DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU CTB2400)
 Thursday August 13th 2015, 18:30-21:30

1. (a) The amplification factor can be derived as follows. Consider the test equation $y^{\prime}=\lambda y$. Application of the trapezoidal rule to this equation gives:

$$
\begin{equation*}
w_{j+1}=w_{j}+\frac{\Delta t}{2}\left(\lambda w_{j}+\lambda w_{j+1}\right) \tag{1}
\end{equation*}
$$

Rearranging of w_{j+1} and w_{j} in (1) yields

$$
\left(1-\frac{\Delta t}{2} \lambda\right) w_{j+1}=\left(1+\frac{\Delta t}{2} \lambda\right) w_{j} .
$$

It now follows that

$$
w_{j+1}=\frac{1+\frac{\Delta t}{2} \lambda}{1-\frac{\Delta t}{2} \lambda} w_{j}
$$

and thus

$$
Q(\Delta t \lambda)=\frac{1+\frac{\Delta t}{2} \lambda}{1-\frac{\Delta t}{2} \lambda}
$$

(b) The definition of the local truncation error is

$$
\tau_{j+1}=\frac{y_{j+1}-Q(\Delta t \lambda) y_{j}}{\Delta t}
$$

The exact solution of the test equation is given by

$$
y_{j+1}=e^{\Delta t \lambda} y_{j}
$$

Combination of these results shows that the local truncation error of the test equation is determined by the difference between the exponential function and the amplification factor $Q(\Delta t \lambda)$

$$
\begin{equation*}
\tau_{j+1}=\frac{e^{\Delta t \lambda}-Q(\Delta t \lambda)}{\Delta t} y_{j} \tag{2}
\end{equation*}
$$

The difference between the exponential function and amplification factor can be computed as follows. The Taylor series of $e^{\Delta t \lambda}$ with known point 0 is:

$$
\begin{equation*}
e^{\Delta t \lambda}=1+\lambda \Delta t+\frac{(\lambda \Delta t)^{2}}{2}+\mathcal{O}\left(\Delta t^{3}\right) \tag{3}
\end{equation*}
$$

The Taylor series of $\frac{1}{1-\frac{\Delta t}{2} \lambda}$ with known point 0 is:

$$
\begin{equation*}
\frac{1}{1-\frac{\Delta t}{2} \lambda}=1+\frac{1}{2} \Delta t \lambda+\frac{1}{4} \Delta t^{2} \lambda^{2}+\mathcal{O}\left(\Delta t^{3}\right) \tag{4}
\end{equation*}
$$

With (4) it follows that $\frac{1+\frac{\Delta t}{2} \lambda}{1-\frac{\Delta t}{2} \lambda}$ is equal to

$$
\begin{equation*}
\frac{1+\frac{\Delta t}{2} \lambda}{1-\frac{\Delta t}{2} \lambda}=1+\Delta t \lambda+\frac{1}{2}(\Delta t \lambda)^{2}+\mathcal{O}\left(\Delta t^{3}\right) \tag{5}
\end{equation*}
$$

In order to determine $e^{\Delta t \lambda}-Q(\Delta t \lambda)$, we subtract (5) from (3). Now it follows that

$$
\begin{equation*}
e^{\Delta t \lambda}-Q(\Delta t \lambda)=\mathcal{O}\left(\Delta t^{3}\right) \tag{6}
\end{equation*}
$$

The local truncation error can be found by substituting (6) into (2), which leads to

$$
\tau_{j+1}=\mathcal{O}\left(\Delta t^{2}\right)
$$

(c) Application of the trapezoidal rule to

$$
y^{\prime}=-2 y+e^{t}, \text { with } y(0)=2
$$

and step size $\Delta t=1$ gives:

$$
w_{1}=w_{0}+\frac{\Delta t}{2}\left[-2 w_{0}+e^{0}-2 w_{1}+e\right] .
$$

Using the initial value $w_{0}=y(0)=2$ and step size $\Delta t=1$ gives:

$$
w_{1}=2+\frac{1}{2}\left[-4-2 w_{1}+1+e\right] .
$$

This leads to

$$
2 w_{1}=2+\frac{-3+e}{2}=\frac{1}{2}+\frac{e}{2}, \text { so } w_{1}=\frac{1}{4}+\frac{e}{4} .
$$

(d) We use the following definition $x_{1}=y$ and $x_{2}=y^{\prime}$. This implies that $x_{1}^{\prime}=y^{\prime}=$ x_{2} and $x_{2}^{\prime}=y^{\prime \prime}=-y^{\prime}-\frac{1}{2} y=-x_{2}-\frac{1}{2} x_{1}$. Writing this in vector notation shows that

$$
\left[\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right],
$$

so $\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -\frac{1}{2} & -1\end{array}\right]$. To compute the eigenvalues we look for values of λ such that

$$
|\mathbf{A}-\lambda \mathbf{I}|=0
$$

This implies that λ is a solution of

$$
\lambda^{2}+\lambda+\frac{1}{2}=0
$$

which leads to the roots:

$$
\lambda_{1}=-\frac{1}{2}+\frac{1}{2} i \text { and } \lambda_{2}=-\frac{1}{2}-\frac{1}{2} i
$$

(e) To investigate the stability it is sufficient that

$$
\left|Q\left(\Delta t \lambda_{1}\right)\right| \leq 1 \text { and }\left|Q\left(\Delta t \lambda_{2}\right)\right| \leq 1
$$

Since λ_{1} and λ_{2} are complex valued, it is sufficient to check only the first inequality. This leads to

$$
\left|\frac{1+\frac{\Delta t\left(-\frac{1}{2}+\frac{1}{2} i\right)}{2}}{1-\frac{\Delta t\left(-\frac{1}{2}+\frac{1}{2} i\right)}{2}}\right| \leq 1
$$

which is equivalent to

$$
\frac{\left|1-\frac{\Delta t}{4}+\frac{\Delta t i}{4}\right|}{\left|1+\frac{\Delta t}{4}-\frac{\Delta t i}{4}\right|} \leq 1
$$

Using the definition of the absolute value we arrive at the inequality

$$
\frac{\sqrt{\left(1-\frac{\Delta t}{4}\right)^{2}+\left(\frac{\Delta t}{4}\right)^{2}}}{\sqrt{\left(1+\frac{\Delta t}{4}\right)^{2}+\left(\frac{\delta t}{4}\right)^{2}}} \leq 1
$$

This equality is valid for all values of Δt because

$$
\sqrt{\left(1-\frac{\Delta t}{4}\right)^{2}+\left(\frac{\Delta t}{4}\right)^{2}} \leq \sqrt{\left(1+\frac{\Delta t}{4}\right)^{2}+\left(\frac{\Delta t}{4}\right)^{2}}
$$

for all $\Delta t>0$.
2. (a) The linear Lagrangian interpolatory polynomial, with nodes x_{0} and x_{1}, is given by

$$
\begin{equation*}
p_{1}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} f\left(x_{0}\right)+\frac{x-x_{0}}{x_{1}-x_{0}} f\left(x_{1}\right) . \tag{7}
\end{equation*}
$$

This is evident from application of the given formula.
(b) The quadratic Lagrangian interpolatory polynomial with nodes x_{0}, x_{1} and x_{2} is given by

$$
\begin{equation*}
p_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right) . \tag{8}
\end{equation*}
$$

This is also evident from application of the given formula.
(c) Obviously, $p_{1}(0)=2$ and $p_{2}(0)=2$ since the Lagrange interpolation polynomial satisfies $p_{n}\left(x_{i}\right)=f\left(x_{i}\right)$ for all points $x_{0}, x_{1}, \ldots, x_{n}$. Next, we compute $p_{1}(0.5)$ and $p_{2}(0.5)$ for both linear and quadratic Lagrangian interpolation as approximations at $x=0.5$. For linear interpolation, we have

$$
\begin{equation*}
p_{1}(0.5)=\frac{0.5-0}{-1-0} \cdot 3+\frac{0.5+1}{0+1} \cdot 2=\frac{3}{2}, \tag{9}
\end{equation*}
$$

and for quadratic interpolation, one obtains
$p_{2}(0.5)=\frac{(0.5-0)(0.5-1)}{(-1) \cdot(-2)} \cdot 3+\frac{(0.5+1)(0.5-1)}{1 \cdot(-1)} \cdot 2+\frac{(0.5+1)(0.5-0)}{2 \cdot 1} \cdot 5=3$.
(d) The method of Newton-Raphson is based on linearization around the iterate p_{n}. This is given by

$$
\begin{equation*}
L(x)=f\left(p_{n}\right)+\left(x-p_{n}\right) f^{\prime}\left(p_{n}\right) \tag{11}
\end{equation*}
$$

Next, we determine p_{n+1} such that $L\left(p_{n+1}\right)=0$, that is

$$
\begin{equation*}
f\left(p_{n}\right)+\left(p_{n+1}-p_{n}\right) f^{\prime}\left(p_{n}\right)=0 \Leftrightarrow p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}, \quad f^{\prime}\left(p_{n}\right) \neq 0 \tag{12}
\end{equation*}
$$

This result can also be proved graphically, see book, chapter 4.
(e) We have $f(x)=e^{x}-x^{3}$, so $f^{\prime}(x)=e^{x}-3 x^{2}$ and hence

$$
p_{n+1}=p_{n}-\frac{e^{p_{n}}-p_{n}^{3}}{e^{p_{n}}-3 p_{n}^{2}} .
$$

With the initial value $p_{0}=3$, this gives

$$
p_{1}=3-\frac{e^{3}-3^{3}}{e^{3}-3 \cdot 3^{2}}=2
$$

and consequently

$$
p_{2}=2-\frac{e^{2}-2^{3}}{e^{2}-3 \cdot 2^{2}}=\frac{e^{2}-16}{e^{2}-12} \approx 1.8675
$$

(f) We consider a Taylor polynomial around p_{n}, to express p

$$
\begin{equation*}
0=f(p)=f\left(p_{n}\right)+\left(p-p_{n}\right) f^{\prime}\left(p_{n}\right)+\frac{\left(p-p_{n}\right)^{2}}{2} f^{\prime \prime}\left(\xi_{n}\right) \tag{13}
\end{equation*}
$$

for some ξ_{n} between p and p_{n}. Note that this form gives the exact representation. Subsequently, we consider the Newton-Raphson approximation

$$
\begin{equation*}
0=L\left(p_{n+1}\right)=f\left(p_{n}\right)+\left(p_{n+1}-p_{n}\right) f^{\prime}\left(p_{n}\right) \tag{14}
\end{equation*}
$$

Subtraction of these two above equations gives

$$
\begin{equation*}
p_{n+1}-p=\frac{\left(p_{n}-p\right)^{2}}{2} \frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(p_{n}\right)}, \text { provided that } f^{\prime}\left(p_{n}\right) \neq 0 \tag{15}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left|p_{n+1}-p\right|=\frac{\left(p_{n}-p\right)^{2}}{2}\left|\frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(p_{n}\right)}\right|, \text { provided that } f^{\prime}\left(p_{n}\right) \neq 0 \tag{16}
\end{equation*}
$$

Using $p_{n} \rightarrow p, \xi_{n} \rightarrow p$ as $n \rightarrow \infty$ and continuity of $f(x)$ up to at least the second derivative, we arrive at $K=\left|\frac{f^{\prime \prime}(p)}{f^{\prime}(p)}\right|$.

