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1. (a) Consider the test equation y′ = λy, then it follows that

k1 = λ∆twn (1)

k2 = λ∆t

(
wn +

1

2
λ∆twn

)
(2)

=

(
λ∆t+

1

2
(λ∆t)2

)
wn (3)

k3 = λ∆t

(
wn − λ∆twn + 2

(
λ∆t+

1

2
(λ∆t)2

)
wn

)
(4)

=
(
λ∆t+ (λ∆t)2 + (λ∆t)3)wn (5)

wn+1 = wn + αλ∆twn + β

(
λ∆t+

1

2
(λ∆t)2

)
wn (6)

+γ
(
λ∆t+ (λ∆t)2 + (λ∆t)3)wn (7)

=

(
1 + (α + β + γ)λ∆t+

(
1

2
β + γ

)
(λ∆t)2 + γ (λ∆t)3

)
wn (8)

Hence the amplification factor is given by

Q(λ∆t) = 1 + (α + β + γ)λ∆t+

(
1

2
β + γ

)
(λ∆t)2 + γ (λ∆t)3 . (9)

(b) The local truncation error for the test equation y′ = λy is given by

τn+1(∆t) =
eλ∆t −Q(λ∆t)

∆t
yn. (10)

The Taylor Series around 0 for eλ∆t is:

eλ∆t = 1 + λ∆t+
1

2
(λ∆t)2 +

1

6
(λ∆t)3 +O(∆t4). (11)

Hence, this gives

eλ∆t −Q(λ∆t) = (1− α− β − γ)λ∆t+

(
1

2
− 1

2
β − γ

)
(λ∆t)2 (12)

+

(
1

6
− γ
)

(λ∆t)3 +O(∆t4). (13)
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and hence τn+1(∆t) = O(∆t3) only if

α + β + γ = 1, (14)
1

2
β + γ =

1

2
, (15)

γ =
1

6
, (16)

(17)

which have as solution

α =
1

6
, (18)

β =
2

3
, (19)

γ =
1

6
. (20)

(21)

(c) Let x1 = y and x2 = y′, then it follows that y′′ = x′2, and hence we get

x′2 + x2 + 1
2
x1 = t,

x2 = x′1.
(22)

This expression is written as

x′1 = x2,
x′2 = −1

2
x1 − x2 + t.

(23)

Finally, we get the following matrix–form:[
x1

x2

]′
=

[
0 1
−1

2
−1

] [
x1

x2

]
+

[
0
t

]
. (24)

Here, we have A =

[
0 1
−1

2
−1

]
and f =

[
0
t

]
. The initial conditions are given by[

x1(0)
x2(0)

]
=

[
1
1

]
.

(d) To this extent, we determine the eigenvalues of the matrix A. Subsequently,
these eigenvalues are substituted into the amplification factor. The eigenvalues
of A are given by −1

2
± 1

2
i. Using ∆t = 2, it follows that

Q(λ∆t) = 1 + λ∆t+
1

2
λ2∆t2 +

1

6
λ3∆t3 (25)

= 1 + (−1 + i) +
1

2
(−1 + i)2 +

1

6
(−1 + i)3 (26)

=
1

3
− 1

3
i. (27)
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Herewith, it follows that |Q(λ∆t)|2 = 2
9
< 1. Hence for ∆t = 2, it follows that

the method applied to the given system is stable. Note that this conclusion
holds for both the eigenvalues of A since they are complex conjugates.

(e) The given method, applied to the system x′ = Ax+ f , gives

k1 = ∆t
(
Awn + f (tn)

)
k2 = ∆t

(
A
(
wn + 1

2
k1

)
+ f

(
tn + 1

2
∆t
))

k3 = ∆t
(
A (wn − k1 + 2k2) + f (tn + ∆t)

)
wn+1 = wn + 1

6
(k1 + 4k2 + k3)

(28)

With the initial condition and ∆t = 2, this gives

k1 =

[
2
−3

]

k2 =

[
−1
1

]

k3 =

[
12
−5

]

w1 =

[
8/3

1/3

]
(29)

2. (a) The first order backward difference formula for the first derivative is given by

d′(t) ≈ d(t)− d(t− h)

h
.

Using t = 20, and h = 10 the approximation of the velocity is

d(20)− d(10)

10
=

100− 40

10
= 6 (m/s).

(b) Taylor polynomials are:

d(0) = d(2h)− 2hd
′
(2h) + 2h2d

′′
(2h)− (2h)3

6
d

′′′
(ξ0) ,

d(h) = d(2h)− hd′
(2h) +

h2

2
d

′′
(2h)− h3

6
d

′′′
(ξ1) ,

d(2h) = d(2h).
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We know that Q(h) = α0

h
d(0) + α1

h
d(h) + α2

h
d(2h), which should be equal to

d′(2h) +O(h2). This leads to the following conditions:

α0

h
+ α1

h
+ α2

h
= 0 ,

−2α0 − α1 = 1 ,
2α0h + 1

2
α1h = 0 .

(c) The truncation error follows from the Taylor polynomials:

d′(2h)−Q(h) = d′(2h)−d(0)− 4d(h) + 3d(2h)

2h
=

8h3

6
d

′′′
(ξ0)− 4(h

3

6
d

′′′
(ξ1))

2h
=

1

3
h2d′′′(ξ).

(d) Using the new formula with h = 10 we obtain the estimate:

d(0)− 4d(10) + 3d(20)

20
=

0− 4× 40 + 3× 100

20
= 7 (m/s).

3. (a) Newton–Raphson’s Method is an iterative method to find p ∈ R such that
f(p) = 0. One constructs a sequence of successive approximations {pn}. Given
the n–th estimate, then pn+1 is obtained through linearizing around pn and by
finding pn+1 by determining the point where the linearization (tangent) equals
zero. Linearization of f(p) around pn gives (upon neglecting the error)

f(p) ≈ f(pn) + f ′(pn)(p− pn) =: L(p; pn), (30)

for any p provided the second derivative of f(p) is bounded and where L(p; pn)
denotes the tangent (linearization) of f(p) at point (pn, f(pn)). Then the next
point is found upon setting L(pn+1; pn) = 0:

f(pn) + f ′(pn)(pn+1 − pn) = 0. (31)

The above equation is solved for pn+1, and gives

pn+1 = pn −
f(pn)

f ′(pn)
, (32)

which is the famous Newton–Raphson formula for root–finding. For the graph-
ical derivation, see Figure 4.2 in the book.

(b) The Jacobian matrix of f(x) is defined by

J(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xm

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xm

(x)

 .

The definition of the Newton–Raphson method is:

p(n) = p(n−1) − J−1(p(n−1))f(p(n−1)). (33)
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(c) First, we rewrite the system into the form

f1(p1, p2) = 0,
f2(p1, p2) = 0,

(34)

by setting
f1(p1, p2) := 18p1 − 9p2 + (p1)2,
f2(p1, p2) := −9p1 + 18p2 + (p2)2 − 9.

(35)

We denote the Jacobian matrix by J(p1, p2). Note that

J(p) =

(
18 + 2p

(0)
1 −9

−9 18 + 2p
(0)
2

)
. (36)

Using p
(0)
1 = p

(0)
2 = 0 we obtain:

J−1(p(0)) =

(
18 −9
−9 18

)
. (37)

This implies that

J−1(p(0))−1 =
1

182 − 81

(
18 9
9 18

)
. (38)

Furthermore

f(p(0)) =

(
0
−9

)
, (39)

so

p(1) =

(
0
0

)
− 1

182 − 81

(
18 9
9 18

)(
0
−9

)
=

(
1
3
2
3

)
. (40)
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