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1. a The local truncation error is defined by

τh =
yn+1 − zn+1

h
, (1)

where
zn+1 = yn + hf(tn, yn), (2)

for the forward Euler method. A Taylor expansion for yn+1 around tn is given
by

yn+1 = yn + hy′(tn) +
h2

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (3)

Since y′(tn) = f(tn, yn), we use equation (1), to get

τh =
h

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (4)

Hence, the truncation error is of first order.

b We define y1 := y and y2 := y′, hence y′1 = y2. Further, we use the differential
equation to obtain

y′′ + εy′ + y = y′′1 + εy′1 + y1 = y′2 + εy2 + y1. (5)

Hence, we obtain
y′2 = −y1 − εy2 + sin(t). (6)

Hence the system is given by

y′1 = y2,
y′2 = −y1 − εy2 + sin(t).

(7)

The initial conditions are given by

1 = y(0) = y1(0),
0 = y′(0) = y′1(0) = y2(0).

(8)
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c First, we use the test equation, y′ = λy, to analyze numerical stability. For
forward Euler, we obtain

wn+1 = wn + hλwn = Q(hλ)wn, (9)

hence the amplification factor becomes

Q(hλ) = 1 + hλ. (10)

The numerical solution is stable if and only if |Q(hλ)| ≤ 1. Next, we deal with
the case ε = 0, to obtain the following system(

y′1
y′2

)
=

(
0 −1
1 0

)(
y1
y2

)
. (11)

This system gives the following eigenvalues λ1,2 = ±i, where i is the imaginary
unit. Hence, the amplification factor is given by

Q(hλ) = 1± hi. (12)

Then, it is immediately clear that |Q(hλ)| > 1 for all h > 0. Hence, we conclude
that the forward Euler method is never stable if ε = 0.

d From Assignment 1.c., we know that if ε = 0, the eigenvalues of the system are
purely imaginary. This implies that the system is analytically (zero) stable if
ε = 0.

Nonzero values of ε give the following system(
y′1
y′2

)
=

(
0 −1
1 ε

)(
y1
y2

)
. (13)

then we get the following eigenvalues λ1,2 = ε
2
± 1

2

√
ε2 − 4 (real-valued), if

ε2 − 4 ≥ 0 and λ = ε
2
± i

2

√
4− ε2 (nonreal-valued) if ε2 − 4 < 0. Hence,

we consider two cases: real-valued and nonreal-valued eigenvalues.

Real-valued eigenvalues
In this case |ε| ≥ 2, and 0 ≤ ε2 − 4 < ε2, and hence the real-valued eigenvalues
have the same sign, which is determined by the sign of ε. Hence, if ε ≤ −2,
then, the system is stable. Furthermore, if ε ≥ 2, then, the system is unstable.

Nonreal-valued eigenvalues
In this case |ε| < 2. The system is analytically unstable if and only if the real
part of the eigenvalues is positive. Further, the real part of the eigenvalues is
positive if and only if ε > 0. Hence, the system is analytically unstable if and
only if ε > 0. Hence, the system is stable if and only if (−2 <)ε ≤ 0.

From these arguments, it follows that the system is stable if and only if ε ≤ 0.
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e Since currently the discriminant, ε2−4, is negative, the eigenvalues are nonreal.
Substitution into the amplification factor yields

Q(hλ) = 1 +
ε

2
h± ih

2

√
4− ε2. (14)

Hence, numerical stability is warranted if

|Q(hλ)|2 = (1 +
ε

2
h)2 +

h2

4
(4− ε2) ≤ 1. (15)

Hence for stability, we have

1 + εh+
ε2h2

4
+ h2 − ε2h2

4
= 1 + hε+ h2 ≤ 1. (16)

Since h > 0, we obtain the following stability criterion

h ≤ −ε = |ε|. (17)

If ε = −2, then both eigenvalues are real-valued and given by λ1,2 = −1. For
this case, we obtain Q(λh) = 1 − h, and stability is warranted if and only if
−1 ≤ Q(hλ) ≤ 1, hence h ≤ 2(= |ε|).

We conclude that for −2 ≤ ε < 0, we have a numerically stable solution if and
only if h ≤ |ε|.

2. a First we check that y(x) = x2 satisfies the boundary conditions. It immediately
follows that y(0) = 0 and using y′(x) = 2x, gives y′(1) = 2, and hence the
boundary conditions are satisfied. Further, substitution of y = x2, using y′′(x) =
2, gives

−y′′ + y′ + y = −2 + 2x+ x2, (18)

which is equal to the right-hand side of the differential equation and hence
y(x) = x2 satisfies the boundary value problem (the differential equation and
the boundary conditions).

b Let xj = jh, xn = 1, hence h = 1
n
. We use a Taylor Series to express the relation

between the differences formulae and the derivatives. Using the convention that
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yj = y(xj), gives

−yj+1 − 2yj + yj−1
h2

+
yj+1 − yj−1

2h
+ yj =

−
yj + hy′(xj) + h2

2
y′′(xj) + h3

3!
y′′′(xj) + h4

4!
y′′′′(xj) +O(h5)− 2yj

h2
−

yj − hy′(xj) + h2

2
y′′(xj)− h3

3!
y′′′(xj) + h4

4!
y′′′′(xj) +O(h5)

h2
+

yj + hy′(xj) + h2

2
y′′(xj) + h3

3!
y′′′(xj) +O(h4)

2h
−

yj − hy′(xj) + h2

2
y′′(xj)− h3

3!
y′′′(xj) +O(h4)

2h
+ yj =

−y′′(xj) + y′(xj) + y(xj) +
h2

12
(y′′′′(xj) + 2y′′′(xj)) +O(h3).

(19)

Hence the local trunction error for the discretization in the interior gives a order
O(h2), where minimal third–order derivatives are involved. Further, using a
virtual gridnode at xn+1 = 1 + h, gives

yn+1 − yn−1
2h

=
y(1) + hy′(1) + h2

2
y′′(1) + h3

3!
y′′′(1) +O(h4)

2h
−

y(1)− hy′(1) + h2

2
y′′(1)− h3

3!
y′′′(1) +O(h4)

2h
= y′(1) +

h2

6
y′′′(1) +O(h3) =

2 +
h2

6
y′′′(1) +O(h3).

(20)
Hence, also for the differencing at x = 1, a local truncation error of O(h2) is
obtained with derivatives of minimal third order. Hence all difference formulae
give a (local) truncation error of order O(h2). Neglecting the truncation errors,
and setting f(x) = x2 + 2x− 2, gives the following finite difference approach for
the numerical approximation wj:

−wj−1 + 2wj − wj+1

h2
+
wj+1 − wj−1

2h
+ wj = f(xj), j = 1 . . . n. (21)

The above equation can be simplified to

−(
1

h2
+

1

2h
)wj−1 +(1+

2

h2
)wj +(− 1

h2
+

1

2h
)wj+1 = f(xj), j = 1 . . . n. (22)
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Using the boundary condition w0 = 0, gives for j = 0:

(1 +
2

h2
)w1 + (− 1

h2
+

1

2h
)w2 = f(x1). (23)

For j = n, we substitute

wn+1 − wn−1

2h
= 2⇔ wn+1 = wn−1 + 4h, (24)

to obtain for j = n

− 2

h2
wn−1 + (1 +

2

h2
)wn = f(xj) +

4

h
− 2. (25)

Herewith, we got a discretization with local truncation errors of O(h2).

c In the previous assignment, we saw that all truncation errors are of order O(h2)
with derivatives of minimal third order. Since y(x) = x2 is the (only) solution
to the boundary value problem considered currently, we see that all p–th or-
der derivatives y(p)(x) = 0, for p ≥ 3, and hence all truncation errors are zero.
Therefore, for the present boundary value problem, the current finite differences
approach gives the exact solution to the boundary value problem (hence the dif-
ference between the exact solution and the numerical approximation vanishes).

d The forward difference formula, Q(h), to approximate y′(0) is given by

Q(h) =
y(h)− y(0)

h
. (26)

For h = 0.25 and h = 0.5 from the tabular values, we, respectively, get
Q̃(0.25) = 0.252 and Q̃(0.5) = 0.5. Note that the tildes indicate that we used
the approximate values for y(x) from Table 1.

e i Let ỹ(xj), and y(xj), respectively, represent the approximate values and
exact values, and let Q̃(h) denote the differencing executed with the ap-
proximate values for y, then

|Q(h)− Q̃(h)| = |y(h)− y(0)

h
− ỹ(h)− y(0)

h
| = |y(h)− ỹ(h)|

h
≤

ε

h
=

0.0005

h
.

(27)

(Note that this gives an upperbound |Q(h)− Q̃(h)| ≤ 0.002.)

ii The truncation error is given by

y′(0)− y(h)− y(0)

h
= y′(0)−

y(0) + hy′(0) + h2

2
y′′(0) +O(h3)− y(0)

h
=

−h
2
y′′(0) +O(h2).

(28)
Hence the truncation error is of order O(h).
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iii The truncation error is of first order, hence for h sufficiently small, we have

y′(0) ≈ Q(h) +Kh, (29)

where Kh is an estimate of the error, and for 2h, we get

y′(0) ≈ Q(2h) + 2Kh, (30)

Subtraction of these two equations and using the values computed earlier,
gives the following estimate of the error

Kh ≈ Q(h)−Q(2h) = 0.252− 0.5 = −0.248. (31)

(Not asked for: This estimate can be used to update the originally computed
approximation:

y′(0) = Q(h) +Kh = 0.25− 0.248 = 0.002. (32)

It is possible to show that the discrepance with zero follows from the influ-
ence of rounding.)
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