DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU and CTB2400)
 Thursday July 3 2014, 18:30-21:30

1.

a The local truncation error is defined as

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h} \tag{1}
\end{equation*}
$$

where z_{n+1} is given by

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(a_{1} f\left(t_{n}, y_{n}\right)+a_{2} f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right) .\right. \tag{2}
\end{equation*}
$$

A Taylor expansion of f around $\left(t_{n}, y_{n}\right)$ yields

$$
\begin{equation*}
f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)=f\left(t_{n}, y_{n}\right)+h \frac{\partial f}{\partial t}\left(t_{n}, y_{n}\right)+h f\left(t_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(t_{n}, y_{n}\right)+O\left(h^{2}\right) . \tag{3}
\end{equation*}
$$

This is substituted into equation (2) to obtain

$$
\begin{equation*}
z_{n+1}=y_{n}+h\left(a_{1} f\left(t_{n}, y_{n}\right)+a_{2}\left[f\left(t_{n}, y_{n}\right)+h \frac{\partial f}{\partial t}\left(t_{n}, y_{n}\right)+h f\left(t_{n}, y_{n}\right) \frac{\partial f}{\partial y}\left(t_{n}, y_{n}\right)\right]\right)+O\left(h^{3}\right) \tag{4}
\end{equation*}
$$

A Taylor series for $y(t)$ around t_{n} gives for y_{n+1}

$$
\begin{equation*}
y_{n+1}=y\left(t_{n}+h\right)=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) . \tag{5}
\end{equation*}
$$

From the differential equation we know that:

$$
\begin{equation*}
y^{\prime}\left(t_{n}\right)=f\left(t_{n}, y_{n}\right) \tag{6}
\end{equation*}
$$

From the Chain Rule of Differentiation, we derive

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right) \tag{7}
\end{equation*}
$$

after substitution of the differential equation one obtains:

$$
\begin{equation*}
y^{\prime \prime}\left(t_{n}\right)=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) \tag{8}
\end{equation*}
$$

Equations (5) and (4) are substituted into relation (1) to obtain

$$
\begin{equation*}
\tau_{n+1}(h)=f\left(t_{n}, y_{n}\right)\left(1-\left(a_{1}+a_{2}\right)\right)+h\left(\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial y}\right)\left(\frac{1}{2}-a_{2}\right)+O\left(h^{2}\right) \tag{9}
\end{equation*}
$$

Hence
(a) $a_{1}+a_{2}=1$ implies $\tau_{n+1}(h)=O(h)$;
(b) $a_{1}+a_{2}=1$ and $a_{2}=1 / 2$, that is, $a_{1}=a_{2}=1 / 2$, gives $\tau_{n+1}(h)=O\left(h^{2}\right)$.
b The test equation is given by

$$
\begin{equation*}
y^{\prime}=\lambda y \tag{10}
\end{equation*}
$$

Application of the predictor step to the test equation gives

$$
\begin{equation*}
w_{n+1}^{*}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n} . \tag{11}
\end{equation*}
$$

The corrector step yields

$$
\begin{equation*}
w_{n+1}=w_{n}+h\left(a_{1} \lambda w_{n}+a_{2} \lambda(1+h \lambda) w_{n}\right)=\left(1+\left(a_{1}+a_{2}\right) h \lambda+a_{2} h^{2} \lambda^{2}\right) w_{n} \tag{12}
\end{equation*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+\left(a_{1}+a_{2}\right) h \lambda+a_{2} h^{2} \lambda^{2} . \tag{13}
\end{equation*}
$$

c Let $\lambda<0$ (so λ is real), then, for stability, the amplification factor must satisfy

$$
\begin{equation*}
-1 \leq Q(h \lambda) \leq 1 \tag{14}
\end{equation*}
$$

from the previous assignment, we have

$$
\begin{equation*}
-1 \leq 1+\left(a_{1}+a_{2}\right) h \lambda+a_{2}(h \lambda)^{2} \leq 1 \Leftrightarrow-2 \leq\left(a_{1}+a_{2}\right) h \lambda+a_{2}(h \lambda)^{2} \leq 0 \tag{15}
\end{equation*}
$$

First, we consider the left inequality:

$$
\begin{equation*}
a_{2}(h \lambda)^{2}+\left(a_{1}+a_{2}\right) h \lambda+2 \geq 0 \tag{16}
\end{equation*}
$$

For $h \lambda=0$, the above inequality is satisfied, further the discriminant is given by $\left(a_{1}+a_{2}\right)^{2}-8 a_{2}<0$. Here the last inequality follows from the given hypothesis. Hence the left inequality in relation (15) is always satisfied. Next we consider the right hand inequality of relation (15)

$$
\begin{equation*}
a_{2}(h \lambda)^{2}+\left(a_{1}+a_{2}\right) h \lambda \leq 0 \tag{17}
\end{equation*}
$$

This relation is rearranged into

$$
\begin{equation*}
a_{2}(h \lambda)^{2} \leq-\left(a_{1}+a_{2}\right) h \lambda, \tag{18}
\end{equation*}
$$

hence

$$
\begin{equation*}
a_{2}|h \lambda|^{2} \leq\left(a_{1}+a_{2}\right)|h \lambda| \Leftrightarrow|h \lambda| \leq \frac{a_{1}+a_{2}}{a_{2}}, \quad a_{2} \neq 0 . \tag{19}
\end{equation*}
$$

This results into the following condition for stability

$$
\begin{equation*}
h \leq \frac{a_{1}+a_{2}}{a_{2}|\lambda|}, \quad a_{2} \neq 0 \tag{20}
\end{equation*}
$$

d The Jacobian, J, is given by

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \tag{21}\\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right)
$$

Since $f_{1}\left(y_{1}, y_{2}\right)=-2 y_{1}-y_{1} y_{2}$ and $f_{2}\left(y_{1}, y_{2}\right)=2 y_{1} y_{2}-y_{2}^{2}$, we obtain

$$
J=\left(\begin{array}{cc}
-2-y_{2} & -y_{1} \tag{22}\\
2 y_{2} & 2 y_{1}-2 y_{2}
\end{array}\right) .
$$

Substitution of the initial values $y_{1}(0)=2$ and $y_{2}(0)=2$, gives

$$
J=\left(\begin{array}{cc}
-4 & -2 \tag{23}\\
4 & 0
\end{array}\right)
$$

e The eigenvalues of the Jacobian at $y_{1}(0)=y_{2}(0)=2$ are given by $\lambda_{1,2}=-2 \pm 2 i$. For our case, we have

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+\frac{1}{2}(h \lambda)^{2} . \tag{24}
\end{equation*}
$$

Since our eigenvalues are not real valued, it is required for stability that

$$
\begin{equation*}
|Q(h \lambda)| \leq 1 \tag{25}
\end{equation*}
$$

Since the eigenvalues are complex conjugates, we can proceed with one of the eigenvalues, say $\lambda=-2+2 i$ with $\lambda^{2}=-8 i$ to obtain

$$
\begin{equation*}
Q(h \lambda)=1+h(-2+2 i)+\frac{1}{2} h^{2}(-8 i) \tag{26}
\end{equation*}
$$

Substitution of $h=\frac{1}{2}$ shows that $Q(h \lambda)=0$. This implies that $|Q(h \lambda)|=0 \leq 1$ so the method is stable.
2. a. Given $y(x)=e^{x}(2-x)$, then $y^{\prime \prime}(x)=-e^{x} x$, and hence $-y^{\prime \prime}+y=2 e^{x}$ follows by simple addition. Furthermore, $y(0)=2$ and $y^{\prime}(x)=-e^{x}(x-1)$ and hence $y^{\prime}(1)=0$. Hence the differential equation, as well as the boundary conditions are satisfied.
b. Let $y_{j}=y\left(x_{j}\right)$, and let $x_{n}=1$, hence $h=1 / n$, then

$$
\begin{align*}
& y_{j-1}=y\left(x_{j}-h\right)=y_{j}-h y^{\prime}\left(x_{j}\right)+h^{2} / 2 y^{\prime \prime}\left(x_{j}\right)-h^{3} / 3!y^{\prime \prime \prime}\left(x_{j}\right)+h^{4} / 4!y^{\prime \prime \prime \prime}\left(x_{j}\right)+O\left(h^{5}\right) \\
& y_{j+1}=y\left(x_{j}+h\right)=y_{j}+h y^{\prime}\left(x_{j}\right)+h^{2} / 2 y^{\prime \prime}\left(x_{j}\right)+h^{3} / 3!y^{\prime \prime \prime}\left(x_{j}\right)+h^{4} / 4!y^{\prime \prime \prime \prime}\left(x_{j}\right)+O\left(h^{5}\right) . \tag{27}
\end{align*}
$$

From the above expressions, it can be seen that

$$
\begin{equation*}
y^{\prime \prime}\left(x_{j}\right)=\frac{y_{j-1}-2 y_{j}+y_{j+1}}{h^{2}}+\frac{h^{2}}{12} y^{\prime \prime \prime \prime}\left(x_{j}\right)+O\left(h^{3}\right), \tag{28}
\end{equation*}
$$

and hence the error is $O\left(h^{2}\right)$. This gives the following discretisation

$$
\begin{equation*}
\frac{-w_{j-1}+2 w_{j}-w_{j+1}}{h^{2}}+w_{j}=2 e^{x_{j}}, \quad \text { for } j=1 \ldots n \tag{29}
\end{equation*}
$$

where $x_{j}=j h$ and $w_{j} \approx y_{j}$ is the numerical (finite difference) solution neglecting the error.
Furthermore, we use a virtual gridnode near $x=1, x_{n+1}=1+h$, with

$$
\begin{equation*}
0=y^{\prime}(1)=\frac{y_{n+1}-y_{n-1}}{2 h}-\frac{h^{2}}{6} y^{\prime \prime \prime}(1)+O\left(h^{3}\right) \tag{30}
\end{equation*}
$$

hence the error is $O\left(h^{2}\right)$. Neglecting the error, and substitution into the discretisation equation $j=n$, yields

$$
\begin{equation*}
\frac{-2 w_{n-1}+2 w_{n}}{h^{2}}+w_{n}=2 e . \tag{31}
\end{equation*}
$$

Division by 2 to make the discretisation symmetric yields

$$
\begin{equation*}
\frac{-w_{n-1}+w_{n}}{h^{2}}+\frac{1}{2} w_{n}=e . \tag{32}
\end{equation*}
$$

The boundary condition $y(0)=2$ at $x=0$ yields

$$
\begin{equation*}
\frac{2 w_{1}-w_{2}}{h^{2}}+w_{1}=\frac{2}{h^{2}}+2 e^{h} . \tag{33}
\end{equation*}
$$

c. For $j=1$, we get, using $h=1 / 3$,

$$
\begin{equation*}
18 w_{1}-9 w_{2}+w_{1}=\frac{2+1 / 9}{1 / 9}=18+2 e^{\frac{1}{3}} \tag{34}
\end{equation*}
$$

For $j=2$, we obtain

$$
\begin{equation*}
-9 w_{1}+18 w_{2}-9 w_{3}+w_{2}=2 e^{2 / 3} \tag{35}
\end{equation*}
$$

For $j=3=n$, we obtain

$$
\begin{equation*}
-9 w_{2}+9 w_{3}+\frac{1}{2} w_{3}=2 e \tag{36}
\end{equation*}
$$

Hence, the system of equations reads

$$
\left\{\begin{array}{l}
19 w_{1}-9 w_{2}=18+2 e^{\frac{1}{3}} \tag{37}\\
-9 w_{1}+19 w_{2}-9 w_{3}=2 e^{2 / 3} \\
-9 w_{2}+19 / 2 w_{3}=2 e
\end{array}\right.
$$

d. The exact solution is given by $y(x)=e^{x}(2-x)$ and its derivative of order k reads $y^{(k)}(x)=(2-x-k) e^{x}$. The error for the finite difference formula under consideration is determined by the derivatives of third order and larger. Since none of the derivatives $y^{(3+l)}(x), l \geq 0$ vanishes for all values of x the error cannot be zero. We use the same argument to show that there is no finite difference formula which yields a nodally exact solution.
e. The linear Lagrangian interpolation polynomial, with nodes a and b, is given by

$$
\begin{equation*}
p_{1}(x)=\frac{x-b}{a-b} f(a)+\frac{x-a}{b-a} f(b) . \tag{38}
\end{equation*}
$$

This is evident from application of the given formula. We integrate function $f(x)$ by approximating $f(x)$ by $p_{1}(x)$, then it follows:

$$
\begin{align*}
& \int_{a}^{b} f(x) \mathrm{d} x \approx \int_{a}^{b} p_{1}(x) \mathrm{d} x=\int_{a}^{b}\left\{f(a) \frac{x-b}{a-b}+f(b) \frac{x-a}{b-a}\right\} \mathrm{d} x= \tag{39}\\
& =\left[\frac{1}{2} \frac{(x-a)^{2}}{b-a} f(b)\right]_{a}^{b}+\left[\frac{1}{2} \frac{(x-b)^{2}}{a-b} f(a)\right]_{a}^{b}=\frac{1}{2}(b-a)(f(a)+f(b))
\end{align*}
$$

This is the Trapezoidal rule.
f. The magnitude of the error of the numerical integration over interval $[a, b]$ is given by

$$
\begin{align*}
& \left|\int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{b} p_{1}(x) \mathrm{d} x\right|=\left|\int_{a}^{b}\left(f(x)-p_{1}(x)\right) \mathrm{d} x\right|= \\
& \left|\int_{a}^{b} \frac{1}{2}(x-a)(x-b) f^{\prime \prime}(\chi(x)) \mathrm{d} x\right| \leq \frac{1}{2} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right| \int_{a}^{b}|(x-a)(x-b)| d x= \\
& \frac{1}{12}(b-a)^{3} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right| \tag{40}
\end{align*}
$$

