DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday August 15, 2013, 18:30-21:30

1.

a The local truncation error is defined as

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h} \tag{1}
\end{equation*}
$$

where z_{n+1} is given by

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(a_{1} f\left(t_{n}, y_{n}\right)+a_{2} f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right) .\right. \tag{2}
\end{equation*}
$$

A Taylor expansion of f around $\left(t_{n}, y_{n}\right)$ yields

$$
\begin{equation*}
f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)=f\left(t_{n}, y_{n}\right)+h \frac{\partial f}{\partial t}\left(t_{n}, y_{n}\right)+h f\left(t_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(t_{n}, y_{n}\right)+O\left(h^{2}\right) . \tag{3}
\end{equation*}
$$

This is substituted into equation (2) to obtain

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(a_{1} f\left(t_{n}, y_{n}\right)+a_{2}\left[f\left(t_{n}, y_{n}\right)+h \frac{\partial f}{\partial t}\left(t_{n}, y_{n}\right)+h f\left(t_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(t_{n}, y_{n}\right)\right]\right)+O\left(h^{3}\right) \tag{4}
\end{equation*}
$$

A Taylor series for $y(x)$ around t_{n} gives for y_{n+1}

$$
\begin{equation*}
y_{n+1}=y\left(t_{n}+h\right)=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) . \tag{5}
\end{equation*}
$$

From the differential equation we know that:

$$
\begin{equation*}
y^{\prime}\left(t_{n}\right)=f\left(t_{n}, y_{n}\right) \tag{6}
\end{equation*}
$$

From the Chain Rule of Differentiation, we derive

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right) \tag{7}
\end{equation*}
$$

after substitution of the differential equation one obtains:

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) \tag{8}
\end{equation*}
$$

Equations (5) and (4) are substituted into relation (1) to obtain

$$
\begin{equation*}
\tau_{n+1}(h)=f\left(t_{n}, y_{n}\right)\left(1-\left(a_{1}+a_{2}\right)\right)+h\left(\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial y}\right)\left(\frac{1}{2}-a_{2}\right)+O\left(h^{2}\right) \tag{9}
\end{equation*}
$$

Hence
(a) $a_{1}+a_{2}=1$ implies $\tau_{n+1}(h)=O(h)$;
(b) $a_{1}+a_{2}=1$ and $a_{2}=1 / 2$, that is, $a_{1}=a_{2}=1 / 2$, gives $\tau_{n+1}(h)=O\left(h^{2}\right)$.
b The test equation is given by

$$
\begin{equation*}
y^{\prime}=\lambda y \tag{10}
\end{equation*}
$$

Application of the predictor step to the test equation gives

$$
\begin{equation*}
w_{n+1}^{*}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n} . \tag{11}
\end{equation*}
$$

The corrector step yields

$$
\begin{equation*}
w_{n+1}=w_{n}+h\left(a_{1} \lambda w_{n}+a_{2} \lambda(1+h \lambda) w_{n}\right)=\left(1+\left(a_{1}+a_{2}\right) h \lambda+a_{2} h^{2} \lambda^{2}\right) w_{n} \tag{12}
\end{equation*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+\left(a_{1}+a_{2}\right) h \lambda+a_{2} h^{2} \lambda^{2} . \tag{13}
\end{equation*}
$$

c Let $\lambda<0$ (so λ is real), then, for stability, the amplification factor must satisfy

$$
\begin{equation*}
-1 \leq Q(h \lambda) \leq 1 \tag{14}
\end{equation*}
$$

from the previous assignment, we have

$$
\begin{equation*}
-1 \leq 1+\left(a_{1}+a_{2}\right) h \lambda+a_{2}(h \lambda)^{2} \leq 1 \Leftrightarrow-2 \leq\left(a_{1}+a_{2}\right) h \lambda+a_{2}(h \lambda)^{2} \leq 0 \tag{15}
\end{equation*}
$$

First, we consider the left inequality:

$$
\begin{equation*}
a_{2}(h \lambda)^{2}+\left(a_{1}+a_{2}\right) h \lambda+2 \geq 0 \tag{16}
\end{equation*}
$$

For $h \lambda=0$, the above inequality is satisfied, further the discriminant is given by $\left(a_{1}+a_{2}\right)^{2}-8 a_{2}<0$. Here the last inequality follows from the given hypothesis. Hence the left inequality in relation (15) is always satisfied. Next we consider the right hand inequality of relation (15)

$$
\begin{equation*}
a_{2}(h \lambda)^{2}+\left(a_{1}+a_{2}\right) h \lambda \leq 0 \tag{17}
\end{equation*}
$$

This relation is rearranged into

$$
\begin{equation*}
a_{2}(h \lambda)^{2} \leq-\left(a_{1}+a_{2}\right) h \lambda, \tag{18}
\end{equation*}
$$

hence

$$
\begin{equation*}
a_{2}|h \lambda|^{2} \leq\left(a_{1}+a_{2}\right)|h \lambda| \Leftrightarrow|h \lambda| \leq \frac{a_{1}+a_{2}}{a_{2}}, \quad a_{2} \neq 0 . \tag{19}
\end{equation*}
$$

This results into the following condition for stability

$$
\begin{equation*}
h \leq \frac{a_{1}+a_{2}}{a_{2}|\lambda|}, \quad a_{2} \neq 0 \tag{20}
\end{equation*}
$$

d The Jacobian, J, is given by

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \tag{21}\\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right)
$$

Since $f_{1}\left(y_{1}, y_{2}\right)=-y_{1} y_{2}$ and $f_{2}\left(y_{1}, y_{2}\right)=y_{1} y_{2}-y_{2}$, we obtain

$$
J=\left(\begin{array}{cc}
-y_{2} & -y_{1} \tag{22}\\
y_{2} & y_{1}-1
\end{array}\right) .
$$

Substitution of the initial values $y_{1}(0)=1$ and $y_{2}(0)=2$, gives

$$
J=\left(\begin{array}{cc}
-2 & -1 \tag{23}\\
2 & 0
\end{array}\right)
$$

e The eigenvalues of the Jacobian at $y_{1}(0)=y_{2}(0)=1$ are given by $\lambda_{1,2}=-1 \pm i$. For our case, we have

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+1 / 2(h \lambda)^{2} . \tag{24}
\end{equation*}
$$

Since our eigenvalues are not real valued, it is required for stability that

$$
\begin{equation*}
|Q(h \lambda)| \leq 1 \tag{25}
\end{equation*}
$$

Since the eigenvalues are complex conjugates, we can proceed with one of the eigenvalues, say $\lambda=-1+i$ with $\lambda^{2}=-2 i$ to obtain

$$
\begin{equation*}
Q(h \lambda)=1+h(-1+i)+1 / 2 h^{2}(-2 i) \tag{26}
\end{equation*}
$$

Substitution of $h=1$ shows that $Q(h \lambda)=0$. This implies that $|Q(h \lambda)|=0 \leq 1$ so the method is stable.
2. a First, we check the boundary conditions:

$$
\begin{equation*}
u(0)=\frac{e^{0}-1}{e-1}=\frac{1-1}{e-1}=0, \quad u(1)=\frac{e^{1}-1}{e-1}=1 . \tag{27}
\end{equation*}
$$

Further, we have

$$
\begin{equation*}
u^{\prime}(x)=\frac{e^{x}}{e-1}=u^{\prime \prime}(x) \tag{28}
\end{equation*}
$$

Hence, we immediately see

$$
\begin{equation*}
-u^{\prime \prime}(x)+u^{\prime}(x)=-\frac{e^{x}}{e-1}+\frac{e^{x}}{e-1}=0 \tag{29}
\end{equation*}
$$

Hence, the solution $u(x)=\frac{e^{x}-1}{e-1}$ satisfies the differential and the boundary conditions, and therewith $u(x)$ is the solution to the boundary value problem (uniqueness can be demonstrated in a straightforward way, but this was not asked for).
b The domain of computation, being $(0,1)$, is divided into subintervals with meshpoints, we set $x_{j}=j h$, where we use n unknowns, such that $x_{n+1}=(n+1) h=1$. We are looking for a discretization with an error of second order, $O\left(h^{2}\right)$. To this extent, we use the following central differences approximation at x_{j} :

$$
\begin{equation*}
u^{\prime}\left(x_{j}\right) \approx \frac{u\left(x_{j+1}\right)-u\left(x_{j-1}\right)}{2 h}, \text { for } j \in\{1, \ldots, n\} \tag{30}
\end{equation*}
$$

We note that the above formula can be derived formally by writing the derivative as

$$
\begin{equation*}
u^{\prime}\left(x_{j}\right)=\frac{\alpha_{0} u\left(x_{j-1}\right)+\alpha_{1} u\left(x_{j}\right)+\alpha_{2} u\left(x_{j+1}\right)}{h}, \tag{31}
\end{equation*}
$$

and solve α_{0}, α_{1} and α_{2} from checking the zeroth, first and second order derivatives of $u(x)$. Further, the second order derivative is approximated by

$$
\begin{equation*}
u^{\prime \prime}\left(x_{j}\right) \approx \frac{u\left(x_{j+1}\right)-2 u\left(x_{j}\right)+u\left(x_{j-1}\right)}{h^{2}} \tag{32}
\end{equation*}
$$

Since we approximate the derivatives at the point x_{j}, we use Taylor Series around x_{j}, to obtain:

$$
\begin{align*}
& u\left(x_{j+1}\right)=u\left(x_{j}+h\right)=u\left(x_{j}\right)+h u^{\prime}\left(x_{j}\right)+\frac{h^{2}}{2} u^{\prime \prime}\left(x_{j}\right)+\frac{h^{3}}{6} u^{\prime \prime \prime}\left(x_{j}\right)+\frac{h^{4}}{24} u^{\prime \prime \prime \prime}\left(x_{j}\right)+O\left(h^{5}\right), \\
& u\left(x_{j-1}\right)=u\left(x_{j}-h\right)=u\left(x_{j}\right)-h u^{\prime}\left(x_{j}\right)+\frac{h^{2}}{2} u^{\prime \prime}\left(x_{j}\right)-\frac{h^{3}}{6} u^{\prime \prime \prime}\left(x_{j}\right)+\frac{h^{4}}{24} u^{\prime \prime \prime \prime}\left(x_{j}\right)+O\left(h^{5}\right), \tag{33}
\end{align*}
$$

This gives

$$
\begin{align*}
& -\frac{u\left(x_{j+1}\right)-2 u\left(x_{j}\right)+u\left(x_{j-1}\right)}{h^{2}}+\frac{u\left(x_{j+1}\right)-u\left(x_{j-1}\right)}{2 h}=-u^{\prime \prime}\left(x_{j}\right)+u^{\prime}\left(x_{j}\right) \\
& +\frac{\frac{h^{3}}{3} u^{\prime \prime \prime}\left(x_{j}\right)+O\left(h^{4}\right)}{2 h}+\frac{\frac{h^{4} u^{\prime \prime \prime \prime}\left(x_{j}\right)}{12}+O\left(h^{5}\right)}{h^{2}}=-u^{\prime \prime}\left(x_{j}\right)+u^{\prime}\left(x_{j}\right)+O\left(h^{2}\right) . \tag{34}
\end{align*}
$$

Hence the error is second order, that is $O\left(h^{2}\right)$. Next, we neglect the truncation error, and set $v_{j}:=u\left(x_{j}\right)$ to get

$$
\begin{equation*}
-\frac{v_{j+1}-2 v_{j}+v_{j-1}}{h^{2}}+\frac{v_{j+1}-v_{j-1}}{2 h}=0, \text { for } j \in\{1, \ldots, n\} . \tag{35}
\end{equation*}
$$

At the boundaries, we see for $j=1$ and $j=n$, upon substituting $v_{0}=0$ and $v_{n+1}=1$:

$$
\begin{align*}
& -\frac{v_{2}-2 v_{1}+0}{h^{2}}+\frac{v_{2}-0}{2 h}=0, \tag{36}\\
& -\frac{1-2 v_{n}+v_{n-1}}{h^{2}}+\frac{1-v_{n-1}}{2 h}=0 .
\end{align*}
$$

This is rewritten more neatly by

$$
\begin{align*}
& \frac{-v_{2}+2 v_{1}}{h^{2}}+\frac{v_{2}}{2 h}=0, \\
& \frac{2 v_{n}-v_{n-1}}{h^{2}}-\frac{v_{n-1}}{2 h}=\frac{1}{h^{2}}-\frac{1}{2 h} . \tag{37}
\end{align*}
$$

c Since the exact solution is given by

$$
\begin{equation*}
u(x)=\frac{e^{x}-1}{e-1} \tag{38}
\end{equation*}
$$

we immediately see that the exact solution is a real-valued exponential, which is monotonic by its nature. Since the numerical solution should have the same characteristics as the exact solution, non-monotonic (and hence oscillatory) solutions should be considered as not reflecting the analytic solution.
d i The magnitude of the local truncation error is given by

$$
\begin{equation*}
|\varepsilon|=\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}(f(a)+f(b))\right| . \tag{39}
\end{equation*}
$$

We use linear interpolation over the interval (a, b), which gives

$$
\begin{equation*}
f(x)-\left(f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a}\right)=\frac{1}{2}(x-a)(x-b) f^{\prime \prime}(\xi), \text { for a } \xi \in(a, b) \backslash\{x\} . \tag{40}
\end{equation*}
$$

Since

$$
\begin{equation*}
\int_{a}^{b}\left(f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a}\right) d x=\frac{b-a}{2}(f(a)+f(b)) \tag{41}
\end{equation*}
$$

this implies that

$$
\begin{align*}
& \left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}(f(a)+f(b))\right|=\left|\int_{a}^{b} \frac{1}{2}(x-a)(x-b) f^{\prime \prime}(\xi(x)) d x\right| \\
& \leq \frac{1}{2} \int_{a}^{b}(x-a)(b-x)\left|f^{\prime \prime}(\xi(x))\right| d x \leq \frac{M}{2} \int_{a}^{b}(x-a)(b-x) d x \tag{42}
\end{align*}
$$

Continuity, and hence boundedness, of the second-order derivatives on the interval $(0,1)$ implies the existence of an $M>0$ such that $\left|f^{\prime \prime}(x)\right| \leq M$ on the interval (a, b), since the derivatives of f up to second order are bounded. Furthermore, we have

$$
\begin{equation*}
\int_{a}^{b}(x-a)(x-b) d x=\frac{(b-a)^{3}}{6} \tag{43}
\end{equation*}
$$

by which we finally conclude

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{2}(f(a)+f(b))\right| \leq \frac{M}{12}(b-a)^{3}, \tag{44}
\end{equation*}
$$

where, as we saw earlier, M is an upper bound for the second order derivative on the interval (a, b).
ii Application over the gridnodes $\left\{x_{j}\right\}$, with gridspacing h, gives

$$
\begin{align*}
& \int_{0}^{0.3} f(x) d x \approx \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} f(x) d x=\sum_{j=1}^{n} \frac{h}{2}\left(f\left(x_{j-1}\right)+f\left(x_{j}\right)\right) \tag{45}\\
& =h\left(\frac{f\left(x_{0}\right)}{2}+f\left(x_{1}\right)+\ldots+f\left(x_{n-1}\right)+\frac{f\left(x_{n}\right)}{2}\right) .
\end{align*}
$$

Application to the current situation, with $h=0.1, n=3$, and the tabular values, gives

$$
\begin{equation*}
\int_{0}^{0.3} f(x) d x \approx 0.1\left(\frac{0}{2}+0.01+0.04+\frac{0.09}{2}\right)=0.0095 \tag{46}
\end{equation*}
$$

