DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU/Minor AESB2210) Thursday February 1st 2018, 18:30-21:30

1. (a) Consider the test equation $y^{\prime}=\lambda y$, then it follows that

$$
\begin{align*}
k_{1}= & \lambda \Delta t w_{n} \tag{1}\\
k_{2}= & \lambda \Delta t\left(w_{n}+\frac{1}{2} \lambda \Delta t w_{n}\right) \tag{2}\\
= & \left(\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}\right) w_{n} \tag{3}\\
k_{3}= & \lambda \Delta t\left(w_{n}-\lambda \Delta t w_{n}+2\left(\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}\right) w_{n}\right) \tag{4}\\
= & \left(\lambda \Delta t+(\lambda \Delta t)^{2}+(\lambda \Delta t)^{3}\right) w_{n} \tag{5}\\
w_{n+1}= & w_{n}+\alpha \lambda \Delta t w_{n}+\beta\left(\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}\right) w_{n} \tag{6}\\
& \quad+\gamma\left(\lambda \Delta t+(\lambda \Delta t)^{2}+(\lambda \Delta t)^{3}\right) w_{n} \tag{7}\\
= & \left(1+(\alpha+\beta+\gamma) \lambda \Delta t+\left(\frac{1}{2} \beta+\gamma\right)(\lambda \Delta t)^{2}+\gamma(\lambda \Delta t)^{3}\right) w_{n} \tag{8}
\end{align*}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(\lambda \Delta t)=1+(\alpha+\beta+\gamma) \lambda \Delta t+\left(\frac{1}{2} \beta+\gamma\right)(\lambda \Delta t)^{2}+\gamma(\lambda \Delta t)^{3} \tag{9}
\end{equation*}
$$

(b) The local truncation error for the test equation $y^{\prime}=\lambda y$ is given by

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{e^{\lambda \Delta t}-Q(\lambda \Delta t)}{\Delta t} y_{n} \tag{10}
\end{equation*}
$$

The Taylor Series around 0 for $e^{\lambda \Delta t}$ is:

$$
\begin{equation*}
e^{\lambda \Delta t}=1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2} \quad+\frac{1}{6}(\lambda \Delta t)^{3}+\mathcal{O}\left(\Delta t^{4}\right) \tag{11}
\end{equation*}
$$

Hence, this gives

$$
\begin{gather*}
e^{\lambda \Delta t}-Q(\lambda \Delta t)=(1-\alpha-\beta-\gamma) \lambda \Delta t+\left(\frac{1}{2}-\frac{1}{2} \beta-\gamma\right)(\lambda \Delta t)^{2} \tag{12}\\
+\left(\frac{1}{6}-\gamma\right)(\lambda \Delta t)^{3}+\mathcal{O}\left(\Delta t^{4}\right) \tag{13}
\end{gather*}
$$

and hence $\tau_{n+1}(\Delta t)=\mathcal{O}\left(\Delta t^{3}\right)$ only if

$$
\begin{align*}
\alpha+\beta+\gamma & =1 \tag{14}\\
\frac{1}{2} \beta+\gamma & =\frac{1}{2} \tag{15}\\
\gamma & =\frac{1}{6} \tag{16}
\end{align*}
$$

which have as solution

$$
\begin{align*}
\alpha & =\frac{1}{6} \tag{18}\\
\beta & =\frac{2}{3} \tag{19}\\
\gamma & =\frac{1}{6} \tag{20}
\end{align*}
$$

(c) Let $x_{1}=y$ and $x_{2}=y^{\prime}$, then it follows that $y^{\prime \prime}=x_{2}^{\prime}$, and hence we get

$$
\begin{align*}
& x_{2}^{\prime}+x_{2}+\frac{1}{2} x_{1}=t, \tag{22}\\
& x_{2}=x_{1}^{\prime}
\end{align*}
$$

This expression is written as

$$
\begin{align*}
& x_{1}^{\prime}=x_{2}, \\
& x_{2}^{\prime}=-\frac{1}{2} x_{1}-x_{2}+t . \tag{23}
\end{align*}
$$

Finally, we get the following matrix-form:

$$
\left[\begin{array}{l}
x_{1} \tag{24}\\
x_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Here, we have $A=\left[\begin{array}{cc}0 & 1 \\ -\frac{1}{2} & -1\end{array}\right]$ and $f=\left[\begin{array}{l}0 \\ t\end{array}\right]$. The initial conditions are given by $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(d) To this extent, we determine the eigenvalues of the matrix A. Subsequently, these eigenvalues are substituted into the amplification factor. The eigenvalues of A are given by $-\frac{1}{2} \pm \frac{1}{2} i$. Using $\Delta t=2$, it follows that

$$
\begin{align*}
Q(\lambda \Delta t) & =1+\lambda \Delta t+\frac{1}{2} \lambda^{2} \Delta t^{2}+\frac{1}{6} \lambda^{3} \Delta t^{3} \tag{25}\\
& =1+(-1+i)+\frac{1}{2}(-1+i)^{2}+\frac{1}{6}(-1+i)^{3} \tag{26}\\
& =\frac{1}{3}-\frac{1}{3} i \tag{27}
\end{align*}
$$

Herewith, it follows that $|Q(\lambda \Delta t)|^{2}=\frac{2}{9}<1$. Hence for $\Delta t=2$, it follows that the method applied to the given system is stable. Note that this conclusion holds for both the eigenvalues of A since they are complex conjugates.
(e) The given method, applied to the system $\underline{x}^{\prime}=A \underline{x}+\underline{f}$, gives

$$
\left\{\begin{align*}
\underline{k}_{1} & =\Delta t\left(A \underline{w}_{n}+\underline{f}\left(t_{n}\right)\right) \tag{28}\\
\underline{k}_{2} & =\Delta t\left(A\left(\underline{w}_{n}+\frac{1}{2} \underline{k}_{1}\right)+\underline{f}\left(t_{n}+\frac{1}{2} \Delta t\right)\right) \\
\underline{k}_{3} & =\Delta t\left(A\left(\underline{w}_{n}-\underline{k}_{1}+2 \underline{k}_{2}\right)+\underline{f}^{\prime}\left(t_{n}+\Delta t\right)\right) \\
\underline{w}_{n+1} & =\underline{w}_{n}+\frac{1}{6}\left(\underline{k}_{1}+4 \underline{k}_{2}+\underline{k}_{3}\right)
\end{align*}\right.
$$

With the initial condition and $\Delta t=2$, this gives

$$
\left\{\begin{array}{l}
\underline{k}_{1}=\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \tag{29}\\
\underline{k}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
\underline{k}_{3}=\left[\begin{array}{c}
12 \\
-5
\end{array}\right] \\
\underline{w}_{1}=\left[\begin{array}{l}
8 / 3 \\
1 / 3
\end{array}\right]
\end{array}\right.
$$

2. (a) The first order backward difference formula for the first derivative is given by

$$
d^{\prime}(t) \approx \frac{d(t)-d(t-h)}{h}
$$

Using $t=20$, and $h=10$ the approximation of the velocity is

$$
\frac{d(20)-d(10)}{10}=\frac{100-40}{10}=6(\mathrm{~m} / \mathrm{s})
$$

(b) Taylor polynomials are:

$$
\begin{aligned}
d(0) & =d(2 h)-2 h d^{\prime}(2 h)+2 h^{2} d^{\prime \prime}(2 h)-\frac{(2 h)^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right), \\
d(h) & =d(2 h)-h d^{\prime}(2 h)+\frac{h^{2}}{2} d^{\prime \prime}(2 h)-\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right), \\
d(2 h) & =d(2 h) .
\end{aligned}
$$

We know that $Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h)$, which should be equal to $d^{\prime}(2 h)+O\left(h^{2}\right)$. This leads to the following conditions:

$$
\begin{aligned}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0 \\
-2 \alpha_{0}-\alpha_{1} & =1 \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & =0 .
\end{aligned}
$$

(c) The truncation error follows from the Taylor polynomials:

$$
d^{\prime}(2 h)-Q(h)=d^{\prime}(2 h)-\frac{d(0)-4 d(h)+3 d(2 h)}{2 h}=\frac{\frac{8 h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right)-4\left(\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right)\right)}{2 h}=\frac{1}{3} h^{2} d^{\prime \prime \prime}(\xi) .
$$

(d) Using the new formula with $h=10$ we obtain the estimate:

$$
\frac{d(0)-4 d(10)+3 d(20)}{20}=\frac{0-4 \times 40+3 \times 100}{20}=7(\mathrm{~m} / \mathrm{s}) .
$$

3. (a) Newton-Raphson's Method is an iterative method to find $p \in \mathbb{R}$ such that $f(p)=0$. One constructs a sequence of successive approximations $\left\{p_{n}\right\}$. Given the n-th estimate, then p_{n+1} is obtained through linearizing around p_{n} and by finding p_{n+1} by determining the point where the linearization (tangent) equals zero. Linearization of $f(p)$ around p_{n} gives (upon neglecting the error)

$$
\begin{equation*}
f(p) \approx f\left(p_{n}\right)+f^{\prime}\left(p_{n}\right)\left(p-p_{n}\right)=: L\left(p ; p_{n}\right) \tag{30}
\end{equation*}
$$

for any p provided the second derivative of $f(p)$ is bounded and where $L\left(p ; p_{n}\right)$ denotes the tangent (linearization) of $f(p)$ at point $\left(p_{n}, f\left(p_{n}\right)\right)$. Then the next point is found upon setting $L\left(p_{n+1} ; p_{n}\right)=0$:

$$
\begin{equation*}
f\left(p_{n}\right)+f^{\prime}\left(p_{n}\right)\left(p_{n+1}-p_{n}\right)=0 . \tag{31}
\end{equation*}
$$

The above equation is solved for p_{n+1}, and gives

$$
\begin{equation*}
p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)} \tag{32}
\end{equation*}
$$

which is the famous Newton-Raphson formula for root-finding. For the graphical derivation, see Figure 4.2 in the book.
(b) The Jacobian matrix of $\mathbf{f}(\mathbf{x})$ is defined by

$$
\mathbf{J}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \ldots & \frac{\partial f_{1}}{\partial x_{m}}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{x}) & \ldots & \frac{\partial f_{m}}{\partial x_{m}}(\mathbf{x})
\end{array}\right)
$$

The definition of the Newton-Raphson method is:

$$
\begin{equation*}
\mathbf{p}^{(n)}=\mathbf{p}^{(n-1)}-\mathbf{J}^{-1}\left(\mathbf{p}^{(n-1)}\right) \mathbf{f}\left(\mathbf{p}^{(n-1)}\right) . \tag{33}
\end{equation*}
$$

(c) First, we rewrite the system into the form

$$
\begin{align*}
& f_{1}\left(p_{1}, p_{2}\right)=0 \\
& f_{2}\left(p_{1}, p_{2}\right)=0 \tag{34}
\end{align*}
$$

by setting

$$
\begin{align*}
& f_{1}\left(p_{1}, p_{2}\right):=18 p_{1}-9 p_{2}+\left(p_{1}\right)^{2}, \tag{35}\\
& f_{2}\left(p_{1}, p_{2}\right):=-9 p_{1}+18 p_{2}+\left(p_{2}\right)^{2}-9 .
\end{align*}
$$

We denote the Jacobian matrix by $\mathbf{J}\left(p_{1}, p_{2}\right)$. Note that

$$
\mathbf{J}(\mathbf{p})=\left(\begin{array}{cc}
18+2 p_{1}^{(0)} & -9 \tag{36}\\
-9 & 18+2 p_{2}^{(0)}
\end{array}\right)
$$

Using $p_{1}^{(0)}=p_{2}^{(0)}=0$ we obtain:

$$
\mathbf{J}^{-1}\left(\mathbf{p}^{(0)}\right)=\left(\begin{array}{cc}
18 & -9 \tag{37}\\
-9 & 18
\end{array}\right)
$$

This implies that

$$
\mathbf{J}^{-1}\left(\mathbf{p}^{(0)}\right)^{-1}=\frac{1}{18^{2}-81}\left(\begin{array}{cc}
18 & 9 \tag{38}\\
9 & 18
\end{array}\right)
$$

Furthermore

$$
\begin{equation*}
\mathbf{f}\left(\mathbf{p}^{(0)}\right)=\binom{0}{-9} \tag{39}
\end{equation*}
$$

SO

$$
\mathbf{p}^{(1)}=\binom{0}{0}-\frac{1}{18^{2}-81}\left(\begin{array}{cc}
18 & 9 \tag{40}\\
9 & 18
\end{array}\right)\binom{0}{-9}=\binom{\frac{1}{3}}{\frac{2}{3}} .
$$

