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1. (a) The amplification factor can be derived as follows. Consider the test equation
y′ = λy. Application of the trapezoidal rule to this equation gives:

wj+1 = wj +
h

2
(λwj + λwj+1) (1)

Rearranging of wj+1 and wj in (1) yields(
1− h

2
λ

)
wj+1 =

(
1 +

h

2
λ

)
wj.

It now follows that

wj+1 =
1 + h

2
λ

1− h
2
λ
wj,

and thus

Q(hλ) =
1 + h

2
λ

1− h
2
λ
.

(b) The definition of the local truncation error is

τj+1 =
yj+1 −Q(hλ)yj

h
.

The exact solution of the test equation is given by

yj+1 = ehλyj.

Combination of these results shows that the local truncation error of the test
equation is determined by the difference between the exponential function and
the amplification factor Q(hλ)

τj+1 =
ehλ −Q(hλ)

h
yj. (2)

The difference between the exponential function and amplification factor can be
computed as follows. The Taylor series of ehλ with known point 0 is:

ehλ = 1 + λh+
(λh)2

2
+O(h3). (3)
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The Taylor series of 1
1−h

2
λ

with known point 0 is:

1

1− h
2
λ

= 1 +
1

2
hλ+

1

4
h2λ2 +O(h3). (4)

With (4) it follows that
1+h

2
λ

1−h
2
λ

is equal to

1 + h
2
λ

1− h
2
λ

= 1 + hλ+
1

2
(hλ)2 +O(h3). (5)

In order to determine ehλ − Q(hλ), we subtract (5) from (3). Now it follows
that

ehλ −Q(hλ) = O(h3). (6)

The local truncation error can be found by substituting (6) into (2), which leads
to

τj+1 = O(h2).

(c) The trapezoidal rule is stable if

|1 + h
2
λ|

|1− h
2
λ|
≤ 1.

Using the complex valued λ = µ+ iν it appears that the condition is equal to:

|1 + h
2
(µ+ iν)|

|1− h
2
(µ+ iν)|

≤ 1

This is equivalent with √
(1 + h

2
µ)2 + (h

2
ν)2√

(1− h
2
µ)2 + (h

2
ν)2
≤ 1

Since µ ≤ 0 it easily follows that√
(1 +

h

2
µ)2 + (

h

2
ν)2 ≤

√
(1− h

2
µ)2 + (

h

2
ν)2

which implies that
|1 + h

2
λ|

|1− h
2
λ|
≤ 1.

and the method is stable.
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(d) Application of the trapezoidal rule to

y′ = −(1 + 2t)y + t, with y(0) = 1,

and step size h = 1
2

gives:

w1 = w0 +
h

2
[−w0 + 0− 2w1 +

1

2
].

Using the initial value w0 = y(0) = 1 and step size h = 1
2

gives:

w1 = 1 +
1

4
[−1− 2w1 +

1

2
].

This leads to

1
1

2
w1 =

7

8
, so w1 =

7

12
.

(e) For the comparison we use the following items: accuracy, stability, and amount
of work. Below we make the comparison:

• Accuracy: since the error of Euler Forward is O(h) and that of the trape-
zoidal rule is O(h2), the error is smaller for the trapezoidal rule.

• Stability: since the value of −(1+2t) is always negative the trapezoidal rule
is stable for all step sizes, whereas for Euler Forward the step size should
satisfy the inequality h ≤ 2

1+2t
.

• Amount of work: since the differential equation is linear the amount of work
for the implicit trapezoidal rule is comparable to the work of the explicit
Euler Forward method.

From the above comparisons we conclude that for this problem the trapezoidal
rule is preferred.

2. a Consider y(x) = x, then y′(x) = 1 and y′′(x) = 0. Hence

−y′′(x) + y′(x) + y2(x) = 0 + 1 + x2 = x2 + 1, (7)

and hence y(x) = x satisfies the differential equation. Since y(x) = x gives
y(0) = 0 and y(1) = 1, we see that y(x) = x also satisfies the boundary
conditions. Hence y(x) = x is a solution to the boundary value problem.

b On the gridnodes xj = jh, we approximate all derivatives by difference formulae,
and compute truncation errors by expanding Taylor Series around xj, to obtain
for the first–order derivative:

dy(k+1)

dx
(xj)−

y
(k+1)
j+1 −y

(k+1)
j−1

2h
=

dy(k+1)

dx
(xj)−

y
(k+1)
j +h dy(k+1)

dx
(xj)+

h2

2
d2y(k+1)

dx2
(xj)+

h3

6
d3y(k+1)

dx3
(xj)+O(h4)

2h

+
y
(k+1)
j −h dy(k+1)

dx
(xj)+

h2

2
d2y(k+1)

dx2
(xj)−h3

6
d3y(k+1)

dx3
(xj)+O(h4)

2h
= O(h2).

(8)
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For the second–order derivative, we get

d2y(k+1)

dx2
(xj)−

y
(k+1)
j+1 −2y

(k+1)
j +y

(k+1)
j−1

h2
= d2y(k+1)

dx2
(xj)

−y
(k+1)
j +h dy(k+1)

dx
(xj)+

h2

2
d2y(k+1)

dx2
(xj)+

h3

6
d3y(k+1)

dx3
(xj)+O(h4)−2y

(k+1)
j

h2

−y
(k+1)
j −h dy(k+1)

dx
(xj)+

h2

2
d2y(k+1)

dx2
(xj)−h3

6
d3y(k+1)

dx3
(xj)+O(h4)

h2
= O(h2).

(9)

Herewith, we get

−d2y(k+1)

dx2
(xi) + dy(k+1)

dx
(xj) + y(k)(xj)y

(k+1)(xj)−

(−y
(k+1)
j+1 −2y

(k+1)
j +y

(k+1)
j−1

h2
+

y
(k+1)
j+1 −y

(k+1)
j−1

2h
+ y

(k)
j y

(k+1)
j ) = O(h2),

(10)

and using the above given difference formulae, we get a local truncation error
of O(h2). Regarding the discretization at point xj = jh, we have

−
w

(k+1)
j+1 − 2w

(k+1)
j + w

(k+1)
j−1

h2
+
w

(k+1)
j+1 − w

(k+1)
j−1

2h
+w

(k)
j w

(k+1)
j = f(xj) = x2j+1 = (jh)2+1.

(11)

for j ∈ {1, . . . , n}. Here w
(k)
j ≈ y

(k)
j represents the approximation under ne-

glecting the truncation error. Substitution of the boundary conditions, w0 = 0,
wn+1 = 1, gives

j = 1 : −w
(k+1)
2 − 2w

(k+1)
1

h2
+
w

(k+1)
2

2h
+ w

(k+1)
1 w

(k)
1 = f(x1) = h2 + 1, (12)

and

j = n : −
−2w

(k+1)
n + w

(k+1)
n−1

h2
−
w

(k+1)
n−1

2h
+w(k)

n w(k+1)
n = (1−h)2+1+

1

h2
− 1

2h
. (13)

c We consider h = 1
3
, which means that n = 2 (note that (n + 1)h) = 1), and

that, using the iteration procedure given in the assignment, we get the following
2× 2–system

18w
(k+1)
1 − 9w

(k+1)
2 + 3

2
w

(k+1)
2 + w

(k+1)
1 w

(k)
1 = 1

9
+ 1 = 10

9
,

18w
(k+1)
2 − 9w

(k+1)
1 − 3

2
w

(k+1)
1 + w

(k+1)
2 w

(k)
2 = 4

9
+ 1 + 9− 3

2
= 161

18
.

(14)

Substituting w
(0)
1 = w

(0)
2 = 0, gives

18w
(1)
1 − 7.5w

(1)
2 = 10

9
,

−10.5w
(1)
1 + 18w

(1)
2 = 161

18
.

(15)

Solution of this system gives w
(1)
1 ≈ 0.35508 and w

(1)
2 ≈ 0.70404.
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d Newton–Raphson’s Method is an iterative method to find y ∈ R such that
f(y) = 0. One constructs a sequence of successive approximations {y(k)}. Given
the k–th estimate, then y(k+1) is obtained through linearizing around y(k) and by
finding y(k+1) by determining the point where the linearization (tangent) equals
zero. Linearization of f(y) around y(k) gives (upon neglecting the error)

f(y) ≈ f(y(k)) + f ′(y(k))(y − y(k)) =: L(y; y(k)), (16)

for any y provided the second derivative of f(y) is bounded and where L(y; y(k))
denotes the tangent (linearization) of f(y) at point (yk, f(y(k))). Then the next
point is found upon setting L(y(k+1); y(k)) = 0:

f(y(k)) + f ′(y(k))(y(k+1) − y(k)) = 0. (17)

The above equation is solved for y(k+1), and gives

y(k+1) = y(k) − f(y(k))

f ′(y(k))
, (18)

which is the famous Newton–Raphson formula for root–finding.

Remark 1 One can also give a graphical derivation, or alternatively using a
derivation from first principles using L(y; y(k)) = a0 + a1y, where a0 and a1
need to be determined using L(y(k); yk) = f(y(k)), L′(y(k); y(k)) = f ′(y(k)) and
L(y(k+1), y(k)) = 0.

e First, we rewrite the system into the form

f1(w1, w2) = 0,
f2(w1, w2) = 0,

(19)

by setting
f1(w1, w2) := 18w1 − 9w2 + (w1)

2,
f2(w1, w2) := −9w1 + 18w2 + (w2)

2 − 9.
(20)

We denote the Jacobi–matrix by J(w1, w2). At the first step we compute

w(1) = w(0) − J(w(0))−1F (w(0)), (21)

where w = [w1 w2]
T . Note that

J(w(0)) =

(
18 + 2w

(0)
1 −9

−9 18 + 2w
(0)
2

)
. (22)

Using w
(0)
1 = w

(0)
2 = 0 we obtain:

J(w(0)) =

(
18 −9
−9 18

)
. (23)
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This implies that

J(w(0))−1 =
1

182 − 81

(
18 9
9 18

)
. (24)

Furthermore

F (w(0)) =

(
0
−9

)
, (25)

so

w(1) =

(
0
0

)
− 1

182 − 81

(
18 9
9 18

)(
0
−9

)
=

(
1
3
2
3

)
. (26)
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