DELFT UNIVERSITY OF TECHNOLOGY
 Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (CTB2400)
 Thursday August 17th 2017, 18:30-21:30

1. We consider the following method

$$
\left\{\begin{array}{l}
w_{n+1}^{*}=w_{n}+\Delta t f\left(t_{n}, w_{n}\right) \tag{1}\\
w_{n+1}=w_{n}+\Delta t\left(a_{1} f\left(t_{n}, w_{n}\right)+a_{2} f\left(t_{n+1}, w_{n+1}^{*}\right)\right)
\end{array}\right.
$$

for the integration of the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$
(a) Show that the local truncation error of the above method has order $O(\Delta t)$ if $a_{1}+a_{2}=1$. Which value for a_{1} and a_{2} will give a local truncation error of order $O\left((\Delta t)^{2}\right)$?
(b) Demonstrate that for general values of a_{1} and a_{2} the amplification factor is given by

$$
\begin{equation*}
Q(\lambda \Delta t)=1+\left(a_{1}+a_{2}\right) \lambda \Delta t+a_{2}(\lambda \Delta t)^{2} . \tag{2}
\end{equation*}
$$

(c) Consider $\lambda<0$ and $\left(a_{1}+a_{2}\right)^{2}-8 a_{2}<0$. Derive the condition for stability, to be fulfilled by Δt.

We apply the method to the following system of differential equations

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-4 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}+\binom{0}{2 t},
$$

with initial conditions $y_{1}(0)=1$ and $y_{2}(0)=0$.
(d) Use $\Delta t=\frac{1}{2}$ to compute w^{1} (one time-step) using the method with $a_{1}=\frac{1}{2}$ and $a_{2}=\frac{1}{2}$.
(e) Is the method with $a_{1}=\frac{1}{2}$ and $a_{2}=\frac{1}{2}$ applied to (3) stable for the choice $\Delta t=\frac{1}{2}$? (motivate your answer)
2. We analyse Lagrangian interpolation. For given points $x_{0}, x_{1}, \ldots, x_{n}$, with their respective function values $f\left(x_{0}\right), f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$, the interpolatory polynomial $L_{n}(x)$ is given by

$$
\begin{align*}
& L_{n}(x)=\sum_{k=0}^{n} f\left(x_{k}\right) L_{k n}(x), \text { with } \tag{4}\\
& L_{k n}(x)=\frac{\left(x-x_{0}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)} .
\end{align*}
$$

(a) Give the linear Lagrangian interpolatory polynomial $L_{1}(x)$ with nodes x_{0} and x_{1}.
(b) Give the quadratic Lagrangian interpolatory polynomial $L_{2}(x)$ with nodes x_{0}, x_{1} and x_{2}.
(c) Calculate $L_{n}(2)$ and $L_{n}(3)$ both by using linear and quadratic Lagrangian interpolation using the following measured values:

k	x_{k}	$f\left(x_{k}\right)$
0	1	3
1	3	6
2	4	5

3. We are interested in the numerical integration of $\int_{0}^{1} y(x) d x$ with $y(x)=x^{2}$.
(a) Give the Rectangle Rule I^{R}, the corresponding composed integration rule $I^{R}(h)$ and compute the approximate integral $\int_{0}^{1} y(x) d x$ with $h=1 / 4$.
(b) Repeat part (a) for the Trapezoidal Rule (I^{T} and $I^{T}(h)$) with $h=1 / 4$.
(c) If one approximates $\int_{0}^{1} y(x) d x$, the magnitude of the error of the composed integration rules (ε_{R} and ε_{T} for the Rectangle and Trapezoidal Rule, respectively) is bounded by

$$
\begin{equation*}
\varepsilon_{R} \leq \frac{h}{2} \max _{x \in[0,1]}\left|y^{\prime}(x)\right|, \quad \varepsilon_{T} \leq \frac{h^{2}}{12} \max _{x \in[0,1]}\left|y^{\prime \prime}(x)\right| . \tag{5}
\end{equation*}
$$

Give explicit upper bounds for the error with $y(x)=x^{2}$. Which method do you recommend if the number of integration points is large? Give a proper motivation.
(d) Start from the error formula for the Trapezoidal Rule

$$
\int_{0}^{1} y(x) d x-I^{T}(h)=c_{p} h^{p}
$$

and use Richardson's extrapolation to derive the expression

$$
\begin{equation*}
\frac{I^{T}(2 h)-I^{T}(4 h)}{I^{T}(h)-I^{T}(2 h)}=2^{p} \tag{1pt.}
\end{equation*}
$$

Compute the numerical approximation order p for $h=1 / 4$.
(e) Derive the relation

$$
\int_{0}^{1} y(x) d x-I^{T}(h)=\frac{Q(h)-Q(2 h)}{2^{p}-1}
$$

and use it to estimate the error of the Trapezoidal Rule for $h=1 / 4$.

