DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU / Minor AESB2210) Thursday January 28 2016, 18:30-21:30

1. (a) The local truncation error is defined by

$$
\begin{equation*}
\tau_{h}=\frac{y_{n+1}-z_{n+1}}{\Delta t} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{n+1}=y_{n}+\Delta t f\left(t_{n}, y_{n}\right) \tag{2}
\end{equation*}
$$

for the Forward Euler method. A Taylor expansion for y_{n+1} around t_{n} is given by

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t y^{\prime}\left(t_{n}\right)+\frac{\Delta t^{2}}{2} y^{\prime \prime}(\xi), \quad \exists \xi \in\left(t_{n}, t_{n+1}\right) \tag{3}
\end{equation*}
$$

Since $y^{\prime}\left(t_{n}\right)=f\left(t_{n}, y_{n}\right)$, we use equation (1), to get

$$
\begin{equation*}
\tau_{h}=\frac{\Delta t}{2} y^{\prime \prime}(\xi), \quad \exists \xi \in\left(t_{n}, t_{n+1}\right) \tag{4}
\end{equation*}
$$

Hence, the truncation error is of first order.
(b) We define $y_{1}:=y$ and $y_{2}:=y^{\prime}$, hence $y_{1}^{\prime}=y_{2}$. Further, we use the differential equation to obtain

$$
\begin{equation*}
y^{\prime \prime}+\varepsilon y^{\prime}+y=y_{1}^{\prime \prime}+\varepsilon y_{1}^{\prime}+y_{1}=y_{2}^{\prime}+\varepsilon y_{2}+y_{1} . \tag{5}
\end{equation*}
$$

Hence, we obtain

$$
\begin{equation*}
y_{2}^{\prime}=-y_{1}-\varepsilon y_{2}+\sin (t) . \tag{6}
\end{equation*}
$$

Hence the system is given by

$$
\begin{align*}
& y_{1}^{\prime}=y_{2} \tag{7}\\
& y_{2}^{\prime}=-y_{1}-\varepsilon y_{2}+\sin (t)
\end{align*}
$$

The initial conditions are given by

$$
\begin{align*}
& 1=y(0)=y_{1}(0), \\
& 0=y^{\prime}(0)=y_{1}^{\prime}(0)=y_{2}(0) . \tag{8}
\end{align*}
$$

(c) First, we use the test equation, $y^{\prime}=\lambda y$, to analyse numerical stability. For the Forward Euler method, we obtain

$$
\begin{equation*}
w_{n+1}=w_{n}+\Delta t \lambda w_{n}=Q(\lambda \Delta t) w_{n} \tag{9}
\end{equation*}
$$

hence the amplification factor becomes

$$
\begin{equation*}
Q(\lambda \Delta t)=1+\lambda \Delta t \tag{10}
\end{equation*}
$$

The numerical solution is stable if and only if $|Q(\lambda \Delta t)| \leq 1$.
Next, we deal with the case $\varepsilon=0$, to obtain the following system

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
0 & -1 \tag{11}\\
1 & 0
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

This system gives the following eigenvalues $\lambda_{1,2}= \pm i$, where i is the imaginary unit. Hence, the amplification factor is given by

$$
\begin{equation*}
Q(\lambda \Delta t)=1 \pm i \Delta t \tag{12}
\end{equation*}
$$

Then, it is immediately clear that $|Q(\lambda \Delta t)|>1$ for all $\Delta t>0$ since

$$
\begin{equation*}
|1 \pm i|=\sqrt{1^{2}+(\Delta t)^{2}} \mid>1 . \tag{13}
\end{equation*}
$$

Hence, we conclude that the forward Euler method is never stable if $\varepsilon=0$.
(d) From part (c) we know that if $\varepsilon=0$, the eigenvalues of the system are purely imaginary. This implies that the system is analytically (zero) stable if $\varepsilon=0$.

Non-zero values of ε give the following system

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
0 & -1 \tag{14}\\
1 & \varepsilon
\end{array}\right)\binom{y_{1}}{y_{2}} .
$$

then we get the following eigenvalues $\lambda_{1,2}=\frac{\varepsilon}{2} \pm \frac{1}{2} \sqrt{\varepsilon^{2}-4}$ (real-valued), if $\varepsilon^{2}-4 \geq 0$ and $\lambda=\frac{\varepsilon}{2} \pm \frac{i}{2} \sqrt{4-\varepsilon^{2}}$ (nonreal-valued) if $\varepsilon^{2}-4<0$. Hence, we consider two cases: real-valued and nonreal-valued eigenvalues.

Real-valued eigenvalues

In this case $|\varepsilon| \geq 2$, and $0 \leq \varepsilon^{2}-4<\varepsilon^{2}$, and hence the real-valued eigenvalues have the same sign, which is determined by the sign of ε. Hence, if $\varepsilon \leq-2$, then, the system is stable. Furthermore, if $\varepsilon \geq 2$, then, the system is unstable.

Nonreal-valued eigenvalues
In this case $|\varepsilon|<2$. The system is analytically unstable if and only if the real part of the eigenvalues is positive. Further, the real part of the eigenvalues is positive if and only if $\varepsilon>0$. Hence, the system is analytically unstable if and only if $\varepsilon>0$. Hence, the system is stable if and only if $(-2<) \varepsilon \leq 0$.

From these arguments, it follows that the system is stable if and only if $\varepsilon \leq 0$.
(e) Since currently the discriminant, $\varepsilon^{2}-4$, is negative, the eigenvalues are nonreal. Substitution into the amplification factor yields

$$
\begin{equation*}
Q(\lambda \Delta t)=1+\frac{\varepsilon}{2} \Delta t \pm \frac{i \Delta t}{2} \sqrt{4-\varepsilon^{2}} \tag{15}
\end{equation*}
$$

Hence, numerical stability is warranted if

$$
\begin{equation*}
|Q(\lambda \Delta t)|^{2}=\left(1+\frac{\varepsilon}{2} \Delta t\right)^{2}+\frac{\Delta t^{2}}{4}\left(4-\varepsilon^{2}\right) \leq 1 \tag{16}
\end{equation*}
$$

Hence for stability, we have

$$
\begin{equation*}
1+\varepsilon \Delta t+\frac{\varepsilon^{2} \Delta t^{2}}{4}+\Delta t^{2}-\frac{\varepsilon^{2} \Delta t^{2}}{4}=1+\Delta t \varepsilon+\Delta t^{2} \leq 1 \tag{17}
\end{equation*}
$$

Since $\Delta t>0$, we obtain the following stability criterion

$$
\begin{equation*}
\Delta t \leq-\varepsilon=|\varepsilon| \tag{18}
\end{equation*}
$$

If $\varepsilon=-2$, then both eigenvalues are real-valued and given by $\lambda_{1,2}=-1$. For this case, we obtain $Q(\lambda \Delta t)=1-\Delta t$, and stability is warranted if and only if $-1 \leq Q(\lambda \Delta t) \leq 1$, hence $\Delta t \leq 2(=|\varepsilon|$.

We conclude that for $-2 \leq \varepsilon<0$, we have a numerically stable solution if and only if $\Delta t \leq|\varepsilon|$.
2. (a) Using central differences for the second order derivative at a node $x_{j}=j \Delta x$ gives

$$
\begin{equation*}
y^{\prime \prime}\left(x_{j}\right) \approx \frac{y_{j+1}-2 y_{j}+y_{j-1}}{\Delta x^{2}}=: Q(\Delta x) \tag{19}
\end{equation*}
$$

Here, $y_{j}:=y\left(x_{j}\right)$. Next, we will prove that this approximation is second order accurate, that is $\left|y^{\prime \prime}\left(x_{j}\right)-Q(\Delta x)\right|=\mathcal{O}\left(\Delta x^{2}\right)$.
Using Taylor's Theorem around $x=x_{j}$ gives

$$
\begin{align*}
& y_{j+1}=y\left(x_{j}+\Delta x\right)=y\left(x_{j}\right)+\Delta x y^{\prime}\left(x_{j}\right)+\frac{\Delta x^{2}}{2} y^{\prime \prime}\left(x_{j}\right)+\frac{\Delta x^{3}}{3!} y^{\prime \prime \prime}\left(x_{j}\right)+\frac{\Delta x^{4}}{4!} y^{\prime \prime \prime \prime}\left(\eta_{+}\right), \\
& y_{j-1}=y\left(x_{j}-\Delta x\right)=y\left(x_{j}\right)-\Delta x y^{\prime}\left(x_{j}\right)+\frac{\Delta x^{2}}{2} y^{\prime \prime}\left(x_{j}\right)-\frac{\Delta x^{3}}{3!} y^{\prime \prime \prime}\left(x_{j}\right)+\frac{\Delta x^{4}}{4!} y^{\prime \prime \prime \prime}\left(\eta_{-}\right) . \tag{20}
\end{align*}
$$

Here, η_{+}and η_{-}are numbers within the intervals $\left(x_{j}, x_{j+1}\right)$ and $\left(x_{j-1}, x_{j}\right)$, respectively. Substitution of these expressions into $Q(\Delta x)$ gives

$$
\left|y^{\prime \prime}\left(x_{j}\right)-Q(\Delta x)\right|=\mathcal{O}\left(\Delta x^{2}\right)
$$

This leads to the following discretisation formula for internal grid nodes:

$$
\begin{equation*}
\frac{-w_{j-1}+2 w_{j}-w_{j+1}}{\Delta x^{2}}+\left(x_{j}+1\right) w_{j}=x_{j}^{3}+x_{j}^{2}-2 . \tag{21}
\end{equation*}
$$

Here, w_{j} represents the numerical approximation of the solution y_{j}. To deal with the boundary $x=0$, we use a virtual node at $x=-\Delta x$, and we define $y_{-1}:=y(-\Delta x)$. Then, using central differences at $x=0$ gives

$$
\begin{equation*}
0=y^{\prime}(0) \approx \frac{y_{1}-y_{-1}}{2 \Delta x}=: Q_{b}(\Delta x) \tag{22}
\end{equation*}
$$

Using Taylor's Theorem, gives

$$
\begin{aligned}
Q_{b}(\Delta x) & = \\
& =\frac{y(0)+\Delta x y^{\prime}(0)+\frac{\Delta x^{2}}{2} y^{\prime \prime}(0)+\frac{\Delta x^{3}}{3!} y^{\prime \prime \prime}\left(\eta_{+}\right)}{2 \Delta x} \\
& -\frac{y(0)-\Delta x y^{\prime}(0)+\frac{\Delta x^{2}}{2} y^{\prime \prime}(0)-\frac{\Delta x^{3}}{3!} y^{\prime \prime \prime}\left(\eta_{-}\right)}{2 \Delta x} \\
& =y^{\prime}(0)+\mathcal{O}\left(\Delta x^{2}\right) .
\end{aligned}
$$

Again, we get an error of $\mathcal{O}\left(\Delta x^{2}\right)$.
(b) With respect to the numerical approximation at the virtual node, we get

$$
\begin{equation*}
\frac{w_{1}-w_{-1}}{2 \Delta x}=0 \quad \Leftrightarrow \quad w_{-1}=w_{1} \tag{23}
\end{equation*}
$$

The discretisation at $x=0$ is given by

$$
\begin{equation*}
\frac{-w_{-1}+2 w_{0}-w_{1}}{\Delta x^{2}}+w_{0}=-2 . \tag{24}
\end{equation*}
$$

Substitution of equation (23) into the above equation, yields

$$
\begin{equation*}
\frac{2 w_{0}-2 w_{1}}{\Delta x^{2}}+w_{0}=-2 \tag{25}
\end{equation*}
$$

Subsequently, we consider the boundary $x=1$. To this extent, we consider its neighbouring point x_{n-1} and substitute the boundary condition $w_{n}=y(1)=$ $y_{n}=1$ into equation (21) to obtain

$$
\begin{align*}
& \frac{-w_{n-2}+2 w_{n-1}}{\Delta x^{2}}+\left(x_{n-1}+1\right) w_{n-1} \tag{26}\\
= & x_{n-1}^{3}+x_{n-1}^{2}-2+\frac{1}{\Delta x^{2}} \tag{27}\\
= & (1-\Delta x)^{3}+(1-\Delta x)^{2}-2+\frac{1}{\Delta x^{2}} . \tag{28}
\end{align*}
$$

This concludes our discretisation of the boundary conditions. In order to get a symmetric discretisation matrix, one divides equation (25) by 2 .

Next, we use $\Delta x=1 / 3$. From equations (21, 25, 28) we obtain the following system

$$
\begin{aligned}
9 \frac{1}{2} w_{0}-9 w_{1} & =-1 \\
-9 w_{0}+19 \frac{1}{3} w_{1}-9 w_{2} & =-\frac{50}{27} \\
-9 w_{1}+19 \frac{2}{3} w_{2} & =\frac{209}{27}
\end{aligned}
$$

(c) The Gershgorin circle theorem states that the eigenvalues of a square matrix \mathbf{A} are located in the complex plane in the union of circles

$$
\begin{equation*}
\left|z-a_{i i}\right| \leq \sum_{\substack{j \neq i \\ j=1}}^{n}\left|a_{i j}\right| \quad \text { where } \quad z \in \mathbb{C} \tag{29}
\end{equation*}
$$

For the 3×3 matrix derived in part (b) we have

- For $i=1$:

$$
\begin{equation*}
\left|z-9 \frac{1}{2}\right| \leq 9 \quad \Rightarrow \quad\left|\lambda_{1}\right|_{\min } \geq \frac{1}{2} \tag{30}
\end{equation*}
$$

- For $i=2$:

$$
\begin{equation*}
\left|z-19 \frac{1}{3}\right| \leq 18 \quad \Rightarrow \quad\left|\lambda_{2}\right|_{\min } \geq 1 \frac{1}{3} \tag{31}
\end{equation*}
$$

- For $i=3$:

$$
\begin{equation*}
\left|z-19 \frac{2}{3}\right| \leq 9 \quad \Rightarrow \quad\left|\lambda_{3}\right|_{\min } \geq 10 \frac{2}{3} \tag{32}
\end{equation*}
$$

Hence, a lower bound for the smallest eigenvalue is $\frac{1}{2}$. For a symmetric matrix A we have

$$
\begin{equation*}
\left\|\mathbf{A}^{-1}\right\|=\frac{1}{|\lambda|_{\min }} \leq 2 \tag{33}
\end{equation*}
$$

This proves that the finite-difference scheme is stable, e.g., with constant $C=2$.
3. (a) A fixed point p satisfies the equation $p=g(p)$. Substitution gives: $p=\frac{p^{3}}{6}+\frac{23}{48}$. Rewriting this expression gives:

$$
\begin{aligned}
-\frac{p^{3}}{6}+p-\frac{23}{48} & =0 \\
-p^{3}+6 p-\frac{23}{8} & =0 \\
-p^{3}+6 p-2 \frac{7}{8} & =0 \\
f(p) & =0
\end{aligned}
$$

The fixed point iteration is defined by: $p_{i+1}=g\left(p_{i}\right)$. Starting with $p_{0}=1$ one obtains:

$$
\begin{aligned}
& p_{1}=0.6458 \\
& p_{2}=0.5241 \\
& p_{3}=0.5032
\end{aligned}
$$

(b) The fixed point iteration is illustrated in figure 1.

Figure 1: Graphical illustration of the fixed point iteration
(c) For the convergence two conditions should be satisfied:

- $g(p) \in[0,1]$ for all $p \in[0,1]$.
- $\left|g^{\prime}(p)\right| \leq k<1$ for all $p \in[0,1]$.

Since $g(p)=\frac{p^{3}}{6}+\frac{23}{48}$ it follows that $g^{\prime}(p)=\frac{p^{2}}{2}$. Note that $g^{\prime}(p) \geq 0$ for all $p \in[0,1]$. This implies that

$$
\begin{equation*}
0<\frac{23}{48}=g(0) \leq g(p) \leq g(1)=\frac{31}{48}<1 \quad \text { for all } \quad p \in[0,1] \tag{34}
\end{equation*}
$$

so the first condition holds.
For the second condition we note that $\left|g^{\prime}(p)\right|=\frac{p^{2}}{2} \leq \frac{1}{2}=k<1$ for all $p \in[0,1]$, so the second conditions is also satisfied, which implies that the fixed point iteration converges for all $p_{0} \in[0,1]$.

