DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR
 DIFFERENTIAL EQUATIONS (WI3097 TU/Minor AESB2210)
 Thursday April 20th 2017, 18:30-21:30

1. The Modified Euler Method to integrate the initial value problem defined by $y^{\prime}=$ $f(t, y), y\left(t_{0}\right)=y_{0}$, is given by

$$
\left\{\begin{array}{l}
w_{n+1}^{*}=w_{n}+\Delta t f\left(t_{n}, w_{n}\right) \tag{1}\\
w_{n+1}=w_{n}+\frac{\Delta t}{2}\left(f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, w_{n+1}^{*}\right)\right)
\end{array}\right.
$$

where Δt denotes the time-step and w_{n} represents the numerical solution at time t_{n}.
(a) Show that the local truncation error of the Modified Euler Method is $\mathcal{O}\left(\Delta t^{2}\right)$.
(b) The amplification factor of the Modified Euler Method is given by

$$
Q(\lambda \Delta t)=1+\lambda \Delta t+\frac{(\lambda \Delta t)^{2}}{2} .
$$

Derive this amplification factor for the Modified Euler Method.
(c) Given the initial value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=\sin t \tag{2}\\
y(0)=1, \quad \frac{d y}{d t}(0)=2
\end{array}\right.
$$

Show that, this problem can be written as

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\sin t} .
$$

Give also the initial conditions for $x_{1}(0)$ and $x_{2}(0)$.
(d) Perform one step with the Modified Euler Method with $\Delta t=0.1$ and $t_{0}=0$, using the given initial conditions from (2).
(e) Determine whether the Modified Euler Method, applied to the given initial value problem (2), is stable for $\Delta t=1$.
2. In this exercise an estimate is determined for the velocity of a rowing boat. The measured distance of the boat from the starting line are given in the table below.

$t(\mathrm{~s})$	0	10	20
$d(t)(\mathrm{m})$	0	40	100

(a) Give the first-order backward difference formula and use this to determine an estimate of the velocity for $t=20\left(d^{\prime}(20)\right)$.
(b) We look for a difference formula of the first derivative of d in $2 h$ of the form:

$$
Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h),
$$

such that

$$
d^{\prime}(2 h)-Q(h)=O\left(h^{2}\right) .
$$

In the remainder of this exercise we use this formula. Show that the coefficients α_{0}, α_{1} and α_{2} should satisfy the next system:

$$
\begin{align*}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0 \\
-2 \alpha_{0}-\alpha_{1} & =1 \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & \tag{2pt.}
\end{align*}
$$

(c) The solution of this system is given by $\alpha_{0}=\frac{1}{2}, \alpha_{1}=-2$ and $\alpha_{2}=\frac{3}{2}$. Give for these values an expression for the truncation error $d^{\prime}(2 h)-Q(h)$. Use this formula to give an estimate of the velocity at $t=20$.
3. We derive and use Newton-Raphson's method to solve a nonlinear problem.
(a) Given is the scalar nonlinear problem:

$$
\begin{equation*}
\text { Find } p \in \mathbb{R} \text { such that } f(p)=0 \tag{4}
\end{equation*}
$$

Derive Newton-Raphson's formula, given by

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}, \text { for } n \geq 1 \tag{5}
\end{equation*}
$$

with initial guess p_{0} to solve the above problem.
(b) To prove convergence of Newton-Raphson's method it can be reformulated as fixed-point method for which a rigorous convergence proof exists:

$$
\begin{equation*}
g(x)=x-\frac{f(x)}{f^{\prime}(x)} \tag{6}
\end{equation*}
$$

One of the prerequisites of the convergence proof is that $g^{\prime}(x)$ exists and satisfies

$$
\begin{equation*}
\left|g^{\prime}(x)\right| \leq k<1 \tag{7}
\end{equation*}
$$

Show that Newton-Raphson's method applied to $f(x)=\sin (x)$ converges to the root $p=0$ for any initial guess $p_{0} \in(-\pi / 4, \pi / 4)$.
(c) Formulate Newton-Raphson's method for the general nonlinear problem:

$$
\begin{equation*}
\text { Find } \mathbf{p} \in \mathbb{R}^{m} \text { such that } \mathbf{f}(\mathbf{p})=\mathbf{0} \tag{8}
\end{equation*}
$$

(d) Perform one step of Newton-Raphson's method applied to the following nonlinear problem for w_{1} and w_{2} :

$$
\left\{\begin{array}{r}
18 w_{1}-9 w_{2}+w_{1}^{2}=0 \tag{9}\\
-9 w_{1}+18 w_{2}+w_{2}^{2}=9
\end{array}\right.
$$

Use $w_{1}=w_{2}=0$ as the initial estimate.

