DELFT UNIVERSITY OF TECHNOLOGY<br>Faculty of Electrical Engineering, Mathematics and Computer Science

## ANSWERS OF THE TEST NUMERICAL METHODS FOR

 DIFFERENTIAL EQUATIONS ( WI3097 TU / Minor AESB2210 )Thursday April 14th 2016, 18:30-21:30

1. (a) The local truncation error is defined by

$$
\begin{equation*}
\tau_{n+1}(\Delta t):=\frac{y_{n+1}-z_{n+1}}{\Delta t} \tag{1}
\end{equation*}
$$

where $y_{n}:=y\left(t_{n}\right)$ represents the exact solution and

$$
\begin{equation*}
z_{n+1}=y_{n}+\Delta t f\left(t_{n+1}, z_{n+1}\right) \tag{2}
\end{equation*}
$$

represents the approximation of the numerical solution at $t_{n+1}$ upon using $y_{n}$ for the previous time step. Since, we use the test equation $y^{\prime}=\lambda y$, we express $y_{n+1}$ in terms of $y_{n}$ as follows

$$
\begin{equation*}
y_{n+1}=y_{n} e^{\lambda \Delta t}=y_{n}\left(1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}+\mathcal{O}\left(\Delta t^{3}\right)\right) . \tag{3}
\end{equation*}
$$

From (2), we use the test equation and the geometric series

$$
\begin{equation*}
z_{n+1}=\frac{y_{n}}{1-\lambda \Delta t}=y_{n}\left(1+\lambda \Delta t+(\lambda \Delta t)^{2}+\mathcal{O}\left(\Delta t^{3}\right)\right) . \tag{4}
\end{equation*}
$$

Substitution of equations (3) and (4) into the definition of the local truncation error, gives

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{y_{n}}{\Delta t}\left(-\frac{(\lambda \Delta t)^{2}}{2}+\mathcal{O}\left(\Delta t^{3}\right)\right)=\mathcal{O}(\Delta t) \tag{5}
\end{equation*}
$$

(b) Using the test equation, we get

$$
\begin{equation*}
w_{n+1}=w_{n}+\lambda \Delta t w_{n+1}, \tag{6}
\end{equation*}
$$

where $w_{n}$ denotes the numerical approximation of $y_{n}$. The above equation implies

$$
\begin{equation*}
w_{n+1}=\frac{w_{n}}{1-\lambda \Delta t}=: Q(\lambda \Delta t) w_{n} . \tag{7}
\end{equation*}
$$

Here $Q(\lambda \Delta t)$ represents the amplification factor. For numerical stability, we require the modulus of the amplification factor to satisfy

$$
\begin{equation*}
|Q(\lambda \Delta t)| \leq 1, \text { hence }\left|\frac{1}{1-\lambda \Delta t}\right|=\frac{1}{|1-\lambda \Delta t|} \leq 1 \tag{8}
\end{equation*}
$$

From the above equation, it is clear that

$$
\begin{equation*}
|1-\lambda \Delta t| \geq 1 \tag{9}
\end{equation*}
$$

and with $\lambda=\mu+i \nu$, we get

$$
\begin{equation*}
(1-\mu \Delta t)^{2}+(\nu \Delta t)^{2} \geq 1 \tag{10}
\end{equation*}
$$

This area is the whole complex plane except the unit circle with center $(1,0)$, see Figure 1.


Figure 1: The region of stability of the backward Euler method (grey area).
(c) Consider the equations that we have to solve

$$
\begin{align*}
& y_{1}^{\prime}=-y_{1}^{2}+2 y_{1} y_{2}=: f_{1}\left(y_{1}, y_{2}\right), \\
& y_{2}^{\prime}=-y_{1} y_{2}-\frac{1}{2} y_{2}^{2}=: f_{2}\left(y_{1}, y_{2}\right), \tag{11}
\end{align*}
$$

Here, we introduced the functions $f_{1}\left(y_{1}, y_{2}\right)$ and $f_{2}\left(y_{1}, y_{2}\right)$. Then, the Jacobian matrix is given by

$$
J\left(y_{1}, y_{2}\right):=\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial y_{1}}\left(y_{1}, y_{2}\right) & \frac{\partial f_{1}}{\partial y_{2}}\left(y_{1}, y_{2}\right)  \tag{12}\\
\frac{\partial f_{2}}{\partial y_{1}}\left(y_{1}, y_{2}\right) & \frac{\partial f_{2}}{\partial y_{2}}\left(y_{1}, y_{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
-2 y_{1}+2 y_{2} & 2 y_{1} \\
-y_{2} & -y_{1}-y_{2}
\end{array}\right) .
$$

For the equilibrium $\left(y_{1}(0), y_{2}(0)\right)=(1,0)$, we have

$$
J\left(y_{1}, y_{2}\right):=\left(\begin{array}{cc}
-2 & 2  \tag{13}\\
0 & -1
\end{array}\right)
$$

Hence the eigenvalues are given by $\lambda_{1}=-2$ and $\lambda_{2}=-1$.
(d) - We have $\lambda_{1}=-2$ and $\lambda_{2}=-1$, hence with $\Delta t>0$, this implies that $\Delta t \lambda<$ 0 (thus real-valued), then from Figure 1, it is clear that the backward Euler is stable for any $\Delta t>0$.
[The same argument holds for the backup choice $\lambda_{1}=-4$ and $\lambda_{2}=-3$.]

- Since the eigenvalues are real-valued and negative, we use

$$
\begin{equation*}
\Delta t \leq \frac{2}{|\lambda|} \tag{14}
\end{equation*}
$$

as stability bound for the forward Euler method. With $\lambda_{1}=-2$, and $\lambda_{2}=-1$, we get $\Delta t \leq 1$ as the maximum allowable time step to warrant numerical stability, based on linear stability analysis around ( 1,0 ).
[For the backup choice $\lambda_{1}=-4$ and $\lambda_{2}=-3$ we get $\Delta t \leq \frac{1}{2}$ as the maximum allowable time step to warrant numerical stability.]
(e) Applying the forward Euler time integration method to system (11), gives

$$
\begin{align*}
& u_{n+1}=u_{n}+\Delta t\left(-u_{n}^{2}+2 u_{n} v_{n}\right), \\
& v_{n+1}=v_{n}+\Delta t\left(-u_{n} v_{n}-\frac{1}{2} v_{n}^{2}\right) \tag{15}
\end{align*}
$$

where $\mathbf{w}_{n}=\left(u_{n}, v_{n}\right)^{\top}$ denotes the numerical solution with components $u_{n}$ and $v_{n}$. Using $\Delta t=1$ and $u_{0}=1$ and $v_{0}=0$, gives

$$
\begin{align*}
& u_{1}=u_{0}+\Delta t\left(-u_{0}^{2}+2 u_{0} v_{0}\right)=1-1=0, \\
& v_{1}=v_{0}+\Delta t\left(-u_{0} v_{0}-\frac{1}{2} v_{0}^{2}\right)=0 \tag{16}
\end{align*}
$$

Hence $u_{1}=0$ and $v_{1}=0$.
2. (a) The first order backward difference formula for the first derivative is given by

$$
d^{\prime}(t) \approx \frac{d(t)-d(t-h)}{h}
$$

Using $t=10$ [min], and $h=5$ [min] the approximation of the velocity is

$$
\frac{d(10)-d(5)}{5}\left[\frac{\mathrm{~cm}}{\min }\right]=\frac{550-250}{5}\left[\frac{\mathrm{~cm}}{\min }\right]=60\left[\frac{\mathrm{~cm}}{\min }\right] .
$$

(b) Taylor polynomials are:

$$
\begin{aligned}
d(0) & =d(2 h)-2 h d^{\prime}(2 h)+2 h^{2} d^{\prime \prime}(2 h)-\frac{(2 h)^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right), \\
d(h) & =d(2 h)-h d^{\prime}(2 h)+\frac{h^{2}}{2} d^{\prime \prime}(2 h)-\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right), \\
d(2 h) & =d(2 h) .
\end{aligned}
$$

We know that $Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h)$, which should be equal to $d^{\prime}(2 h)+O\left(h^{2}\right)$. This leads to the following conditions:

$$
\begin{aligned}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0, \\
-2 \alpha_{0}-\alpha_{1} & =1, \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & =0 .
\end{aligned}
$$

(c) The truncation error follows from the Taylor polynomials:

$$
\begin{aligned}
d^{\prime}(2 h)-Q(h) & =d^{\prime}(2 h)-\frac{d(0)-4 d(h)+3 d(2 h)}{2 h} \\
& =\frac{\frac{8 h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right)-4\left(\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right)\right)}{2 h} \\
& =\frac{1}{3} h^{2} d^{\prime \prime \prime}(\xi) .
\end{aligned}
$$

Using the new formula with $h=5[\mathrm{~min}]$ we obtain the estimate:

$$
\frac{d(0)-4 d(10)+3 d(20)}{20}\left[\frac{\mathrm{~cm}}{\mathrm{~min}}\right]=\frac{0-4 \times 250+3 \times 550}{10}\left[\frac{\mathrm{~cm}}{\min }\right]=65\left[\frac{\mathrm{~cm}}{\mathrm{~min}}\right] .
$$

3. (a) The linear Lagrangian interpolatory polynomial, with nodes $x_{0}$ and $x_{1}$, is given by

$$
\begin{equation*}
L_{1}(x)=\frac{x-x_{1}}{x_{0}-x_{1}} f\left(x_{0}\right)+\frac{x-x_{0}}{x_{1}-x_{0}} f\left(x_{1}\right) . \tag{17}
\end{equation*}
$$

This is evident from application of the given formula.
(b) The quadratic Lagrangian interpolatory polynomial with nodes $x_{0}, x_{1}$ and $x_{2}$ is given by

$$
\begin{align*}
L_{2}(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f\left(x_{0}\right)  \tag{18}\\
& +\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} f\left(x_{1}\right)  \tag{19}\\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f\left(x_{2}\right) \tag{20}
\end{align*}
$$

This is also evident from application of the given formula.
(c) Obviously, $L_{1}(3)=6$ and $L_{2}(3)=6$ since the Lagrange interpolation polynomial satisfies $L_{n}\left(x_{k}\right)=f\left(x_{k}\right)$ for all points $x_{0}, x_{1}, \ldots, x_{n}$. Next, we compute $L_{1}(2)$ and $L_{2}(2)$ for both linear and quadratic Lagrangian interpolation as approximations at $x=3$. For linear interpolation, we have

$$
\begin{equation*}
L_{1}(3)=\frac{2-3}{1-3} \cdot 3+\frac{2-1}{3-1} \cdot 6=\frac{9}{2}, \tag{21}
\end{equation*}
$$

and for quadratic interpolation, one obtains

$$
\begin{equation*}
L_{2}(3)=\frac{(2-3)(2-4)}{(1-3)(1-4)} \cdot 3+\frac{(2-1)(2-4)}{(3-1)(3-4)} \cdot 6+\frac{(2-1)(2-3)}{(4-1)(4-3)} \cdot 5=\frac{16}{3} \tag{22}
\end{equation*}
$$

