DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU AESB2210)
 Thursday January 29 2015, 18:30-21:30

1. (a) The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(h)=\frac{y_{n+1}-z_{n+1}}{h} \tag{1}
\end{equation*}
$$

in which we determine y_{n+1} by the use of Taylor expansions around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+O\left(h^{3}\right) . \tag{2}
\end{equation*}
$$

We bear in mind that

$$
\begin{gather*}
y^{\prime}\left(t_{n}\right) \\
y^{\prime \prime}\left(t_{n}\right)=\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right)= \tag{3}\\
\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) .
\end{gather*}
$$

Hence

$$
\begin{equation*}
y_{n+1}=y_{n}+h y^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2}\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right)\right)+O\left(h^{3}\right) . \tag{4}
\end{equation*}
$$

After substitution of the predictor $z_{n+1}^{*}=y_{n}+h f\left(t_{n}, y_{n}\right)$ into the corrector, and after using a Taylor expansion around $\left(t_{n}, y_{n}\right)$, we obtain for z_{n+1}

$$
\begin{align*}
& z_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n}+h, y_{n}+h f\left(t_{n}, y_{n}\right)\right)\right)= \\
& y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n}, y_{n}\right)+h\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+f\left(t_{n}, y_{n}\right) \frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y}\right)+O\left(h^{2}\right)\right) . \tag{5}
\end{align*}
$$

Herewith, one obtains

$$
\begin{equation*}
y_{n+1}-z_{n+1}=O\left(h^{3}\right), \text { and hence } \tau_{n+1}(h)=\frac{O\left(h^{3}\right)}{h}=O\left(h^{2}\right) \tag{6}
\end{equation*}
$$

(b) Let $x_{1}=y$ and $x_{2}=y^{\prime}$, then $y^{\prime \prime}=x_{2}^{\prime}$, and hence

$$
\begin{align*}
& x_{2}^{\prime}+4 x_{2}+3 x_{1}=\cos (t), \\
& x_{2}=x_{1}^{\prime} \tag{7}
\end{align*}
$$

We write this as

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \\
& x_{2}^{\prime}=-3 x_{1}-4 x_{2}+\cos (t) . \tag{8}
\end{align*}
$$

Finally, this is represented in the following matrix-vector form:

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{9}\\
-3 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos (t)} .
$$

In which, we have the following matrix $A=\left(\begin{array}{cc}0 & 1 \\ -3 & -4\end{array}\right)$ and $f=\binom{0}{\cos (t)}$. The initial conditions are defined by $\binom{x_{1}(0)}{x_{2}(0)}=\binom{1}{2}$.
(c) Application of the integration method to the system $\underline{x}^{\prime}=A \underline{x}+\underline{f}$, gives

$$
\begin{align*}
& \underline{w}_{1}^{*}=\underline{w}_{0}+h\left(A \underline{w}_{0}+\underline{f}_{0}\right) \tag{10}\\
& \underline{w}_{1}=\underline{w}_{0}+\frac{h}{2}\left(A \underline{w}_{0}+f_{0}+A \underline{w}_{1}^{*}+\underline{f}_{1}\right) .
\end{align*}
$$

With the initial condition $\underline{w}_{0}=\binom{1}{2}$ and $h=0.1$, this gives the following result for the predictor

$$
\underline{w}_{1}^{*}=\binom{1}{2}+\frac{1}{10}\left(\left(\begin{array}{cc}
0 & 1 \tag{11}\\
-3 & -4
\end{array}\right)\binom{1}{2}+\binom{0}{1}\right)=\binom{6 / 5}{1} .
$$

The corrector is calculated as follows

$$
\begin{align*}
& \underline{w}_{1}=\binom{1}{2}+\frac{1}{20}\left(\left(\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right)\binom{1}{2}+\binom{0}{1}+\left(\begin{array}{cc}
0 & 1 \\
-3 & -4
\end{array}\right)\binom{6 / 5}{1}+\binom{0}{\cos \left(\frac{1}{10}\right)}\right)= \\
& =\binom{1.1500}{1.1698} \tag{12}
\end{align*}
$$

(d) Consider the test equation $y^{\prime}=\lambda y$, then one gets

$$
\begin{align*}
& w_{n+1}^{*}=w_{n}+h \lambda w_{n}=(1+h \lambda) w_{n} \\
& w_{n+1}=w_{n}+\frac{h}{2}\left(\lambda w_{n}+\lambda w_{n+1}^{*}\right)= \tag{13}\\
& =w_{n}+\frac{h}{2}\left(\lambda w_{n}+\lambda\left(w_{n}+h \lambda w_{n}\right)\right)=\left(1+h \lambda+\frac{(h \lambda)^{2}}{2}\right) w_{n} .
\end{align*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(h \lambda)=1+h \lambda+\frac{(h \lambda)^{2}}{2} . \tag{14}
\end{equation*}
$$

(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues are substituted into the amplification factor. The eigenvalues of the matrix A are given by $\lambda_{1}=-1$ and $\lambda_{2}=-3$. We first check the amplification factor of $\lambda_{1}=-1$:

$$
\begin{equation*}
-1 \leq 1-h+\frac{1}{2} h^{2} \leq 1 \tag{15}
\end{equation*}
$$

The first inequality leads to

$$
0 \leq 2-h+\frac{1}{2} h^{2}
$$

Since the discriminant of this equation is equal to $1-4 * \frac{1}{2} * 2=-3$ the inequality always holds. The second inequality leads to

$$
-h+\frac{1}{2} h^{2} \leq 0
$$

so

$$
\frac{1}{2} h^{2} \leq h
$$

which implies

$$
h \leq 2
$$

Now we check the amplification factor of $\lambda_{2}=-3$:

$$
\begin{equation*}
-1 \leq 1-3 h+\frac{1}{2} 9 h^{2} \leq 1 \tag{16}
\end{equation*}
$$

The first inequality leads to

$$
0 \leq 2-3 h+\frac{1}{2} 9 h^{2}
$$

Since the discriminant of this equation is equal to $9-4 * \frac{9}{2} * 2=-27$ the inequality always holds. The second inequality leads to

$$
-3 h+\frac{9}{2} h^{2} \leq 0
$$

so

$$
\frac{3}{2} h^{2} \leq h
$$

which implies

$$
h \leq \frac{2}{3}
$$

So the integration method is stable if $h \leq \frac{2}{3}$.
2. (a) The first order backward difference formula for the first derivative is given by

$$
d^{\prime}(t) \approx \frac{d(t)-d(t-h)}{h}
$$

Using $t=20$, and $h=10$ the approximation of the velocity is

$$
\frac{d(20)-d(10)}{10}=\frac{100-40}{10}=6(\mathrm{~m} / \mathrm{s})
$$

(b) Taylor polynomials are:

$$
\begin{aligned}
d(0) & =d(2 h)-2 h d^{\prime}(2 h)+2 h^{2} d^{\prime \prime}(2 h)-\frac{(2 h)^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right), \\
d(h) & =d(2 h)-h d^{\prime}(2 h)+\frac{h^{2}}{2} d^{\prime \prime}(2 h)-\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right) \\
d(2 h) & =d(2 h)
\end{aligned}
$$

We know that $Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h)$, which should be equal to $d^{\prime}(2 h)+O\left(h^{2}\right)$. This leads to the following conditions:

$$
\begin{aligned}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0 \\
-2 \alpha_{0}-\alpha_{1} & =1, \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & =0
\end{aligned}
$$

(c) The truncation error follows from the Taylor polynomials:

$$
d^{\prime}(2 h)-Q(h)=d^{\prime}(2 h)-\frac{d(0)-4 d(h)+3 d(2 h)}{2 h}=\frac{\frac{8 h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right)-4\left(\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right)\right)}{2 h}=\frac{1}{3} h^{2} d^{\prime \prime \prime}(\xi) .
$$

Using the new formula with $h=10$ we obtain the estimate:

$$
\frac{d(0)-4 d(10)+3 d(20)}{20}=\frac{0-4 \times 40+3 \times 100}{20}=7(\mathrm{~m} / \mathrm{s}) .
$$

(d) To estimate the measuring error we note that

$$
\begin{aligned}
\mid Q(h) & -\hat{Q}(h)\left|=\left|\frac{(d(0)-\hat{d}(0))-4(d(h)-\hat{d}(h))+3(d(2 h)-\hat{d}(2 h))}{2 h}\right|\right. \\
& \leq \frac{|d(0)-\hat{d}(0)|+4|d(h)-\hat{d}(h)|+3|d(2 h)-\hat{d}(2 h)|}{2 h}=\frac{4 \epsilon}{h}
\end{aligned}
$$

so $C_{1}=4$.
(e) The method of Newton-Raphson is based on linearization around the iterate p_{n}. This is given by

$$
L(x)=f\left(p_{n}\right)+\left(x-p_{n}\right) f^{\prime}\left(p_{n}\right)
$$

Next, we determine p_{n+1} such that $L\left(p_{n+1}\right)=0$, that is

$$
f\left(p_{n}\right)+\left(p_{n+1}-p_{n}\right) f^{\prime}\left(p_{n}\right)=0 \Leftrightarrow p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}, \quad f^{\prime}\left(p_{n}\right) \neq 0
$$

This result can also be proved graphically, see book, chapter 4.
(f) We have $f(x)=e^{\sin (x)}-\frac{1}{e}$, so $f^{\prime}(x)=\cos (x) e^{\sin (x)}$ and hence

$$
p_{n+1}=p_{n}-\frac{e^{\sin \left(p_{n}\right)}-\frac{1}{e}}{\cos \left(p_{n}\right) e^{\sin \left(p_{n}\right)}} .
$$

With the initial value $p_{0}=\pi$, this gives

$$
p_{1}=\pi-\frac{e^{0}-\frac{1}{e}}{-1 \times e^{0}}=\pi+1-\frac{1}{e} \approx 3.77
$$

With the initial value $p_{0}=\frac{3}{2} \pi$, this gives

$$
p_{1}=\frac{3}{2} \pi-\frac{e^{-1}-\frac{1}{e}}{0}=\frac{3}{2} \pi-\frac{0}{0} .
$$

In the recursion, one divides by zero. Division by zero does not make any sense, so $p_{0}=\frac{3}{2} \pi$ is not a suitable starting value. Geometrically, one may remark that the tangent is horizontal for $p_{0}=\frac{3}{2} \pi$. However, $f\left(p_{0}\right)=f\left(\frac{3}{2} \pi\right)=0$ so that a practical Newton-Raphson method would not start iterating but return $p_{0}=\frac{3}{2} \pi$ as root.

