DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU)
 Thursday April 17 2014, 18:30-21:30

1. a The local truncation error is defined by

$$
\begin{equation*}
\tau_{n+1}(h):=\frac{y_{n+1}-z_{n+1}}{h} \tag{1}
\end{equation*}
$$

where $y_{n}:=y\left(t_{n}\right)$ represents the exact solution and

$$
\begin{equation*}
z_{n+1}=y_{n}+h f\left(t_{n+1}, z_{n+1}\right), \tag{2}
\end{equation*}
$$

represents the approximation of the numerical solution at t_{n+1} upon using y_{n} for the previous time step. Since, we use the test equation $y^{\prime}=\lambda y$, we express y_{n+1} in terms of y_{n} as follows

$$
\begin{equation*}
y_{n+1}=y_{n} e^{\lambda h}=y_{n}\left(1+h \lambda+\frac{1}{2} h^{2} \lambda^{2}+O\left(h^{3}\right)\right) . \tag{3}
\end{equation*}
$$

From (2), we use the test equation and the geometric series

$$
\begin{equation*}
z_{n+1}=\frac{y_{n}}{1-h \lambda}=y_{n}\left(1+h \lambda+h^{2} \lambda^{2}+O\left(h^{3}\right)\right) \tag{4}
\end{equation*}
$$

Substitution of equations (3) and (4) into the definition of the local truncation error, gives

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n}}{h}\left(-\frac{h^{2} \lambda^{2}}{2}+O\left(h^{3}\right)\right)=O(h) \tag{5}
\end{equation*}
$$

b Using the test equation, we get

$$
\begin{equation*}
w_{n+1}=w_{n}+h \lambda w_{n+1}, \tag{6}
\end{equation*}
$$

where w_{n} denotes the numerical approximation of y_{n}. The above equation implies

$$
\begin{equation*}
w_{n+1}=\frac{w_{n}}{1-h \lambda}=: Q(h \lambda) w_{n} . \tag{7}
\end{equation*}
$$

Here $Q(h \lambda)$ represents the amplification factor. For numerical stability, we require the modulus of the amplification factor to satisfy

$$
\begin{equation*}
|Q(h \lambda)| \leq 1, \text { hence }\left|\frac{1}{1-h \lambda}\right|=\frac{1}{|1-h \lambda|} \leq 1 \tag{8}
\end{equation*}
$$

Figure 1: The region of stability of the backward Euler method (grey area).

From the above equation, it is clear that

$$
\begin{equation*}
|1-h \lambda| \geq 1 \tag{9}
\end{equation*}
$$

and with $\lambda=\mu+i \nu$, we get

$$
\begin{equation*}
(1-h \mu)^{2}+(h \nu)^{2} \geq 1 \tag{10}
\end{equation*}
$$

This area is the whole complex plane except the unit circle with center $(1,0)$, see Figure 1.
c Consider the equations that we have to solve

$$
\begin{align*}
& y_{1}^{\prime}=y_{1}\left(1-\left(y_{1}+2 y_{2}\right)\right)=: f_{1}\left(y_{1}, y_{2}\right), \tag{11}\\
& y_{2}^{\prime}=y_{2}\left(1-\left(y_{1}+y_{2}\right)\right)=: f_{2}\left(y_{1}, y_{2}\right),
\end{align*}
$$

Here, we introduced the functions $f_{1}\left(y_{1}, y_{2}\right)$ and $f_{2}\left(y_{1}, y_{2}\right)$. Then, the Jacobi matrix is given by

$$
J\left(y_{1}, y_{2}\right):=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial y_{1}}\left(y_{1}, y_{2}\right) & \frac{\partial f_{1}}{\partial y_{2}}\left(y_{1}, y_{2}\right) \tag{12}\\
\frac{\partial f_{2}}{\partial y_{1}}\left(y_{1}, y_{2}\right) & \frac{\partial f_{2}}{\partial y_{2}}\left(y_{1}, y_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
1-2\left(y_{1}+y_{2}\right) & -2 y_{1} \\
-y_{2} & 1-\left(y_{1}+2 y_{2}\right)
\end{array}\right)
$$

For the equilibrium $(0,1)$, we have

$$
J\left(y_{1}, y_{2}\right):=\left(\begin{array}{cc}
-1 & 0 \tag{13}\\
-1 & -1
\end{array}\right)
$$

Hence both eigenvalues are given by $\lambda_{1}=-1$ and $\lambda_{2}=-1$.
d $\quad-$ We have $\lambda_{1}=-1$ and $\lambda_{2}=-1$, hence with $h>0$, this implies that $h \lambda<0$ (thus real-valued), then from Figure 1, it is clear that the backward Euler is stable for any $h>0$.

- Since the eigenvalues are real-valued and negative, we use

$$
\begin{equation*}
h \leq \frac{2}{|\lambda|} \tag{14}
\end{equation*}
$$

as stability bound for the forward Euler method. With $\lambda_{1}=\lambda_{2}=-1$, we get $h \leq 2$ as the maximum allowable time step to warrant numerical stability, based on linear stability analysis around $(0,1)$.
e Applying the forward Euler time integration method to system (11), gives

$$
\begin{align*}
& u_{n+1}=u_{n}+h u_{n}\left(1-\left(u_{n}+2 v_{n}\right)\right) \\
& v_{n+1}=v_{n}+h v_{n}\left(1-\left(u_{n}+v_{n}\right)\right) \tag{15}
\end{align*}
$$

where $\underline{w}_{n}=\left(u_{n}, v_{n}\right)^{T}$ denotes the numerical solution with components u_{n} and v_{n}. Using $h=1$ and $u_{0}=0.25$ and $v_{0}=0.5$, gives

$$
\begin{align*}
& u_{1}=u_{0}+h u_{0}\left(1-\left(u_{0}+2 v_{0}\right)\right)=\frac{1}{4}+\frac{1}{4}\left(1-\left(\frac{1}{4}+1\right)\right), \tag{16}\\
& v_{1}=v_{0}+h v_{0}\left(1-\left(u_{0}+v_{0}\right)\right)=\frac{1}{2}+\frac{1}{2}\left(1-\left(\frac{1}{4}+\frac{1}{2}\right)\right) .
\end{align*}
$$

Hence $u_{1}=\frac{3}{16}=0.1875$ and $v_{1}=\frac{5}{8}=0.625$.
2. (a) The Taylor polynomials around 0 are given by:

$$
\begin{aligned}
f(0) & =f(0) \\
f(-h) & =f(0)-h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime \prime}(0)-\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right), \\
f(-2 h) & =f(0)-2 h f^{\prime}(0)+2 h^{2} f^{\prime \prime}(0)-\frac{(2 h)^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)
\end{aligned}
$$

Here $\xi_{1} \in(-h, 0), \xi_{2} \in(-2 h, 0)$. We know that $Q(h)=\frac{\alpha_{0}}{h^{2}} f(0)+\frac{\alpha_{-1}}{h^{2}} f(-h)+$ $\frac{\alpha_{-2}}{h^{2}} f(-2 h)$, which should be equal to $f^{\prime \prime}(0)+O(h)$. This leads to the following conditions:

$$
\begin{array}{rlrl}
f(0): & \frac{\alpha_{0}}{h^{2}}+\frac{\alpha_{-1}}{h^{2}}+\frac{\alpha_{-2}}{h^{2}} & =0 \\
f^{\prime}(0): & & -\frac{h \alpha-1}{h^{2}}-\frac{2 h \alpha_{-2}}{h^{2}} & =0, \\
f^{\prime \prime}(0): & & \frac{h^{2}}{2 h^{2}} \alpha_{-1}+\frac{2 h^{2} \alpha-2}{h^{2}} & =1 .
\end{array}
$$

This can also be written as

$$
\begin{aligned}
& f(0): \quad \alpha_{0}+\alpha_{-1}+\alpha_{-2}=0, \\
& f^{\prime}(0): \quad-\alpha_{-1}-2 \alpha_{-2}=0 \text {, } \\
& f^{\prime \prime}(0): \quad \frac{\alpha_{-1}}{2}+2 \alpha_{-2}=1 .
\end{aligned}
$$

(b) The truncation error follows from the Taylor polynomials:

$$
\begin{gathered}
f^{\prime \prime}(0)-Q(h)=f^{\prime \prime}(0)-\frac{f(0)-2 f(-h)+f(-2 h)}{h^{2}}=-\left(\frac{\frac{2 h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right)-\frac{8 h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{2}\right)}{h^{2}}\right) \\
=h f^{\prime \prime \prime}(\xi) .
\end{gathered}
$$

(c) Note that

$$
\begin{align*}
f^{\prime \prime}(0)-Q(h) & =K h \tag{17}\\
f^{\prime \prime}(0)-Q\left(\frac{h}{2}\right) & =K\left(\frac{h}{2}\right) \tag{18}
\end{align*}
$$

Subtraction gives:

$$
\begin{equation*}
Q\left(\frac{h}{2}\right)-Q(h)=K h-K \frac{h}{2}=K\left(\frac{h}{2}\right) \tag{19}
\end{equation*}
$$

We choose $h=\frac{1}{2}$. Then $Q(h)=Q\left(\frac{1}{2}\right)=\frac{0-2 \times 0.1250+1}{0.25}=3$ and $Q\left(\frac{h}{2}\right)=Q\left(\frac{1}{4}\right)=$ $\frac{0-2 \times 0.0156+0.1250}{\left(\frac{1}{4}\right)^{2}}=1.5008$. Combining (18) and (19) shows that

$$
f^{\prime \prime}(0)-Q\left(\frac{1}{4}\right)=Q\left(\frac{1}{4}\right)-Q\left(\frac{1}{2}\right)=-1.4992
$$

(d) To estimate the rounding error we note that

$$
\begin{aligned}
\mid Q(h) & -\hat{Q}(h)\left|=\left|\frac{(f(0)-\hat{f}(0))-2(f(-h)-\hat{f}(-h))+(f(-2 h)-\hat{f}(-2 h))}{h^{2}}\right|\right. \\
& \leq \frac{|f(0)-\hat{f}(0)|+2|f(-h)-\hat{f}(-h)|+|f(-2 h)-\hat{f}(-2 h)|}{h^{2}} \leq \frac{4 \epsilon}{h^{2}},
\end{aligned}
$$

so $C_{1}=4$. Since only 4 digits are given the rounding error is: $\epsilon=0.00005$.
(e) The total error is bounded by

$$
\begin{aligned}
&\left|f^{\prime \prime}(0)-\hat{Q}(h)\right|=\left|f^{\prime \prime}(0)-Q(h)+Q(h)-\hat{Q}(h)\right| \\
& \leq\left|f^{\prime \prime}(0)-Q(h)\right|+|Q(h)-\hat{Q}(h)| \\
& \leq 6 h+\frac{4 \epsilon}{h^{2}}=g(h)
\end{aligned}
$$

This is minimal for $h_{\text {opt }}$, for which $g^{\prime}\left(h_{o p t}\right)=0$. Note that $g^{\prime}(h)=6-\frac{8 \epsilon}{h^{3}}$. This implies that $h_{o p t}^{3}=\frac{4 \epsilon}{3}$, so $h_{\text {opt }}=\left(\frac{4 \epsilon}{3}\right)^{\frac{1}{3}} \approx 0.0405$.

