DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU) Monday January 28 2013, 18:30-21:30

1. The Modified Euler Method to integrate the initial value problem defined by $y^{\prime}=$ $f(t, y), y\left(t_{0}\right)=y_{0}$, is given by

$$
\left\{\begin{array}{l}
w_{n+1}^{*}=w_{n}+h f\left(t_{n}, w_{n}\right) \tag{1}\\
w_{n+1}=w_{n}+\frac{h}{2}\left(f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, w_{n+1}^{*}\right)\right)
\end{array}\right.
$$

where h denotes the time-step and w_{n} represents the numerical solution at time t_{n}. [a] Show that the local truncation error of the Modified Euler Method is given by $O\left(h^{2}\right)$.
The amplification factor of the Modified Euler Method is given by

$$
Q(h \lambda)=1+h \lambda+\frac{(h \lambda)^{2}}{2}
$$

[b] Derive this amplification factor for the Modified Euler Method.
Given the initial value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}+12 \frac{d y}{d t}+72 y=\sin t \tag{2}\\
y(0)=1, \quad \frac{d y}{d t}(0)=2
\end{array}\right.
$$

[c] Show that, this problem can be written as

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-72 & -12
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\sin t} .
$$

Give also the initial conditions for $x_{1}(0)$ and $x_{2}(0)$.
[d] Perform one step with the Modified Euler Method with $h=0.1$ and $t_{0}=0$, using the given initial conditions from (2).
[e] Determine whether the Modified Euler Method, applied to the given initial value problem (2), is stable for $h=0.25$.

[^0]2. In this exercise an estimate is determined for the velocity of a vehicle. The maximum speed at the road is $40 \mathrm{~m} / \mathrm{s}$. The measured positions of the vehicle are given in the table below.

$t(\mathrm{~s})$	0	1	2
$f(t)(\mathrm{m})$	200	215	250

(a) Give the first order backward difference formula and use this to determine an estimate of the velocity for $t=2\left(f^{\prime}(2)\right)$.
(b) We are looking for a difference formula of the first derivative of f in $2 h$ of the form: $Q(h)=\frac{\alpha_{0}}{h} f(0)+\frac{\alpha_{1}}{h} f(h)+\frac{\alpha_{2}}{h} f(2 h)$, such that $f^{\prime}(2 h)-Q(h)=O\left(h^{2}\right)$. In the remainder of this exercise we use this formula. Show that the coefficients $\alpha_{0}, \quad \alpha_{1}$ and α_{2} should satisfy the next system:

$$
\begin{align*}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0 \\
-2 \alpha_{0}-\alpha_{1} & =1 \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & =0 \tag{2pt.}
\end{align*}
$$

(c) The solution of this system is given by $\alpha_{0}=\frac{1}{2}, \alpha_{1}=-2$ and $\alpha_{2}=\frac{3}{2}$. Give for these values an expression for the rounding error $f^{\prime}(2 h)-Q(h)$. Use this formula to give an estimate of the velocity.
(d) The maximal measuring error in the measured position is bounded by ϵ : $|f(t)-\hat{f}(t)| \leq \epsilon$. Show that this implies a measuring error in the estimate of

$$
\begin{equation*}
|Q(h)-\hat{Q}(h)| \leq \frac{C_{1} \epsilon}{h} \tag{1.5pt.}
\end{equation*}
$$

and give C_{1}.
(e) Derive the Trapezoidal Rule to approximate $\int_{x_{0}}^{x_{1}} f(x) d x$ by the use of the linear Lagrangian interpolatory polynomial.
(f) Derive that an upper bound of the truncation error of the Trapezoidal Rule applied to a single interval $\left[x_{0}, x_{1}\right]$ is given by

$$
\begin{equation*}
\frac{1}{12}\left(x_{1}-x_{0}\right)^{3} \max _{x \in\left[x_{0}, x_{1}\right]}\left|f^{\prime \prime}(x)\right| \tag{4}
\end{equation*}
$$

if the second order derivative of f is continuous over $\left[x_{0}, x_{1}\right]$. Hint: The error for linear interpolation over nodes x_{0} and x_{1} is given by

$$
\begin{equation*}
f(x)-p_{1}(x)=\frac{1}{2}\left(x-x_{0}\right)\left(x-x_{1}\right) f^{\prime \prime}(\chi), \text { for } a \chi \in\left(x_{0}, x_{1}\right) \tag{2pt.}
\end{equation*}
$$

where $p_{1}(x)$ denotes the linear interpolatory polynomial.

[^0]: ${ }^{0}$ please turn over, For the answers of this test we refer to: http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html

