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1. (a) The amplification factor can be derived as follows. Consider the test equation
y′ = λy. Application of the Trapezoidal rule to this equation gives:

wj+1 = wj +
∆t

2
(λwj + λwj+1) (1)

Rearranging of wj+1 and wj in (1) yields(
1− ∆t

2
λ

)
wj+1 =

(
1 +

∆t

2
λ

)
wj.

It now follows that

wj+1 =
1 + ∆t

2
λ

1− ∆t
2
λ
wj,

and thus

Q(λ∆t) =
1 + ∆t

2
λ

1− ∆t
2
λ
.

(b) The definition of the local truncation error is

τj+1 =
yj+1 −Q(λ∆t)yj

∆t
.

The exact solution of the test equation is given by

yj+1 = eλ∆tyj.

Combination of these results shows that the local truncation error of the test
equation is determined by the difference between the exponential function and
the amplification factor Q(λ∆t)

τj+1 =
eλ∆t −Q(λ∆t)

∆t
yj. (2)

The difference between the exponential function and amplification factor can be
computed as follows. The Taylor series of eλ∆t with known point 0 is:

eλ∆t = 1 + λ∆t+
(λ∆t)2

2
+O((∆t)3). (3)
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The Taylor series of 1
1−∆t

2
λ

with known point 0 is:

1

1− λ∆t
2

= 1 +
1

2
λ∆t+

1

4
(λ∆t)2 +O((∆t)3). (4)

With (4) it follows that
1+λ∆t

2

1−λ∆t
2

is equal to

1 + λ∆t
2

1− λ∆t
2

= 1 + λ∆t+
1

2
(λ∆t)2 +O((∆t)3). (5)

In order to determine eλ∆t −Q(λ∆t), we subtract (5) from (3). Now it follows
that

eλ∆t −Q(λ∆t) = O((∆t)3). (6)

The local truncation error can be found by substituting (6) into (2), which leads
to

τj+1 = O((∆t)2).

(c) The Trapezoidal rule is stable if

|1 + λ∆t
2
|

|1− λ∆t
2
|
≤ 1.

Using the complex valued λ = µ+ iν it appears that the condition is equal to:

|1 + ∆t
2

(µ+ iν)|
|1− ∆t

2
(µ+ iν)|

≤ 1

This is equivalent with √
(1 + ∆t

2
µ)2 + (∆t

2
ν)2√

(1− ∆t
2
µ)2 + (∆t

2
ν)2

≤ 1

Since µ ≤ 0 it easily follows that√
(1 +

∆t

2
µ)2 + (

∆t

2
ν)2 ≤

√
(1− ∆t

2
µ)2 + (

∆t

2
ν)2

which implies that
|1 + λ∆t

2
|

|1− λ∆t
2
|
≤ 1.

and the method is stable.
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(d) Application of the Trapezoidal rule to

y′ = −(1 + 2t)y + t, with y(0) = 1,

and step size ∆t = 1
2

gives:

w1 = w0 +
∆t

2
[−w0 + 0− 2w1 +

1

2
].

Using the initial value w0 = y(0) = 1 and step size ∆t = 1
2

gives:

w1 = 1 +
1

4
[−1− 2w1 +

1

2
].

This leads to

1
1

2
w1 =

7

8
, so w1 =

7

12
.

(e) For the comparison we use the following items: accuracy, stability, and amount
of work. Below we make the comparison:

• Accuracy: since the error of Euler Forward is O(∆t) and that of the Trape-
zoidal rule is O((∆t)2), the error is smaller for the Trapezoidal rule.

• Stability: since the value of −(1+2t) is always negative the Trapezoidal rule
is stable for all step sizes, whereas for Euler Forward the step size should
satisfy the inequality ∆t ≤ 2

1+2t
.

• Amount of work: since the differential equation is linear the amount of work
for the implicit Trapezoidal rule is comparable to the work of the explicit
Euler Forward method.

From the above comparisons we conclude that for this problem the Trapezoidal
rule is preferred.

2. (a) Using central finite differences for the second order derivative at a node
xj = j∆x, gives

y′′(xj) ≈
yj+1 − 2yj + yj−1

∆x2
=: Q(∆x). (7)

Here yj := y(xj). Next, we will prove that this approximation is second order
accurate, that is |y′′(xj)−Q(∆x)| = O(∆x2).

Using Taylor series expansion around x = xj, gives

yj+1 = y(xj + ∆x) = y(xj) + ∆xy′(xj) + ∆x2

2
y′′(xj) + ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η+),

yj−1 = y(xj −∆x) = y(xj)−∆xy′(xj) + ∆x2

2
y′′(xj)− ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η−).

(8)
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Here, η+ and η− are numbers within the intervals (xj, xj+1) and (xj−1, xj), re-
spectively.

Substitution of these expressions into Q(∆x) gives |y′′(xj)−Q(∆x)| = O(∆x2).
Therewith, we obtain the following discretization formula for the internal grid
nodes:

−wj−1 + 2wj − wj+1

∆x2
+ xjwj = x3

j − 2. (9)

Here wj represents the numerical approximation of the solution yj.

To deal with the boundary x = 0, we use a virtual node at x = −∆x, and we
define y−1 := y(−∆x). Then, using central differences at x = 0 gives

0 = y′(0) ≈ y1 − y−1

2∆x
=: Qb(∆x). (10)

Using Taylor series expansion, gives

Qb(∆x) =

y(0) + ∆xy′(0) + ∆x2

2
y′′(0) + ∆x3

3!
y′′′(η+)− (y(0)−∆xy′(0) + ∆x2

2
y′′(0)− ∆x3

3!
y′′′(η−))

2∆x
=

y′(0) +O(∆x2).
(11)

Again, we get an error of O(∆x2).

With respect to the numerical approximation at the virtual node, we get

w1 − w−1

2∆x
= 0⇔ w−1 = w1. (12)

The discretization at x = 0 is given by

−w−1 + 2w0 − w1

∆x2
= −2. (13)

Substitution of equation (12) into the above equation, yields

2w0 − 2w1

∆x2
= −2. (14)

Subsequently, we consider the boundary x = 1. To this extent, we consider
its neighboring point xn−1, here substitution of the boundary condition wn =
y(1) = yn = 1 into equation (9), gives

−wn−2 + 2wn−1

∆x2
+ xn−1wn−1 = x3

n−1 − 2 +
1

∆x2
= (1−∆x)3 − 2 +

1

∆x2
. (15)

This concludes our discretization of the boundary conditions. In order to get a
symmetric discretization matrix, one divides equation (14) by 2.
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(b) Next, we use ∆x = 1/3, then, from equations (9), (14), and (15), one obtains
the following system

9w0 − 9w1 = −1

−9w0 + 18
1

3
w1 − 9w2 = −53

27

−9w1 + 18
2

3
w2 =

197

27
.

3. (a) We compute
x+ y = 2/3 + 1999/3000 = 1.333,

and
x− y = 2/3− 1999/3000 = 1/3000 = 0.3333 . . . · 10−3.

Further, we have fl(x) = 0.6667, fl(y) = 0.6663, and

fl(x) + fl(y) = 0.1333 · 101,

hence fl(fl(x) + fl(y)) = 0.1333 · 101.

For the subtraction, one obtains

fl(x)− fl(y) = 0.4 · 10−3,

and hence
fl(fl(x)− fl(y)) = fl(0.4 · 10−3) = 0.4000 · 10−3.

(b) After the addition, the relative error is given by

|0.1333 · 101 − 1.333

0.1333 · 101
| = 0,

and after the subtraction, one gets

|0.4000 · 10−3 − 0.3333 . . . · 10−3

0.3333 . . . · 10−3
| = 0.2.

(c) The relative error due to subtraction of two positive numbers is divided by the
difference between these numbers. If this difference gets arbitrarily small, then
the relative error gets arbitrarily large for a given absolute error.
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