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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
, (1)

where zn+1 is computed by one step of the method starting from yn, and we
determine yn+1 by the use of a Taylor Series around tn:

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3). (2)

We realize that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn) =

=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn).

(3)

Hence, this gives

yn+1 = yn + ∆ty′(tn) +
∆t2

2

(
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn)

)
+O(∆t3). (4)

For zn+1, after substitution of the predictor–step for z∗n+1 into the corrector–step,
and using the Taylor Series around (tn, yn)

zn+1 = yn + ∆t
2

(f(tn, yn) + f(tn + ∆t, yn + ∆tf(tn, yn))) =

yn +
∆t

2

(
f(tn, yn) + f(tn, yn) + ∆t(

∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y
) +O(∆t2)

)
.

(5)
Then, it follows that

yn+1 − zn+1 = O(∆t3), and hence τn+1(∆t) =
O(∆t3)

∆t
= O(∆t2). (6)
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(b) Consider the test–equation y′ = λy, then it follows that

w∗n+1 = wn + λ∆twn = (1 + λ∆t)wn,

wn+1 = wn +
∆t

2
(λwn + λw∗n+1) =

= wn +
∆t

2
(λwn + λ(wn + λ∆twn)) = (1 + λ∆t+

(λ∆t)2

2
)wn.

(7)

Hence the amplification factor is given by

Q(λ∆t) = 1 + λ∆t+
(λ∆t)2

2
. (8)

(c) Let x1 = y and x2 = y′, then it follows that y′′ = x′2, and hence we get

x′2 + 2x2 + 2x1 = sin(t),
x2 = x′1.

(9)

This expression is written as

x′1 = x2,
x′2 = −2x1 − 2x2 + sin(t).

(10)

Finally, we get the following matrix–form:(
x1

x2

)′
=

(
0 1
−2 −2

)(
x1

x2

)
+

(
0

sin(t)

)
. (11)

Here, we have A =

(
0 1
−2 −2

)
and f =

(
0

sin(t)

)
. The initial conditions are

given by

(
x1(0)
x2(0)

)
=

(
1
2

)
.

(d) The Modified Euler Method, applied to the system x′ = Ax+ f , gives

w∗1 = w0 + ∆t
(
Aw0 + f

0

)
,

w1 = w0 + ∆t
2

(
Aw0 + f

0
+ Aw∗1 + f

1

)
.

(12)

With the initial condition and ∆t = 0.1, this gives

w∗1 =

(
1
2

)
+

1

10

((
0 1
−2 −2

)(
1
2

)
+

(
0
0

))
=

(
1.2
1.4

)
. (13)

Then, the correction–step is given by

w1 =

(
1
2

)
+ 1

20

((
0 1
−2 −2

)(
1
2

)
+

(
0
0

)
+

(
0 1
−2 −2

)(
1.2
1.4

)
+

(
0

sin( 1
10

)

))
=

=

(
1.17
1.445

)
(14)
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(e) To this extent, we determine the eigenvalues of the matrix A. Subsequently,
these eigenvalues are substituted into the amplification factor. The eigenvalues
of A are given by −1± i. Using ∆t = 1, it follows that

Q(λ∆t) = 1 + λ∆t+
1

2
λ2∆t2 = 1 + (−1 + i) +

1

2
(−1 + i)2 = 0 (15)

Herewith, it follows that |Q(λ∆t)|2 = 0 < 1. Hence for ∆t = 1, it follows that
the method applied to the given system is stable. Note that this conclusion
holds for both the eigenvalues of A since they are complex conjugates.

2. (a) The first order backward difference formula for the first derivative is given by

d′(t) ≈ d(t)− d(t− h)

h
.

Using t = 20, and h = 10 the approximation of the velocity is

d(20)− d(10)

10
=

100− 40

10
= 6 (m/s).

(b) Taylor polynomials are:

d(0) = d(2h)− 2hd
′
(2h) + 2h2d

′′
(2h)− (2h)3

6
d

′′′
(ξ0) ,

d(h) = d(2h)− hd′
(2h) +

h2

2
d

′′
(2h)− h3

6
d

′′′
(ξ1) ,

d(2h) = d(2h).

We know that Q(h) = α0

h
d(0) + α1

h
d(h) + α2

h
d(2h), which should be equal to

d′(2h) +O(h2). This leads to the following conditions:

α0

h
+ α1

h
+ α2

h
= 0 ,

−2α0 − α1 = 1 ,
2α0h + 1

2
α1h = 0 .

(c) The truncation error follows from the Taylor polynomials:

d′(2h)−Q(h) = d′(2h)−d(0)− 4d(h) + 3d(2h)

2h
=

8h3

6
d

′′′
(ξ0)− 4(h

3

6
d

′′′
(ξ1))

2h
=

1

3
h2d′′′(ξ).

Using the new formula with h = 10 we obtain the estimate:

d(0)− 4d(10) + 3d(20)

20
=

0− 4× 40 + 3× 100

20
= 7 (m/s).
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3. (a) Newton-Raphson’s method is an iterative method to find p ∈ R such that
f(p) = 0. Suppose f ∈ C2[a, b]. Let x̄ ∈ [a, b] be an approximation of the root p
such that f ′(x̄) 6= 0, and suppose that |p− x̄| is small. Consider the first-degree
Taylor polynomial about x̄:

f(x) = f(x̄) + (x− x̄)f ′(x̄) +
(x− x̄)2

2
f ′′(ξ(x)), (16)

in which ξ(x) between x and x̄. Using that f(p) = 0, equation (16) yields

0 = f(x̄) + (p− x̄)f ′(x̄) +
(p− x̄)2

2
f ′′(ξ(x)).

Because |p− x̄| is small, (p− x̄)2 can be neglected, such that

0 ≈ f(x̄) + (p− x̄)f ′(x̄).

Note that the right-hand side is the formula for the tangent in (x̄, f(x̄)). Solving
for p yields

p ≈ x̄− f(x̄)

f ′(x̄)
.

This motivates the Newton-Raphson method, that starts with an approximation
p0 and generates a sequence {pn} by

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, for n ≥ 1.

Remark 1 One can also give a graphical derivation following Figure 4.2 from
the book.

(b) The first derivative of g equals

g′(x) = 1− (f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
=
f(x)f ′′(x)

(f ′(x))2
.

Substitution of f(x) = sin(x), f ′(x) = cos(x) and f ′′(x) = − sin(x) yields

g′(x) = − sin2(x)

cos2(x)
= − tan2(x).

Since tan(−π/4) = −1, tan(π/4) = 1 and the tangent function is monotonically
increasing on the interval [−1, 1] any initial guess inside the interval (−1, 1) will
lead to a convergent iteration process.
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(c) It follows from the linearization of the function f about the iterate xn−1 that

f1(p) ≈ f1(p(n−1)) +
∂f1

∂p1

(p(n−1))(p1 − p(n−1)
1 ) + . . .+

∂f1

∂pm
(p(n−1))(pm − p(n−1)

m ),

...

fm(p) ≈ fm(p(n−1)) +
∂fm
∂p1

(p(n−1))(p1 − p(n−1)
1 ) + . . .+

∂fm
∂pm

(p(n−1))(pm − p(n−1)
m ).

Defining the Jacobian matrix of f(x) by

J(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xm

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xm

(x)

 ,

the linearization can be written in the more compact form

f(p) ≈ f(p(n−1)) + J(p(n−1))(p− p(n−1)).

The next iterate, p(n), is obtained by setting the linearization equal to zero:

f(p(n−1)) + J(p(n−1))(p(n) − p(n−1)) = 0, (17)

which can be rewritten as

J(p(n−1))s(n) = −f(p(n−1)), (18)

where s(n) = p(n) − p(n−1). The new approximation equals p(n) = p(n−1) + s(n).

Finally, Newton-Raphson’s formula for general nonlinear problems reads:

p(n) = p(n−1) − J−1(p(n−1))f(p(n−1)). (19)

(d) First, we rewrite the system into the form

f1(w1, w2) = 0,
f2(w1, w2) = 0,

(20)

by setting
f1(w1, w2) := 18w1 − 9w2 + (w1)2,
f2(w1, w2) := −9w1 + 18w2 + (w2)2 − 9.

(21)

We denote the Jacobi-matrix by J(w1, w2). At the first step we compute

w(1) = w(0) − J(w(0))−1F (w(0)), (22)

where w = [w1 w2]T . Note that

J(w(0)) =

(
18 + 2w

(0)
1 −9

−9 18 + 2w
(0)
2

)
. (23)
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Using w
(0)
1 = w

(0)
2 = 0 we obtain:

J(w(0)) =

(
18 −9
−9 18

)
. (24)

This implies that

J(w(0))−1 =
1

182 − 81

(
18 9
9 18

)
. (25)

Furthermore

F (w(0)) =

(
0
−9

)
, (26)

so

w(1) =

(
0
0

)
− 1

182 − 81

(
18 9
9 18

)(
0
−9

)
=

(
1
3
2
3

)
. (27)
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