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1. a) The local truncation error is defined as

τn+1 =
yn+1 − zn+1

h
, (1)

where yn+1 is the exact solution at tn+1 and zn+1 the value obtained by applying
the given method at the exact solution point (tn, yn):

k1 = hf(tn, yn)

k2 = hf(tn + h, yn + k1)

zn+1 = yn + β k1 + (1− β) k2. (2)

Both yn+1 and zn+1 have to be expanded into a Taylor series at the point (tn, yn).
To start with zn+1, k1 and k2 are substituted into the corrector part (2):

zn+1 = yn + β hf(tn, yn) + (1− β) hf(tn + h, yn + hf(tn, yn)). (3)

Next f(tn + h, yn + hf(tn, yn)) is expanded:

f(tn + h, yn + hf(tn, yn)) = f(tn, yn) + h
∂f

∂t
(tn, yn) + hf(tn, yn)

∂f

∂y
(tn, yn) + . . .

= y′n + h[
∂f

∂t
+ f

∂f

∂y
](tn, yn) +O(h2), (4)

using the differential equation y′ = f(t, y).
In this expression [∂f

∂t
+ f ∂f

∂t
](tn, yn) can be replaced by y′′(tn) = y′′n, for

y′′ =
dy′

dt
=
df

dt
=
∂f

∂t
+
∂f

∂y

dy

dt
=
∂f

∂t
+ f

∂f

∂y
,

again using y′ = f(t, y) in the last step.
As a result, (4) becomes:

f(tn + h, yn + hf(tn, yn)) = y′n + hy′′n +O(h2).

Substitution of this expression into (3) gives:

zn+1 = yn + β hy′n + (1− β) h (y′n + hy′′n +O(h2))

= yn + hy′n + (1− β)h2y′′n +O(h3).
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Substitution of this expansion, together with the expansion for yn+1:

yn+1 = yn + hy′n +
1

2
h2y′′n +O(h3),

into (1) yields:

τn+1 =
yn + hy′n + 1

2
h2y′′n +O(h3)− [yn + hy′n + (1− β)h2y′′n +O(h3)]

h

= (β − 1

2
) h y′′n +O(h2)

It turns out that the truncation error is O(h), except for β = 1
2
. Note that the

predictor-corrector method is just Modified Euler for β = 1
2

.

b) The amplification factor is found by applying the method to the homogeneous
test equation y′ = λy:

k1 = hλwn

k2 = hλ(wn + hλwn) = hλ(1 + hλ)wn

wn+1 = wn + β hλwn + (1− β) hλ(1 + hλ)wn

= [1 + hλ+ (1− β)(hλ)2]wn.

The amplification factor Q(hλ) is seen to be 1 + hλ+ (1− β)(hλ)2.

c) To derive the stability condition we need the eigenvalues of the system

x′ =

(
0 1
−1 0

)
x.

These are purely imaginary: λ1,2 = ±i, as can be seen easily.
For stability we require |Q(±hi)| < 1 or, more conveniently,
|Q(±hi)|2 < 1.
From c):

|1± hi+ (1− β)(±hi)2|2 < 1↔
|1− (1− β)h2 ± hi|2 < 1↔
(1− (1− β)h2)2 + h2 < 1↔

1− 2(1− β)h2 + (1− β)2h4 + h2 < 1↔
(1− β)2h2 < 2(1− β)− 1 = 1− 2β.

(Note: the squared modulus of a complex number equals the sum of the squares
of it’s real and imaginary part.)
It now follows that

h2 <
1− 2β

(1− β)2

is required for stability.
Clearly, stability is possible only for β < 1

2
.
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d) We have optimal stability if the upper bound for h is as large as possible. So
we have to investigate the behavior of the function g(β) = 1−2β

(1−β)2 for β < 1
2
.

The derivative of g(β) is given: −2β
(1−β)2 . This derivative is positive for β < 0 and

negative for 0 < β < 1
2
. So g(β) assumes its maximum for β = 0, g(0) being 1.

The optimal stability condition for the considered system is therefore h < 1.

e) First we compute the vectorial counterpart of k1:

k1 = hAy0 = 0.5A

1

1

 =

 1
2

−1
2

 .

Then we get

y0 + k1 =

3
2

1
2

 .

Hence

k2 = 0.5A(y0 + k1) = 0.5A

1

1

+

 1
2

−1
2

 = 0.5A

3
2

1
2

 =

 1
4

−3
4

 .

With β = 0, we get

w1 = y0 + k2 =

1

1

+

 1
4

−3
4

 =

5
4

1
4

 .

2. (a) The linear Lagrangian interpolatory polynomial, with nodes x0 and x1, is given
by

p1(x) =
x− x1
x0 − x1

f(x0) +
x− x0
x1 − x0

f(x1). (5)

This is evident from application of the given formula.

(b) The quadratic Lagrangian interpolatory polynomial with nodes x0, x1 and x2 is
given by

p2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0)+

(x− x0)(x− x2)
(x1 − x0)(x1 − x2)

f(x1)+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

(6)
This is also evident from application of the given formula.

(c) To this extent, we compute p1(0.5) and p2(0.5) for both linear and quadratic
Lagrangian interpolation as approximations at x = 0.5. For linear interpolation,
we have

p1(0.5) = 0.5 +
1

2
· 2 =

3

2
, (7)
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and for quadratic interpolation, one obtains

p2(0.5) =
(0.5− 1)(0.5− 2)

1 · (−2)
·1+

(0.5− 0)(0.5− 2)

1 · (−1)
·2+

(0.5− 0)(0.5− 1)

2 · 1
·4 =

11

8
= 1.375.

(8)

(d) The difference between the exact polynomial p and the perturbed polynomial p̂
is bounded by

|p(x)−p̂(x)| ≤ |x1 − x||f(x0)− f̂(x0)|+ |x− x0||f(x1)− f̂(x1)|
x1 − x0

≤ |x1 − x|+ |x− x0|
x1 − x0

ε .

For interpolation we know that x0 ≤ x ≤ x1 so the inequality simplifies to

|p(x)− p̂(x)| ≤ x1 − x+ x− x0
x1 − x0

ε =
x1 − x0
x1 − x0

ε = ε,

so the maximal error is bounded by ε.

(e) The iteration process is a fixed point method. If the process converges we have:
limn→∞ xn = p. Using this in the iteration process yields:

lim
n→∞

xn+1 = lim
n→∞

[xn + h(xn)(x3n − 3)]

Since h is a continuous function one obtains:

p = p+ h(p)(p3 − 3)

so
h(p)(p3 − 3) = 0.

Since h(x) 6= 0 for each x 6= 0 it follows that p3 − 3 = 0 and thus p = 3
1
3 .

(f) The convergence of a fixed point method xn+1 = g(xn) is determined by g′(p).
If |g′(p)| < 1 the method converges, whereas if |g′(p)| > 1 the method diverges.
For all choices we compute the first derivative in p. For the first method we
elaborate all steps. For the other methods we only give the final result. For h1
we have g1(x) = x− x3−3

x4
. The first derivative is:

g′1(x) = 1− 3x2 · x4 − (x3 − 3) · 4x3

(x4)2

Substitution of p yields:

g′1(p) = 1− 3p6 − (p3 − 3) · 4p3

p8
.

Since p = 3
1
3 the final term cancels:

g′1(p) = 1− 3p6

p8
= 1− 3

1
3 = −0.4422.
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This implies that the method is convergent with convergence factor 0.4422.

For the second method we have:

g′2(p) = 1− 3p4 − (p3 − 3) · 2p
p4

= 1− 3p4

p4
= −2

Thus the method diverges.

For the third method we have:

g′3(p) = 1− 9p4 − (p3 − 3) · 6p
9p4

= 1− 9p4

9p4
= 0

Thus the method is convergent with convergence factor 0.

Concluding we note that the third method is the fastest.

(g) To estimate the error in p we first approximate the function f in the neighboor-
hood of p by the first order Taylor polynomial:

P1(x) = f(p) + (x− p)f ′(p) = (x− p)f ′(p).

Due to the measurement errors we know that

(x− p)f ′(p)− εmax ≤ P̂1(x) ≤ (x− p)f ′(p) + εmax.

This implies that the perturbed root p̂ is bounded by the roots of (x−p)f ′(p)−
εmax and (x− p)f ′(p) + εmax, which leads to

p− εmax
|f ′(p)|

≤ p̂ ≤ p+
εmax
|f ′(p)|

.
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