DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU AESB2210) Thursday January 29 2015, 18:30-21:30

1. For the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$, we use the following integration method:

$$
\left\{\begin{array}{l}
w_{n+1}^{*}=w_{n}+h f\left(t_{n}, w_{n}\right) \tag{1}\\
w_{n+1}=w_{n}+\frac{h}{2}\left(f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, w_{n+1}^{*}\right)\right)
\end{array}\right.
$$

Here h denotes the timestep and w_{n} represents the numerical approximation at time t_{n}.
(a) Show that the local truncation error of the integration method is of the order $O\left(h^{2}\right)$. (You are not allowed to use the test equation here.)

Consider the following initial value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+3 y=\cos t \tag{2}\\
y(0)=1, \quad \frac{d y}{d t}(0)=2
\end{array}\right.
$$

(b) Show that the above initial value problem can be written as

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-3 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos t} .
$$

Give the initial conditions for $x_{1}(0)$ and $x_{2}(0)$ as well.
(c) Calculate one step with the integration method, in which $h=0.1$ and $t_{0}=0$, and use the given initial conditions.
(d) Derive the amplification factor for the integration method.
(e) Examine for which stepsizes $h>0$, the integration method, applied to the initial value problem (2), is stable.

[^0]2. In this exercise an estimate is determined for the velocity of a rowing boat. The measured distance of the boat from the starting line are given in the table below.

$t(\mathrm{~s})$	0	10	20
$d(t)(\mathrm{m})$	0	40	100

(a) Give the first order backward difference formula and use this to determine an estimate of the velocity for $t=20\left(d^{\prime}(20)\right)$.
(b) We are looking for a difference formula of the first derivative of d in $2 h$ of the form:

$$
Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h),
$$

such that

$$
d^{\prime}(2 h)-Q(h)=O\left(h^{2}\right)
$$

In the remainder of this exercise we use this formula. Show that the coefficients α_{0}, α_{1} and α_{2} should satisfy the next system:

$$
\begin{align*}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0 \\
-2 \alpha_{0}-\alpha_{1} & \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & \tag{2pt.}\\
& =0
\end{align*}
$$

(c) The solution of this system is given by $\alpha_{0}=\frac{1}{2}, \alpha_{1}=-2$ and $\alpha_{2}=\frac{3}{2}$. Give for these values an expression for the truncation error $d^{\prime}(2 h)-Q(h)$. Use this formula to give an estimate of the velocity at $t=20$.
(d) The maximal measuring error in the measured position is bounded by ϵ : $|d(t)-\hat{d}(t)| \leq \epsilon$. Show that this implies a measuring error in the estimate of

$$
\begin{equation*}
|Q(h)-\hat{Q}(h)| \leq \frac{C_{1} \epsilon}{h} \tag{1.5pt.}
\end{equation*}
$$

and give C_{1}.
The Newton-Raphson method is based on the following formula:

$$
\begin{equation*}
p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)} \tag{1pt.}
\end{equation*}
$$

(e) Derive the above formula for the Newton-Raphson method.
(f) We are searching the positive zero of $f(x)=e^{\sin (x)}-\frac{1}{e}$.

- Use $p_{0}=\pi$ as the initial guess and determine p_{1} by the use of the NewtonRaphson method.
- Use $p_{0}=\frac{3}{2} \pi$ as the initial guess and discuss if this is a sensible choice for the Newton-Raphson method.

[^0]: ${ }^{0}$ please turn over, For the answers of this test we refer to: http://ta.twi.tudelft.nl/nw/users/vuik/wi3097/tentamen.html

