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1. [a] The local truncation error is given by

τn+1(h) =
yn+1 − zn+1

h
, (1)

where zn+1 is the result of one Forward Euler step starting from yn. We determine
yn+1 by the use of a Taylor Series around tn:

yn+1 = yn + hy′(tn) +O(h2). (2)

We realize that
y′(tn) = f(tn, yn). (3)

Hence, this gives
yn+1 = yn + hf(tn, yn) +O(h2). (4)

For zn+1, after substituting yn into Forward Euler, one obtains

zn+1 = yn + hf(tn, yn). (5)

Then, it follows that

yn+1 − zn+1 = O(h2), and hence τn+1(h) =
O(h2)

h
= O(h). (6)

[b] We use the test–equation y′ = λy, then it follows that

wn+1 = wn + hλwn = (1 + hλ)wn (7)

Hence the amplification factor is given by

Q(hλ) = 1 + hλ. (8)

[c] Consider y(t) = −cos t, then y′(t) = sin t and y′′(t) = cos t. Hence

y′′(t) + y′(t) + y(t) = cos t+ sin t− cos t = sin t, (9)

and hence y(t) = −cos t is a solution to the differential equation. Further, y(0) =
−cos 0 = −1 and y′(0) = sin 0 = 0, and hence the initial conditions are also satisfied.
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[d] Let x1 = y and x2 = y′, then it follows that y′′ = x′2, and hence we get

x′2 + x2 + x1 = sin(t),
x2 = x′1.

(10)

This expression is written as

x′1 = x2,
x′2 = −x1 − x2 + sin(t).

(11)

Finally, we get the following matrix–form:(
x1
x2

)′

=

(
0 1
−1 −1

)(
x1
x2

)
+

(
0

sin(t)

)
. (12)

Here, we have A =

(
0 1
−1 −1

)
and f =

(
0

sin(t)

)
. The initial conditions are given

by

(
x1(0)
x2(0)

)
=

(
−1
0

)
.

[e] The Forward Euler Method, applied to the system x′ = Ax+ f , gives at the first
step:

w1 = w0 + h
(
Aw0 + f

0

)
. (13)

With the initial condition and h = 0.1, this gives

w1 =

(
−1
0

)
+

1

2

((
0 1
−1 −1

)(
−1
0

)
+

(
0
0

))
=

(
−1
0.5

)
. (14)

[f] To this extent, we determine the eigenvalues of the matrix A. Subsequently, these
eigenvalues are substituted into the amplification factor. The eigenvalues of A are
given by −1

2
± 1

2
i
√

3. Substitution into the amplification factor gives

Q(hλ) = 1 + hλ = 1 +
h

2
(−1 + i

√
3) = 1− h

2
+
h
√

3

2
i. (15)

Herewith, it follows that

|Q(hλ)|2 = (1− h

2
)2 +

3h2

4
= 1− h+ h2. (16)

Since, for numerical stability, we need |Q(hλ)| ≤ 1, we get

h2 − h ≤ 0⇐⇒ h ≤ 1, (17)

and hence for 0 ≤ h ≤ 1, we have numerical stability, so h ∈ [0, 1].
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2. (a) The linear Lagrangian interpolatory polynomial, with nodes x0 and x1, is given
by

p1(x) =
x− x1
x0 − x1

f(x0) +
x− x0
x1 − x0

f(x1). (18)

This is evident from application of the given formula.

(b) The quadratic Lagrangian interpolatory polynomial with nodes x0, x1 and x2 is
given by

p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0)+

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

f(x1)+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

(19)
This is also evident from application of the given formula.

(c) To this extent, we compute p1(0.5) and p2(0.5) for both linear and quadratic
Lagrangian interpolation as approximations at x = 0.5. For linear interpolation,
we have

p1(0.5) = 0.5 +
1

2
· 2 =

3

2
, (20)

and for quadratic interpolation, one obtains

p2(0.5) =
(0.5− 1)(0.5− 2)

(−1) · (−2)
·1+

(0.5− 0)(0.5− 2)

1 · (−1)
·2+

(0.5− 0)(0.5− 1)

2 · 1
·4 =

11

8
= 1.375.

(21)

(d) The method of Newton-Raphson is based on linearization around the iterate pn.
This is given by

L(x) = f(pn) + (x− pn)f ′(pn). (22)

Next, we determine pn+1 such that L(pn+1) = 0, that is

f(pn) + (pn+1 − pn)f ′(pn) = 0⇔ pn+1 = pn −
f(pn)

f ′(pn)
, f ′(pn) 6= 0. (23)

This result can also be proved graphically, see book, chapter 4.

(e) We have f(x) = x2 − 2x− 2, so f ′(x) = 2x− 2 and hence

pn+1 = pn −
p2n − 2pn − 2

2pn − 2
.

With the initial value p0 = 2, this gives

p1 = 2− 4− 4− 2

4− 2
= 3.

(f) We consider a Taylor polynomial around pn, to express p

0 = f(p) = f(pn) + (p− pn)f ′(pn) +
(p− pn)2

2
f ′′(ξn), (24)

3



for some ξn between p and pn. Note that this form gives the exact representation.
Subsequently, we consider the Newton-Raphson approximation

0 = L(pn+1) = f(pn) + (pn+1 − pn)f ′(pn). (25)

Subtraction of these two above equations gives

pn+1 − p =
(pn − p)2

2

f ′′(ξn)

f ′(pn)
, provided that f ′(pn) 6= 0, (26)

and hence

|pn+1 − p| =
(pn − p)2

2
|f

′′(ξn)

f ′(pn)
|, provided that f ′(pn) 6= 0, (27)

Using pn → p, ξn → p as n → ∞ and continuity of f(x) up to at least the

second derivative, we arrive at K = 1
2
|f

′′(p)
f ′(p)
|. �
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