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1. (a) The local truncation error is defined by

τh =
yn+1 − zn+1

∆t
, (1)

where
zn+1 = yn + ∆tf(tn, yn), (2)

for the Forward Euler method. A Taylor expansion for yn+1 around tn is given
by

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (3)

Since y′(tn) = f(tn, yn), we use equation (1), to get

τh =
∆t

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (4)

Hence, the truncation error is of first order.

(b) We define y1 := y and y2 := y′, hence y′1 = y2. Further, we use the differential
equation to obtain

y′′ + εy′ + y = y′′1 + εy′1 + y1 = y′2 + εy2 + y1. (5)

Hence, we obtain
y′2 = −y1 − εy2 + sin(t). (6)

Hence the system is given by

y′1 = y2,
y′2 = −y1 − εy2 + sin(t).

(7)

The initial conditions are given by

1 = y(0) = y1(0),
0 = y′(0) = y′1(0) = y2(0).

(8)
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(c) First, we use the test equation, y′ = λy, to analyse numerical stability. For the
Forward Euler method, we obtain

wn+1 = wn + ∆tλwn = Q(λ∆t)wn, (9)

hence the amplification factor becomes

Q(λ∆t) = 1 + λ∆t. (10)

The numerical solution is stable if and only if |Q(λ∆t)| ≤ 1.

Next, we deal with the case ε = 0, to obtain the following system(
y′1
y′2

)
=

(
0 −1
1 0

)(
y1

y2

)
. (11)

This system gives the following eigenvalues λ1,2 = ±i, where i is the imaginary
unit. Hence, the amplification factor is given by

Q(λ∆t) = 1± i∆t. (12)

Then, it is immediately clear that |Q(λ∆t)| > 1 for all ∆t > 0 since

|1± i| =
√

12 + (∆t)2| > 1. (13)

Hence, we conclude that the forward Euler method is never stable if ε = 0.

(d) From part (c) we know that if ε = 0, the eigenvalues of the system are purely
imaginary. This implies that the system is analytically (zero) stable if ε = 0.

Non-zero values of ε give the following system(
y′1
y′2

)
=

(
0 −1
1 ε

)(
y1

y2

)
. (14)

then we get the following eigenvalues λ1,2 = ε
2
± 1

2

√
ε2 − 4 (real-valued), if

ε2 − 4 ≥ 0 and λ = ε
2
± i

2

√
4− ε2 (nonreal-valued) if ε2 − 4 < 0. Hence,

we consider two cases: real-valued and nonreal-valued eigenvalues.

Real-valued eigenvalues
In this case |ε| ≥ 2, and 0 ≤ ε2 − 4 < ε2, and hence the real-valued eigenvalues
have the same sign, which is determined by the sign of ε. Hence, if ε ≤ −2,
then, the system is stable. Furthermore, if ε ≥ 2, then, the system is unstable.

Nonreal-valued eigenvalues
In this case |ε| < 2. The system is analytically unstable if and only if the real
part of the eigenvalues is positive. Further, the real part of the eigenvalues is
positive if and only if ε > 0. Hence, the system is analytically unstable if and
only if ε > 0. Hence, the system is stable if and only if (−2 <)ε ≤ 0.

From these arguments, it follows that the system is stable if and only if ε ≤ 0.
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(e) Since currently the discriminant, ε2−4, is negative, the eigenvalues are nonreal.
Substitution into the amplification factor yields

Q(λ∆t) = 1 +
ε

2
∆t± i∆t

2

√
4− ε2. (15)

Hence, numerical stability is warranted if

|Q(λ∆t)|2 = (1 +
ε

2
∆t)2 +

∆t2

4
(4− ε2) ≤ 1. (16)

Hence for stability, we have

1 + ε∆t+
ε2∆t2

4
+ ∆t2 − ε2∆t2

4
= 1 + ∆tε+ ∆t2 ≤ 1. (17)

Since ∆t > 0, we obtain the following stability criterion

∆t ≤ −ε = |ε|. (18)

If ε = −2, then both eigenvalues are real-valued and given by λ1,2 = −1. For
this case, we obtain Q(λ∆t) = 1−∆t, and stability is warranted if and only if
−1 ≤ Q(λ∆t) ≤ 1, hence ∆t ≤ 2(= |ε|.

We conclude that for −2 ≤ ε < 0, we have a numerically stable solution if and
only if ∆t ≤ |ε|.

2. (a) Using central differences for the second order derivative at a node xj = j∆x
gives

y′′(xj) ≈
yj+1 − 2yj + yj−1

∆x2
=: Q(∆x). (19)

Here, yj := y(xj). Next, we will prove that this approximation is second order
accurate, that is |y′′(xj)−Q(∆x)| = O(∆x2).

Using Taylor’s Theorem around x = xj gives

yj+1 = y(xj + ∆x) = y(xj) + ∆xy′(xj) + ∆x2

2
y′′(xj) + ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η+),

yj−1 = y(xj −∆x) = y(xj)−∆xy′(xj) + ∆x2

2
y′′(xj)− ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η−).

(20)
Here, η+ and η− are numbers within the intervals (xj, xj+1) and (xj−1, xj), re-
spectively. Substitution of these expressions into Q(∆x) gives

|y′′(xj)−Q(∆x)| = O(∆x2).

This leads to the following discretisation formula for internal grid nodes:

−wj−1 + 2wj − wj+1

∆x2
+ (xj + 1)wj = x3

j + x2
j − 2. (21)
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Here, wj represents the numerical approximation of the solution yj. To deal
with the boundary x = 0, we use a virtual node at x = −∆x, and we define
y−1 := y(−∆x). Then, using central differences at x = 0 gives

0 = y′(0) ≈ y1 − y−1

2∆x
=: Qb(∆x). (22)

Using Taylor’s Theorem, gives

Qb(∆x) =

=
y(0) + ∆xy′(0) + ∆x2

2
y′′(0) + ∆x3

3!
y′′′(η+)

2∆x

−
y(0)−∆xy′(0) + ∆x2

2
y′′(0)− ∆x3

3!
y′′′(η−)

2∆x
= y′(0) +O(∆x2).

Again, we get an error of O(∆x2).

(b) With respect to the numerical approximation at the virtual node, we get

w1 − w−1

2∆x
= 0 ⇔ w−1 = w1. (23)

The discretisation at x = 0 is given by

−w−1 + 2w0 − w1

∆x2
+ w0 = −2. (24)

Substitution of equation (23) into the above equation, yields

2w0 − 2w1

∆x2
+ w0 = −2. (25)

Subsequently, we consider the boundary x = 1. To this extent, we consider its
neighbouring point xn−1 and substitute the boundary condition wn = y(1) =
yn = 1 into equation (21) to obtain

−wn−2 + 2wn−1

∆x2
+ (xn−1 + 1)wn−1 (26)

= x3
n−1 + x2

n−1 − 2 +
1

∆x2
(27)

= (1−∆x)3 + (1−∆x)2 − 2 +
1

∆x2
. (28)

This concludes our discretisation of the boundary conditions. In order to get a
symmetric discretisation matrix, one divides equation (25) by 2.
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Next, we use ∆x = 1/3. From equations (21, 25, 28) we obtain the following
system

9
1

2
w0 − 9w1 = −1

−9w0 + 19
1

3
w1 − 9w2 = −50

27

−9w1 + 19
2

3
w2 =

209

27
.

(c) The Gershgorin circle theorem states that the eigenvalues of a square matrix A
are located in the complex plane in the union of circles

|z − aii| ≤
n∑

j 6=i
j=1

|aij| where z ∈ C (29)

For the 3× 3 matrix derived in part (b) we have

• For i = 1: ∣∣∣∣z − 9
1

2

∣∣∣∣ ≤ 9 ⇒ |λ1|min ≥
1

2
(30)

• For i = 2: ∣∣∣∣z − 19
1

3

∣∣∣∣ ≤ 18 ⇒ |λ2|min ≥ 1
1

3
(31)

• For i = 3: ∣∣∣∣z − 19
2

3

∣∣∣∣ ≤ 9 ⇒ |λ3|min ≥ 10
2

3
(32)

Hence, a lower bound for the smallest eigenvalue is 1
2
. For a symmetric matrix

A we have

‖A−1‖ =
1

|λ|min

≤ 2 (33)

This proves that the finite-difference scheme is stable, e.g., with constant C = 2.

3. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = p3

6
+ 23

48
.

Rewriting this expression gives:

−p
3

6
+ p− 23

48
= 0

−p3 + 6p− 23

8
= 0

−p3 + 6p− 2
7

8
= 0

f(p) = 0
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The fixed point iteration is defined by: pi+1 = g(pi). Starting with p0 = 1 one
obtains:

p1 = 0.6458

p2 = 0.5241

p3 = 0.5032

(b) The fixed point iteration is illustrated in figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
0

g(p
0
)

p
1

g(p
1
)

p
2

Figure 1: Graphical illustration of the fixed point iteration

(c) For the convergence two conditions should be satisfied:

• g(p) ∈ [0, 1] for all p ∈ [0, 1].

• |g′(p)| ≤ k < 1 for all p ∈ [0, 1].
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Since g(p) = p3

6
+ 23

48
it follows that g′(p) = p2

2
. Note that g′(p) ≥ 0 for all

p ∈ [0, 1]. This implies that

0 <
23

48
= g(0) ≤ g(p) ≤ g(1) =

31

48
< 1 for all p ∈ [0, 1], (34)

so the first condition holds.

For the second condition we note that |g′(p)| = p2

2
≤ 1

2
= k < 1 for all p ∈ [0, 1],

so the second conditions is also satisfied, which implies that the fixed point
iteration converges for all p0 ∈ [0, 1].
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