DELFT UNIVERSITY OF TECHNOLOGY
Faculty of Electrical Engineering, Mathematics and Computer Science

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097 TU/Minor AESB2210) Thursday February 1st 2018, 18:30-21:30

Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will not give points.

Tools Only a non-graphical calculator may be used. All other tools are prohibited.
Assessment In total 20 points can be earned. The final not-rounded grade is given by ${ }^{P} / 20$, where P is the number of points earned.

1. A method to integrate the initial value problem defined by $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$, is given by

$$
\left\{\begin{align*}
k_{1} & =\Delta t f\left(t_{n}, w_{n}\right) \tag{1}\\
k_{2} & =\Delta t f\left(t_{n}+\frac{1}{2} \Delta t, w_{n}+\frac{1}{2} k_{1}\right) \\
k_{3} & =\Delta t f\left(t_{n}+\Delta t, w_{n}-k_{1}+2 k_{2}\right) \\
w_{n+1} & =w_{n}+\left(\alpha k_{1}+\beta k_{2}+\gamma k_{3}\right)
\end{align*}\right.
$$

where Δt denotes the time-step and w_{n} represents the numerical solution at time t_{n}.
(a) The amplification factor of this method is given by

$$
Q(\lambda \Delta t)=1+(\alpha+\beta+\gamma) \lambda \Delta t+\left(\frac{\beta}{2}+\gamma\right)(\lambda \Delta t)^{2}+\gamma(\lambda \Delta t)^{3} .
$$

Derive this amplification factor for the given method.
(b) Show that the local truncation error of the given method for the test equation $y^{\prime}=\lambda y$ is $\mathcal{O}\left(\Delta t^{3}\right)$ only for $\alpha=\gamma=\frac{1}{6}$ and $\beta=\frac{2}{3}$.
(c) Given the initial value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+\frac{1}{2} y=t \tag{2}\\
y(0)=1, \quad \frac{d y}{d t}(0)=1
\end{array}\right.
$$

Show that this problem can be written as

$$
\left[\begin{array}{l}
x_{1} \tag{3}\\
x_{2}
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{1}{2} & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
t
\end{array}\right] .
$$

Give also the initial conditions for $x_{1}(0)$ and $x_{2}(0)$.
(d) Take $\alpha=\gamma=\frac{1}{6}$ and $\beta=\frac{2}{3}$.

Is the given method applied to this initial value problem stable for $\Delta t=2$?
(e) Perform one step with the given method with $\Delta t=2, t_{0}=0, \alpha=\gamma=\frac{1}{6}$ and $\beta=\frac{2}{3}$ for the initial value problem and the given initial conditions from (2).
2. In this exercise an estimate is determined for the velocity of a rowing boat. The measured distances of the boat from the starting line are given in the table below.

$t(\mathrm{~s})$	0	10	20
$d(t)(\mathrm{m})$	0	40	100

(a) Give the first order backward difference formula and use this to determine an estimate of the velocity for $t=20\left(d^{\prime}(20)\right)$.
(1 pt.)
(b) We are looking for a difference formula of the first derivative of d in $2 h$ of the form:

$$
Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h),
$$

such that

$$
d^{\prime}(2 h)-Q(h)=O\left(h^{2}\right) .
$$

In the remainder of this exercise we use this formula. Show that the coefficients α_{0}, α_{1} and α_{2} should satisfy the next system:

$$
\begin{align*}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0, \\
-2 \alpha_{0}-\alpha_{1} & =1, \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & =0 . \tag{2pt.}
\end{align*}
$$

(c) The solution of this system is given by $\alpha_{0}=\frac{1}{2}, \alpha_{1}=-2$ and $\alpha_{2}=\frac{3}{2}$. Give for these values an expression for the truncation error $d^{\prime}(2 h)-Q(h)$.
(d) Use $\alpha_{0}=\frac{1}{2}, \alpha_{1}=-2$ and $\alpha_{2}=\frac{3}{2}$ in $Q(h)$ to give an estimate of the velocity at $t=20$.
3. We derive and use Newton-Raphson's Method to solve a nonlinear problem.
(a) Given the scalar nonlinear problem:

$$
\begin{equation*}
\text { Find } p \in \mathbb{R} \text { such that } f(p)=0 \text {. } \tag{4}
\end{equation*}
$$

Derive Newton-Raphson's formula, given by

$$
\begin{equation*}
p_{n+1}=p_{n}-\frac{f\left(p_{n}\right)}{f^{\prime}\left(p_{n}\right)}, \tag{5}
\end{equation*}
$$

to solve the problem. Explain the method with a graph.
(b) Given the nonlinear problem: Find $\mathbf{p} \in \mathbb{R}^{m}$ such that $\mathbf{f}(\mathbf{p})=\mathbf{0}$, where $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^{m}$. Give the Newton-Raphson's formula for this problem.
(c) Perform one step of the Newton-Raphson scheme applied to the following system for p_{1} and p_{2} :

$$
\left\{\begin{array}{l}
18 p_{1}-9 p_{2}+p_{1}^{2}=0, \tag{6}\\
-9 p_{1}+18 p_{2}+p_{2}^{2}=9 .
\end{array}\right.
$$

Use $p_{1}=p_{2}=0$ as the initial estimate.

