DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU/Minor AESB2210) Thursday February 2nd 2017, 18:30-21:30

1. In this exercise we use the Trapezoidal rule to approximate the solution of the following initial value problem $y^{\prime}=f(t, y)$ with $y\left(t_{0}\right)=y_{0}$. This method is given by:

$$
\begin{equation*}
w_{n+1}=w_{n}+\frac{\Delta t}{2}\left(f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, w_{n+1}\right)\right) \tag{1}
\end{equation*}
$$

(a) Show that the amplification factor of the Trapezoidal rule is given by

$$
Q(\lambda \Delta t)=\frac{1+\frac{\lambda \Delta t}{2}}{1-\frac{\lambda \Delta t}{2}} .
$$

(b) Give the order (+ proof) of the local truncation error of the Trapezoidal rule for the test equation.
Hint:

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots, \quad \frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots
$$

(c) Show that for a general complex valued $\lambda=\mu+i \nu$ the method is stable for all step size $\Delta t>0$ if $\mu \leq 0$.
(d) Do one step with the Trapezoidal rule for the following initial value problem

$$
y^{\prime}=-(1+2 t) y+t, \text { met } y(0)=1,
$$

and step size $\Delta t=\frac{1}{2}$.
(e) Make for this problem (given in part d) a comparison of the Trapezoidal rule and the Euler Forward method. Which method do you prefer (+ motivation)?
2. We consider the following boundary value problem (differential equation with boundary conditions):

$$
\left\{\begin{array}{l}
-y^{\prime \prime}+x y=x^{3}-2, x \in(0,1) \tag{2}\\
y^{\prime}(0)=0, \quad y(1)=1
\end{array}\right.
$$

(a) Let Δx be the step size. Give a discretization with an error of $\mathcal{O}\left(\Delta x^{2}\right)(+$ proof) such that $x_{n}=1$. Use a virtual grid node near $x=0$.
(b) Use a step size of $\Delta x=1 / 3$ to derive the system of equations. Take care of the boundary conditions. The derived system must be of 3×3 (three unknowns and three equations).
3. Consider a hypothetical computer, which operates with floating point (decimal) numbers. This computer has the following properties:

- Each real number is represented as a floating point number with four digits after the comma;
- The floating point representation is obtained by rounding.

Hence, as an illustration: $f l(5 / 7)=f l(0.714285714 \ldots)=0.7143 \cdot 10^{0}$.
In the exercise we consider the following given numbers

$$
\begin{aligned}
& x=2 / 3=0.666666666 \ldots \\
& y=1999 / 3000=0.666333333 \ldots
\end{aligned}
$$

(a) Determine $x+y, x-y, f l(f l(x)+f l(y))$ and $f l(f l(x)-f l(y))$, with the given values for x and y as exact results and computer representations of the outcomes.
(b) Calculate the relative error for $x+y$ and $x-y$ due to rounding in the computations by our hypothetical computer.
(c) Motivate why the relative error is much higher for $x-y$ than it is for $x+y$ if $x \approx y$, assuming that $x, y>0$.

