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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
(1)

where zn+1 is the result of applying the method once with starting solution yn.
Here we obtain yn+1 by a Taylor expansion around tn:

yn+1 = yn + ∆ty′(tn) +
(∆t)2

2
y′′(tn) +O((∆t)3). (2)

For zn+1, we obtain, after substitution of the predictor step for z∗n+1 into the
corrector step

zn+1 = yn + ∆t ((1− µ)f(tn, yn) + µf(tn + ∆t, yn + ∆tf(tn, yn))) (3)

After a Taylor expansion of f(tn + ∆t, yn + ∆tf(tn, yn)) around (tn, yn) one
obtains:

zn+1 = yn+∆t

(
(1− µ)f(tn, yn) + µ(f(tn, yn) + ∆t(

∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
)) +O((∆t)2)

)
.

(4)
From the differential equation we know that:

y′(tn) = f(tn, yn) (5)

From the Chain Rule of Differentiation, we derive

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn) (6)

after substitution of the differential equation one obtains:

y′′(tn) =
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn) (7)

This implies that zn+1 = yn+∆ty′(tn)+µ(∆t)2y′′(tn)+O((∆t)3). Subsequently,
it follows that

yn+1−zn+1 = O((∆t)2), and, hence τn+1(∆t) =
O((∆t)2)

∆t
= O(∆t) for 0 ≤ µ ≤ 1,

(8)

yn+1−zn+1 = O((∆t)3), and, hence τn+1(∆t) =
O((∆t)3)

∆t
= O((∆t)2) for µ =

1

2
.

(9)
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(b) Consider the test equation y′ = λy, then, herewith, one obtains

w∗n+1 = wn + λ∆twn = (1 + λ∆t)wn,
wn+1 = wn + ((1− µ)λ∆twn + µλ∆tw∗n+1) =
= wn + ((1− µ)λ∆twn + µλ∆t(wn + λ∆twn)) = (1 + λ∆t+ µ(λ∆t)2)wn.

(10)
Hence the amplification factor is given by

Q(λ∆t) = 1 + λ∆t+ µ(λ∆t)2. (11)

(c) Doing one step with the given method with ∆t = 1
2

and µ = 1
2

leads to the
following steps:
Predictor: (

w1

w2

)∗
=

(
0
1

)
+

1

2

(
−0 + cos(0) + 2 + 0

0− 1

)
=

(
3
2
1
2

)
Corrector:(

x1
x2

)
=

(
0
1

)
+

1

2

(
1

2

(
3
−1

)
+

1

2

(
−3

2
+ cos(3

2
) + 2 · 1

2
+ 1

2
3
2
− (1

2
)2

))
which can be written as:(

x1
x2

)
=

(
0 + 3

4
− 3

8
+ 1

4
cos(3

2
) + 3

8

1− 1
4

+ 3
8
− 1

16

)
=

(
3
4

+ 1
4

cos(3
2
)

17
16

)
=

(
0.7677
1.0625

)
(d) In order to compute the Jacobian, we note that the right-hand side of the non

linear system can be noted by:

f1(x1, x2) = −x1 + cosx1 + 2x2 + t

f2(x1, x2) = x1 − x22
From the definition of the Jacobian it follows that:(

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)
=

(
−1− sinx1 2

1 −2x2

)
.

Substitution of

(
x1(0)
x2(0)

)
=

(
0
1

)
shows that

J =

(
−1 2
1 −2

)
.
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(e) For the stability it is sufficient to check that |Q(λi∆t)| ≤ 1 for all the eigenvalues
of the Jacobian matrix. It is easy to see that the eigenvalues of the Jacobian
matrix are λ1 = −3 and λ2 = 0.

For the choice µ = 0 we note that the method is equal to the Euler Forward
method. For real eigenvalues the Euler Forward method is stable if ∆t ≤ −2

λ
.

Since λ1 = −3 and λ2 = 0 we know that the method is stable if ∆t ≤ −2
−3 = 2

3

(another option is to derive the values of ∆t such that |Q(λi∆t)| ≤ 1 by using
the description of Q(λ∆t))

For the choice µ = 1
2

we use the expression

Q(λ∆t) = 1 + λ∆t+
1

2
(λ∆t)2

For λ2 = 0 it appears that Q(λ2∆t) = 1 so the inequality is satisfied for all ∆t.
For λ1 = −3 we have to check the following inequalities:

−1 ≤ 1− 3∆t+
9

2
(∆t)2 ≤ 1

For the left-hand inequality we arrive at

0 ≤ 9

2
(∆t)2 − 3∆t+ 2

It appears that the discriminant 9−4 · 9
2
·2 is negative, so there are no real roots

which implies that the inequality is satisfied for all ∆t.

For the right-hand inequality we get

−3∆t+
9

2
(∆t)2 ≤ 0

9

2
(∆t)2 ≤ 3∆t

so

∆t ≤ 2

3

(another option is to see that for µ = 1
2

the method is equal to the modified
Euler method, and remember that this method is stable for real eigenvalues if
∆t ≤ −2

λ
)

2. (a) First, we check the boundary conditions:

u(0) = 0− 1− e0

1− e
=

1− 1

1− e
= 0, u(1) = 1− 1− e1

1− e
= 0. (12)
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Further, we have

u′(x) = 1 +
ex

1− e
, (13)

u′′(x) =
ex

1− e
. (14)

Hence, we immediately see

−u′′(x) + u′(x) = − ex

1− e
+ 1 +

ex

1− e
= 1. (15)

Hence, the solution u(x) = 1 − 1−ex
1−e satisfies the differential and the boundary

conditions, and therewith u(x) is the solution to the boundary value problem
(uniqueness can be demonstrated in a straightforward way, but this was not
asked for).

(b) The domain of computation, being (0, 1), is divided into subintervals with mesh
points, we set xj = j∆x, where we use n unknowns, such that xn+1 = (n +
1)∆x = 1. We are looking for a discretization with an error of second order,
O((∆x)2). To this extent, we use the following central differences approximation
at xj:

u′(xj) ≈
u(xj+1)− u(xj−1)

2∆x
, for j ∈ {1, . . . , n}. (16)

We note that the above formula can be derived formally by writing the derivative
as

u′(xj) =
α0u(xj−1) + α1u(xj) + α2u(xj+1)

∆x
, (17)

and solve α0, α1 and α2 from checking the zeroth, first and second order deriva-
tives of u(x). Further, the second order derivative is approximated by

u′′(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

(∆x)2
. (18)

Since we approximate the derivatives at the point xj, we use Taylor series ex-
pansion about xj, to obtain:

u(xj+1) = u(xj + ∆x) = u(xj) + ∆xu′(xj) +
(∆x)2

2
u′′(xj) +

(∆x)3

6
u′′′(xj) +O((∆x)4),

u(xj−1) = u(xj −∆x) = u(xj)−∆xu′(xj) +
(∆x)2

2
u′′(xj)−

(∆x)3

6
u′′′(xj) +O((∆x)4),

(19)
This gives

−u(xj+1)− 2u(xj) + u(xj−1)

(∆x)2
+
u(xj+1)− u(xj−1)

2∆x
= −u′′(xj) + u′(xj)

+
O((∆x)3)

2∆x
+
O((∆x)4)

(∆x)2
= −u′′(xj) + u′(xj) +O((∆x)2).

(20)
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Hence the error is second order, that is O((∆x)2). Next, we neglect the trunca-
tion error, and set wj := u(xj) to get

−wj+1 − 2wj + wj−1
(∆x)2

+
wj+1 − wj−1

2∆x
= 1, for j ∈ {1, . . . , n}. (21)

At the boundaries, we see for j = 1 and j = n, upon substituting w0 = 0 and
wn+1 = 0, respectively:

−w2 − 2w1 + 0

(∆x)2
+
w2 − 0

2∆x
= 1,

−0− 2wn + wn−1
(∆x)2

+
0− wn−1

2∆x
= 1.

(22)

This can be rewritten more neatly as follows:

−w2 + 2w1

(∆x)2
+

w2

2∆x
= 1,

2wn − wn−1
(∆x)2

− wn−1
2∆x

= 1.

(23)

(c) The real-valued exact solution and its first and second derivative are given by

u(x) = x− 1− ex

1− e
, (24)

u′(x) = 1 +
ex

1− e
, (25)

u′′(x) =
ex

1− e
. (26)

First, we calculate the point x∗ = ln(1/(e − 1)), where u′(x∗) = 0 and verify
that u(x) attains its maximum value at x∗ (since u′′(x∗) = −1/(e − 1)2 < 0).
Since u(0) = u(1) = 0 we can conclude that the exact solution is monotonically
increasing on [0, x∗] and monotonically decreasing on [x∗, 1]. Since the numerical
solution should have the same characteristics as the exact solution, oscillatory
solutions should be considered as not reflecting the analytic solution.

(d) Next, we use ∆x = 1/4, then, from equations (21) and (23), one obtains the
following system

32w1 − 14w2 = 1 (27)

−18w1 + 32w2 − 14w3 = 1 (28)

−18w2 + 32w3 = 1 (29)
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(e) The iteration process is a fixed point method. If the process converges we have:
limn→∞ xn = p. Using this in the iteration process yields:

lim
n→∞

xn+1 = lim
n→∞

[xn + h(xn)(x3n − 27)]

Since h is a continuous function one obtains:

p = p+ h(p)(p3 − 27)

so
h(p)(p3 − 27) = 0.

Since h(x) 6= 0 for each x 6= 0 it follows that p3 − 27 = 0 and thus p = 27
1
3 = 3.

(f) The convergence of a fixed point method xn+1 = g(xn) is determined by g′(p).
If |g′(p)| < 1 the method converges, whereas if |g′(p)| > 1 the method diverges.
For all choices we compute the first derivative in p. For the first method we
elaborate all steps. For the other methods we only give the final result. For h1
we have g1(x) = x− x3−27

x4
. The first derivative is:

g′1(x) = 1− 3x2 · x4 − (x3 − 27) · 4x3

(x4)2

Substitution of p yields:

g′1(p) = 1− 3p6 − (p3 − 27) · 4p3

p8
.

Since p = 3 the final term cancels:

g′1(p) = 1− 3p6

p8
= 1− 3−1 =

2

3
.

This implies that the method is convergent with convergence factor 2
3
.

For the second method we have:

g′2(p) = 1− 3p4 − (p3 − 27) · 2p
p4

= 1− 3p4

p4
= −2

Thus the method diverges.

For the third method we have:

g′3(p) = 1− 9p4 − (p3 − 27) · 6p
9p4

= 1− 9p4

9p4
= 0

Thus the method is convergent with convergence factor 0.

Concluding we note that the third method is the fastest.
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(g) To estimate the error in p we first approximate the function f in the neighboor-
hood of p by the first order Taylor polynomial:

P1(x) = f(p) + (x− p)f ′(p) = (x− p)f ′(p).

Due to the measurement errors we know that

(x− p)f ′(p)− εmax ≤ P̂1(x) ≤ (x− p)f ′(p) + εmax.

This implies that the perturbed root p̂ is bounded by the roots of (x−p)f ′(p)−
εmax and (x− p)f ′(p) + εmax, which leads to

p− εmax
|f ′(p)|

≤ p̂ ≤ p+
εmax
|f ′(p)|

.
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