1,2,3$,$\} and I_{2}=\{3,4,5\}$. Note that there is an overlap of 1 point.

Vector update

$$
\begin{array}{lllllll}
x=0 & 4 & 2 & 3 & 4 & 5 & { }_{0}^{x}=1 \\
0 & 4
\end{array}
$$

We define $I_{1}=\{1,2,3$,$\} and I_{2}=\{3,4,5\}$. Note that there is an overlap of 1 point.
Global vector $\mathbf{x}=\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$, local vectors $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and $\left(\begin{array}{c}x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$.
Vector update is straight forward.

TU Delft

Inner product

- Determine the local innerproduct
- Sum the local innerproducts by MPI_ALLREDUCE

Inner product

- Determine the local innerproduct
- Sum the local innerproducts by MPI_ALLREDUCE

But

Inner product

- Determine the local innerproduct
- Sum the local innerproducts by MPI_ALLREDUCE

But

The contributions of the interface points are used more than once.
Solution: use the interface points only in one local inner product.

Matrix vector product

$$
A=\left(\begin{array}{rrrrr}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

Matrix vector product

$$
A=\left(\begin{array}{cc}
A_{11} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & A_{22}
\end{array}\right)
$$

TU Delft

Matrix vector product

$$
A=\left(\begin{array}{cc}
A_{11} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 0 \\
0 & A_{22}
\end{array}\right)
$$

The global matrix vector product $\mathbf{p}=A \mathbf{x}$:

1. Determine $\left(\begin{array}{c}p_{1} \\ p_{2} \\ p_{3}^{l}\end{array}\right)=A_{11}\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and $\left(\begin{array}{c}p_{3}^{r} \\ p_{4} \\ p_{5}\end{array}\right)=A_{22}\left(\begin{array}{l}x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ in parallel.
2. Communication: send p_{3}^{l} from CPU1 to CPU2 and send p_{3}^{r} from CPU2 to CPU1. (nearest neighbour communication)
3. Determine on both processors $p_{3}=p_{3}^{l}+p_{3}^{r}$ in parallel.

Parallelization of a block preconditioner

Take as preconditioner the following

$$
\mathbf{p}=P^{-1} \mathbf{x}=\left(\sum_{i=1}^{p} R_{i}^{T} P_{i, i}^{-1} R_{i}\right) \mathbf{x}
$$

where

$$
P_{i, i} \approx A_{i, i}
$$

Parallelization of a block preconditioner

Take as preconditioner the following

$$
\mathbf{p}=P^{-1} \mathbf{x}=\left(\sum_{i=1}^{p} R_{i}^{T} P_{i, i}^{-1} R_{i}\right) \mathbf{x}
$$

where

$$
P_{i, i} \approx A_{i, i}
$$

In our example

$$
R_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right) \text { and } R_{2}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

TU Delft

Parallelization of a block preconditioner

The global preconditioner vector product $\mathbf{p}=P^{-1} \mathbf{x}$:

1. Determine $\left(\begin{array}{c}p_{1} \\ p_{2} \\ p_{3}^{l}\end{array}\right)=P_{11}^{-1}\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ and $\left(\begin{array}{c}p_{3}^{r} \\ p_{4} \\ p_{5}\end{array}\right)=P_{22}^{-1}\left(\begin{array}{l}x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ in parallel.
2. Communication: send p_{3}^{l} from CPU1 to CPU2 and send p_{3}^{r} from CPU2 to CPU1. (nearest neighbour communication)
3. Determine on both processors $p_{3}=p_{3}^{l}+p_{3}^{r}$ in parallel.

3. Deflation and Coarse Grid Acceleration

$$
\begin{gathered}
A \text { is SPD, Conjugate Gradients } \\
P=I-A Z E^{-1} Z^{T} \text { with } E=Z^{T} A Z
\end{gathered}
$$

and $Z=\left[z_{1} \ldots z_{m}\right]$, where z_{1}, \ldots, z_{m} are independent deflation vectors.

Properties

1. $P^{T} Z=0$ and $P A Z=0$
2. $P^{2}=P$
3. $A P^{T}=P A$

Deflated ICCG

$$
x=\left(I-P^{T}\right) x+P^{T} x
$$

TU Delft

Deflated ICCG

$$
\begin{aligned}
x & =\left(I-P^{T}\right) x+P^{T} x, \\
\left(I-P^{T}\right) x=Z E^{-1} Z^{T} A x & =Z E^{-1} Z^{T} b,
\end{aligned}
$$

Deflated ICCG

$$
\begin{aligned}
x & =\left(I-P^{T}\right) x+P^{T} x, \\
\left(I-P^{T}\right) x=Z E^{-1} Z^{T} A x & =Z E^{-1} Z^{T} b, \quad A P^{T} x=P A x=P b .
\end{aligned}
$$

Deflated ICCG

$$
\begin{aligned}
x & =\left(I-P^{T}\right) x+P^{T} x \\
\left(I-P^{T}\right) x=Z E^{-1} Z^{T} A x & =Z E^{-1} Z^{T} b, \quad A P^{T} x=P A x=P b
\end{aligned}
$$

DICCG
$k=0, \hat{r}_{0}=\operatorname{Pr}_{0}, p_{1}=z_{1}=L^{-T} L^{-1} \hat{r}_{0} ;$
while $\left\|\hat{r}_{k}\right\|_{2}>\varepsilon$ do

$$
\begin{aligned}
& k=k+1 \\
& \alpha_{k}=\frac{\left(\hat{r}_{k-1}, z_{k-1}\right)}{\left(p_{k}, P A p_{k}\right)} \\
& x_{k}=x_{k-1}+\alpha_{k} p_{k} \\
& \hat{r}_{k}=\hat{r}_{k-1}-\alpha_{k} P A p_{k} \\
& z_{k}=L^{-T} L^{-1} \hat{r}_{k} ; \\
& \beta_{k}=\frac{\left(\hat{r}_{k}, z_{k}\right)}{\left(\hat{r}_{k-1}, z_{k-1}\right)} ; \quad p_{k+1}=z_{k}+\beta_{k} p_{k} ;
\end{aligned}
$$

end while

Variants for values at interfaces

$$
z_{i}=1 \text { on } \Omega_{i} \text { and } z_{i}=0 \text { on } \Omega \backslash \bar{\Omega}_{i}
$$

1. no overlap
$z_{i}=1$ at one subdomain
$z_{i}=0$ at other subdomains
2. complete overlap
$z_{i}=1$ at all subdomains
3. average overlap
$z_{i}=\frac{1}{n_{\text {neighbors }}}$ at all subdomains
4. weighted overlap $(-\operatorname{div}(\sigma \nabla u)=f)$

$$
z_{i}=\frac{\sigma(i)}{\sum \sigma(\text { neighbors })}
$$

Error for Block IC and Deflation

Results for constant coefficients

TU Delft

Error for Block IC and Deflation

Results for constant coefficients

and disontinuous coefficients

TU Delft

Parallel implementation (initialization)

Processor 1	Processor 2	
Make z_{1}	communication	Make z_{2}
		$z_{1 \Gamma}$
$z_{2 \Gamma}$	communication	
Make $A z_{1}$ and $A z_{2 \Gamma}$		sum up
sum up		$E_{22}=z_{2}^{T} A z_{2}$,
$E_{11}=z_{1}^{T} A z_{1}$,		$E_{12}=z_{2}^{T} A z_{1 \Gamma}$
$E_{12}=z_{1}^{T} A z_{2 \Gamma}$		
Determine Choleski		
decomposition of E		

TU Delft

Parallel implementation (during iteration)

$$
P \mathbf{v}=\mathbf{v}-A Z\left(Z^{T} A Z\right)^{-1} Z^{T} \mathbf{v}=\mathbf{v}-A Z E^{-1} Z^{T} \mathbf{v}
$$

Processor 1	Processor 2	
Compute $z_{1}^{T} v$		Compute $z_{2}^{T} v$
	communication	

$$
y=E^{-1}\binom{z_{1}^{T} v}{z_{2}^{T} v}
$$

communication

$$
\mathbf{v}-y_{1} A z_{1}-y_{2} A z_{2 \Gamma} \quad \mathbf{v}-y_{1} A z_{1 \Gamma}-y_{2} A z_{2}
$$

TU Delft

Coarse Grid Correction of ICCG

Definition

- $Z \in \mathbb{R}^{n \times m}$ with independent columns.
$-E=Z^{T} A Z \in \mathbb{R}^{m \times m}, E$ is SPD.
- $P_{C}=L^{-T} L^{-1}+\sigma Z E^{-1} Z^{T}$.

CICCG
$k=0, r_{0}=b-A x_{0}, p_{1}=z_{1}=L^{-T} L^{-1} r_{0} ;$
while $\left\|r_{k}\right\|_{2}>\varepsilon$ do
$k=k+1 ;$
$\alpha_{k}=\frac{\left(r_{k-1}, z_{k-1}\right)}{\left(p_{k}, A p_{k}\right)}$;
$x_{k}=x_{k-1}+\alpha_{k} p_{k}$;
$r_{k}=r_{k-1}-\alpha_{k} A p_{k}$;
$z_{k}=P_{C} r_{k}=L^{-T} L^{-1} r_{k}+\sigma Z E^{-1} Z^{T} r_{k} ;$
$\beta_{k}=\frac{\left(r_{k}, z_{k}\right)}{\left(r_{k-1}, z_{k-1}\right)} ; \quad p_{k+1}=z_{k}+\beta_{k} p_{k} ;$
end while
TUDelft

Properties of Deflation and CGC

$$
P_{D}=I-A Z E^{-1} Z^{T} \quad P_{C}=I+\sigma Z E^{-1} Z^{T}
$$

TU Delft

Properties of Deflation and CGC

$$
P_{D}=I-A Z E^{-1} Z^{T} \quad P_{C}=I+\sigma Z E^{-1} Z^{T}
$$

Properties of P_{D}

- $P_{D} A$ is symmetric and positive semidefinite
- P_{D} is a projection, $P_{D} A Z=0$
- since $P_{D} A$ is singular, a good termination criterion is important

Properties of Deflation and CGC

$$
P_{D}=I-A Z E^{-1} Z^{T} \quad P_{C}=I+\sigma Z E^{-1} Z^{T}
$$

Properties of P_{D}

- $P_{D} A$ is symmetric and positive semidefinite
- P_{D} is a projection, $P_{D} A Z=0$
- since $P_{D} A$ is singular, a good termination criterion is important

Properties of P_{C}

- P_{C} is symmetric positive definite
- $A^{\frac{1}{2}}\left(P_{C}-I\right) A^{\frac{1}{2}}$ is a projection

Properties of Deflation and CGC

Definition
Eigenpair $\left\{\lambda_{i}, v_{i}\right\}$, so $A v_{i}=\lambda_{i} v_{i}$ with $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$. Take $Z=\left[v_{1} \ldots v_{m}\right]$.

Properties of Deflation and CGC

Definition
Eigenpair $\left\{\lambda_{i}, v_{i}\right\}$, so $A v_{i}=\lambda_{i} v_{i}$ with $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$.
Take $Z=\left[v_{1} \ldots v_{m}\right]$.
Theorem

- the spectrum of $P_{D} A$ is $\left\{0, \ldots, 0, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$
- the spectrum of $P_{C} A$ is $\left\{\sigma+\lambda_{1}, \ldots, \sigma+\lambda_{m}, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$

Properties of Deflation and CGC

Definition
Eigenpair $\left\{\lambda_{i}, v_{i}\right\}$, so $A v_{i}=\lambda_{i} v_{i}$ with $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$.
Take $Z=\left[v_{1} \ldots v_{m}\right]$.
Theorem

- the spectrum of $P_{D} A$ is $\left\{0, \ldots, 0, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$
- the spectrum of $P_{C} A$ is $\left\{\sigma+\lambda_{1}, \ldots, \sigma+\lambda_{m}, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$

Corollary
DICCG converges faster than CICCG if $Z=\left[v_{1} \ldots v_{m}\right]$.

TU Delft

Deflation and Coarse Grid Correction (preliminaries)

Notation: A, B are Hermitian, $A \succeq B$, if $A-B$ is positive semidefinite

Deflation and Coarse Grid Correction (preliminaries)

Notation: A, B are Hermitian, $A \succeq B$, if $A-B$ is positive semidefinite
Some results from Horn and Johnson, Matrix Analysis

$$
\lambda_{k}(A)+\lambda_{1}(B) \leq \lambda_{k}(A+B) \leq \lambda_{k}(A)+\lambda_{n}(B)
$$

Deflation and Coarse Grid Correction (preliminaries)

Notation: A, B are Hermitian, $A \succeq B$, if $A-B$ is positive semidefinite
Some results from Horn and Johnson, Matrix Analysis

$$
\lambda_{k}(A)+\lambda_{1}(B) \leq \lambda_{k}(A+B) \leq \lambda_{k}(A)+\lambda_{n}(B)
$$

If A, B are positive definite with $A \succeq B$, then $\lambda_{i}(A) \geq \lambda_{i}(B)$.

Deflation and Coarse Grid Correction (preliminaries)

Notation: A, B are Hermitian, $A \succeq B$, if $A-B$ is positive semidefinite
Some results from Horn and Johnson, Matrix Analysis

$$
\lambda_{k}(A)+\lambda_{1}(B) \leq \lambda_{k}(A+B) \leq \lambda_{k}(A)+\lambda_{n}(B)
$$

If A, B are positive definite with $A \succeq B$, then $\lambda_{i}(A) \geq \lambda_{i}(B)$.

Suppose that B has rank at most m. Then

- $\lambda_{k}(A+B) \leq \lambda_{k+m}(A), \quad k=1,2, \cdots n-m$,
- $\lambda_{k}(A) \leq \lambda_{k+m}(A+B), \quad k=1,2, \cdots n-m$.

TU Delft

Deflation and Coarse Grid Correction (main result)

Theorem
Let A be symmetric positive definite and Z has rank $Z=m$. Let $E:=Z^{T} A Z$. Then

$$
\begin{aligned}
\lambda_{1}\left(P_{D} A\right)=\cdots=\lambda_{m}\left(P_{D} A\right) & =0 \\
\lambda_{n}\left(P_{D} A\right) & \leq \lambda_{n}\left(P_{C} A\right) \\
\lambda_{m+1}\left(P_{D} A\right) & \geq \lambda_{1}\left(P_{C} A\right)
\end{aligned}
$$

Deflation and Coarse Grid Correction (main result)

Theorem
Let A be symmetric positive definite and Z has rank $Z=m$. Let $E:=Z^{T} A Z$. Then

$$
\begin{aligned}
\lambda_{1}\left(P_{D} A\right)=\cdots=\lambda_{m}\left(P_{D} A\right) & =0 \\
\lambda_{n}\left(P_{D} A\right) & \leq \lambda_{n}\left(P_{C} A\right) \\
\lambda_{m+1}\left(P_{D} A\right) & \geq \lambda_{1}\left(P_{C} A\right)
\end{aligned}
$$

Theorem

$Z_{1} \in \mathbb{R}^{n \times r}, Z_{2} \in \mathbb{R}^{n \times s}, r a n k Z_{1}=r$ and rank $Z_{2}=s$. If $\operatorname{Im} Z_{1} \subseteq \operatorname{Im} Z_{2}$, then

$$
\begin{aligned}
\lambda_{n}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right) & \geq \lambda_{n}\left(\left(I-A Z_{2} E_{2}^{-1} Z_{2}^{T}\right) A\right) \\
\lambda_{r+1}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right) & \leq \lambda_{s+1}\left(\left(I-A Z_{2} E_{2}^{-1} Z_{2}^{T}\right) A\right)
\end{aligned}
$$

TU Delft

Deflation and Coarse Grid Correction combined with a preconditioner

Definition

$$
P_{C M^{-1}}:=M^{-1}+\sigma Z E^{-1} Z^{T} .
$$

Theorem
Let A and M be symmetric positive definite. Let $Z \in \mathbb{R}^{n \times m}$ with $\operatorname{rank} Z=m$. Let $E:=Z^{T} A Z$. Then

$$
\begin{aligned}
\lambda_{n}\left(M^{-1} P_{D} A\right) & \leq \lambda_{n}\left(P_{C M^{-1}} A\right), \\
\lambda_{m+1}\left(M^{-1} P_{D} A\right) & \geq \lambda_{1}\left(P_{C M^{-1}} A\right) .
\end{aligned}
$$

Corollary
DICCG converges faster than CICCG for general projection vectors.

TU Delft

4. Numerical experiments

Oil flow problem

method	Deflation	CGC
iterations	36	47
CPU time	5.9	8.2

TU Delft

Poisson on parallel layers

Iterations

Poisson on parallel layers

Iterations

Poisson on parallel layers

Iterations

Wall clock time

Poisson on layers and blocks

Layers

Poisson on layers and blocks

Layers

Blocks

5. Conclusions

- Block preconditioned Krylov methods combined with Deflation or CGC are well parallelizable (scalable, good speed up).
- For the vertex centered case, the weighted overlap strategy is optimal
- DICCG is more efficient than CICCG.
- Choices for the deflation vectors lead to comparable results in DICCG and CICCG.
- DICCG is a robust and efficient method to solve diffusion problems with discontinuous coefficients.

Further information

- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html
- C. Vuik, A. Segal and J.A. Meijerink J. Comp. Phys., 152, pp. 385-403, 1999.
- J. Frank and C. Vuik SIAM Journal on Scientific Computing, 23, pp. 442-462, 2001
- C. Vuik, A. Segal, L. El Yaakoubi and E. Dufour Applied Numerical Mathematics, 41, pp. 219-233, 2002
- F.J. Vermolen, C. Vuik and A. Segal
J. of Comp. Methods in Sciences and Engineering, to appear
- R. Nabben and C. Vuik

A comparison of Deflation and Coarse Grid Correction, to appear

Krylov $A r$

Preconditioned Krylov

Block Preconditioned Krylov

Block Preconditioned Deflated Krylov $\sum_{i=1}^{m}\left(L_{i}^{-T} L_{i}^{-1}\right) P A r$

