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1. (a) The local truncation error is defined by

τh =
yn+1 − zn+1

∆t
, (1)

where
zn+1 = yn + ∆tf(tn, yn), (2)

for the Forward Euler method. A Taylor expansion for yn+1 around tn is given
by

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (3)

Since y′(tn) = f(tn, yn), we use equation (1), to get

τh =
∆t

2
y′′(ξ), ∃ ξ ∈ (tn, tn+1). (4)

Hence, the truncation error is of first order.

(b) For the amplification factor we apply the method to the test equation: y′ = λy.
Application of Forward Euler to this equation leads to:

wn+1 = wn + λ∆twn = (1 + λ∆t)wn

so the amplification factor is Q(λ∆t) = 1 + λ∆t.

We have to check that |Q(λ∆t)| ≤ 1. For a negative real number λ this leads
to the inequalities:

−1 ≤ 1 + λ∆t ≤ 1

The right hand inequality leads to λ∆t ≤ 0. Since ∆t > 0 and λ ≤ 0 this
inequality is always satisfied. The left hand inequality leads to −1 ≤ 1 + λ∆t
which is equavalent to λ∆t ≥ −2. Dividing both sides by λ which is negative
leads to:

∆t ≤ 2

−λ
.
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(c) We use the following definition x1 = y and x2 = y′. This implies that x′1 = y′ =
x2 and x′2 = y′′ = −y′ − 1

2
y = −x2 − 1

2
x1. Writing this in vector notation shows

that [
x′1
x′2

]
=

[
0 1
−1

2
−1

] [
x1

x2

]
,

so A =

[
0 1
−1

2
−1

]
. To compute the eigenvalues we look for values of λ such

that
|A− λI| = 0.

This implies that λ is a solution of

λ2 + λ+
1

2
= 0,

which leads to the roots:

λ1 = −1

2
+

1

2
i and λ2 = −1

2
− 1

2
i.

(d) We do one step with Forward Euler using ∆t = 1.[
w1,1

w2,1

]
=

[
w1,0

w2,0

]
+ ∆t

[
0 1
−1

2
−1

] [
w1,0

w2,0

]
Substituting ∆t = 1 and the initial conditions leads to:[

w1,1

w2,1

]
=

[
1
0

]
+

[
0 1
−1

2
−1

] [
1
0

]
=

[
1
−1

2

]
(e) Since the eigenvalues are complex valued it is sufficient to check that the mod-

ulus: |Q(λ1∆t)| ≤ 1. Substituting λ1 = −1
2

+ 1
2
i into Q(λ1∆t) leads to the

condition:

|1 + ∆t(−1

2
+

1

2
i)| ≤ 1

This implies that √
(1− ∆t

2
)2 + (

∆t

2
)2 ≤ 1

Rearranging the terms leads to

1−∆t+
1

2
(∆t)2 ≤ 1

so

−∆t+
1

2
(∆t)2 ≤ 0

and thus
∆t ≤ 2

.
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2. (a) The iteration process is a fixed-point method. If the process converges we have:
limn→∞ xn = p. Using this in the iteration process yields:

lim
n→∞

xn+1 = lim
n→∞

[xn + h(xn)(x3
n − 27)]

Since h is a continuous function one obtains:

p = p+ h(p)(p3 − 27)

so
h(p)(p3 − 27) = 0.

Since h(x) 6= 0 for each x 6= 0 it follows that p3 − 27 = 0 and thus p = 27
1
3 = 3.

(b) The convergence of a fixed-point method xn+1 = g(xn) is determined by g′(p).
If |g′(p)| < 1 the method converges, whereas if |g′(p)| > 1 the method diverges.
For all choices we compute the first derivative in p. For the first method we
elaborate all steps. For the other methods we only give the final result. For h1

we have g1(x) = x− x3−27
x4 . The first derivative is:

g′1(x) = 1− 3x2 · x4 − (x3 − 27) · 4x3

(x4)2

Substitution of p yields:

g′1(p) = 1− 3p6 − (p3 − 27) · 4p3

p8
.

Since p = 3 the final term cancels:

g′1(p) = 1− 3p6

p8
= 1− 3−1 =

2

3
.

This implies that the method is convergent with convergence factor 2
3
.

For the second method we have:

g′2(p) = 1− 3p4 − (p3 − 27) · 2p
p4

= 1− 3p4

p4
= −2

Thus the method diverges.

For the third method we have:

g′3(p) = 1− 9p4 − (p3 − 27) · 6p
9p4

= 1− 9p4

9p4
= 0

Thus the method is convergent with convergence factor 0.

Concluding we note that the third method is the fastest.
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(c) For a general function h4(x) the first derivative of g4(x) = x + h4(x)(x3 − 27)
evaluated in p reads

g′4(p) = 1 + h′4(p)(p3 − 27) + 3h4(3)p2

Since p = 3 we obtain g′4(3) = 1 + 27h4(3). For |g′4(3)| = 1 we need to find a
differentiable function h4(x) that equals 0 in p = 3. A possible choice is

h4(x) = x− 3.

(d) To estimate the error in p we first approximate the function f in the neighbour-
hood of p by the first order Taylor polynomial:

P1(x) = f(p) + (x− p)f ′(p) = (x− p)f ′(p).

Due to the measurement errors we know that

(x− p)f ′(p)− εmax ≤ P̂1(x) ≤ (x− p)f ′(p) + εmax.

This implies that the perturbed root p̂ is bounded by the roots of (x−p)f ′(p)−
εmax and (x− p)f ′(p) + εmax, which leads to

p− εmax

|f ′(p)|
≤ p̂ ≤ p+

εmax

|f ′(p)|
.

3. (a) Using central differences for the second order derivative at a node xj = j∆x
gives

y′′(xj) ≈
yj+1 − 2yj + yj−1

∆x2
=: Q(∆x). (5)

Here, yj := y(xj). Next, we will prove that this approximation is second order
accurate, that is |y′′(xj)−Q(∆x)| = O(∆x2).

Using Taylor’s Theorem around x = xj gives

yj+1 = y(xj + ∆x) = y(xj) + ∆xy′(xj) + ∆x2

2
y′′(xj) + ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η+),

yj−1 = y(xj −∆x) = y(xj)−∆xy′(xj) + ∆x2

2
y′′(xj)− ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η−).

(6)
Here, η+ and η− are numbers within the intervals (xj, xj+1) and (xj−1, xj), re-
spectively. Substitution of these expressions into Q(∆x) gives

|y′′(xj)−Q(∆x)| = O(∆x2).

This leads to the following discretisation formula for internal grid nodes:

−wj−1 + 2wj − wj+1

∆x2
+ (xj + 1)wj = x3

j + x2
j − 2. (7)
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Here, wj represents the numerical approximation of the solution yj. To deal
with the boundary x = 0, we use a virtual node at x = −∆x, and we define
y−1 := y(−∆x). Then, using central differences at x = 0 gives

0 = y′(0) ≈ y1 − y−1

2∆x
=: Qb(∆x). (8)

Using Taylor’s Theorem, gives

Qb(∆x) =

=
y(0) + ∆xy′(0) + ∆x2

2
y′′(0) + ∆x3

3!
y′′′(η+)

2∆x

−
y(0)−∆xy′(0) + ∆x2

2
y′′(0)− ∆x3

3!
y′′′(η−)

2∆x
= y′(0) +O(∆x2).

Again, we get an error of O(∆x2).

(b) With respect to the numerical approximation at the virtual node, we get

w1 − w−1

2∆x
= 0 ⇔ w−1 = w1. (9)

The discretisation at x = 0 is given by

−w−1 + 2w0 − w1

∆x2
+ w0 = −2. (10)

Substitution of equation (9) into the above equation, yields

2w0 − 2w1

∆x2
+ w0 = −2. (11)

Subsequently, we consider the boundary x = 1. To this extent, we consider its
neighbouring point xn−1 and substitute the boundary condition wn = y(1) =
yn = 1 into equation (7) to obtain

−wn−2 + 2wn−1

∆x2
+ (xn−1 + 1)wn−1 (12)

= x3
n−1 + x2

n−1 − 2 +
1

∆x2
(13)

= (1−∆x)3 + (1−∆x)2 − 2 +
1

∆x2
. (14)

This concludes our discretisation of the boundary conditions. In order to get a
symmetric discretisation matrix, one divides equation (11) by 2.
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Next, we use ∆x = 1/3. From equations (7, 11, 14) we obtain the following
system

9
1

2
w0 − 9w1 = −1

−9w0 + 19
1

3
w1 − 9w2 = −50

27

−9w1 + 19
2

3
w2 =

209

27
.

(c) The Gershgorin circle theorem states that the eigenvalues of a square matrix A
are located in the complex plane in the union of circles

|z − aii| ≤
n∑

j 6=i
j=1

|aij| where z ∈ C (15)

For the 3× 3 matrix derived in part (b) we have

• For i = 1: ∣∣∣∣z − 9
1

2

∣∣∣∣ ≤ 9 ⇒ |λ1|min ≥
1

2
(16)

• For i = 2: ∣∣∣∣z − 19
1

3

∣∣∣∣ ≤ 18 ⇒ |λ2|min ≥ 1
1

3
(17)

• For i = 3: ∣∣∣∣z − 19
2

3

∣∣∣∣ ≤ 9 ⇒ |λ3|min ≥ 10
2

3
(18)

Hence, a lower bound for the smallest eigenvalue is 1
2
. For a symmetric matrix

A we have

‖A−1‖ =
1

|λ|min

≤ 2 (19)

This proves that the finite-difference scheme is stable, e.g., with constant C = 2.
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