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1. (a) Consider the test equation y′ = λy, then it follows that

wn+1 = wn + (1− θ)λ∆twn + θλ∆twn+1.

Solving for wn+1 gives

wn+1 =
1 + (1− θ)λ∆t

1− θλ∆t
wn.

Hence the amplification factor is given by

Q(λ∆t) =
1 + (1− θ)λ∆t

1− θλ∆t
.

(b) The local truncation error for the test equation y′ = λy is given by

τn+1(∆t) =
eλ∆t −Q(λ∆t)

∆t
yn.

The Taylor Series around 0 for eλ∆t is:

eλ∆t = 1 + λ∆t+
1

2
(λ∆t)2 +O(∆t3).

The Taylor Series around 0 for Q(λ∆t) is:

Q(λ∆t) = (1 + (1− θ)λ∆t)
1

1− θλ∆t

= (1 + (1− θ)λ∆t)
(
1 + θλ∆t+ θ2 (λ∆t)2 +O

(
∆t3

))
= 1 + λ∆t+ θ (λ∆t)2 +O

(
∆t3

)
.

Hence, this gives

eλ∆t −Q(λ∆t) =

(
1

2
− θ

)(
λ∆t2

)
+O

(
∆t3

)
,

and hence

τn+1(∆t) =

(
1
2
− θ

)
(λ∆t2) +O (∆t3)

∆t
yn

=

(
1

2
− θ

)
(λ∆t) yn +O

(
∆t2

)
= O (∆t) .

Furthermore, τn+1 = O(∆t2) if and only if θ = 1
2
.
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(c) To this extent, we determine the eigenvalues of the matrix. Subsequently, these
eigenvalues are substituted into the amplification factor. The eigenvalues of the
matrix are given by −1± 3i.

Using ∆t = 1, θ = 1
2

and taking λ = −1 − 3i (alternatively, λ = −1 + 3i), it
follows that

Q(λ∆t) =
1 + 1

2
(−1− 3i)

1− 1
2

(−1− 3i)

=
1
2
− 3

2
i

3
2

+ 3
2
i
.

Herewith, it follows that |Q(λ∆t)|2 = 5
9
≤ 1. (Different methods to show this

are possible.)

As the two eigenvalues are each others complex conjugate, only one eigenvalue
has to be considered during the stability analysis. (Also correct: Repeating the
above calculations for the other eigenvalue.)

Hence for ∆t = 1 and θ = 1
2

it follows that the method applied to the given
system is stable.

(d) The given method, applied to the system x′ = Ax as given in the question and
taking θ = 1

2
, gives

wn+1 = wn +
1

2
∆tAwn +

1

2
∆tAwn+1.

Rearranging gives the linear system(
I − 1

2
∆tA

)
wn+1 =

(
I +

1

2
∆tA

)
wn.

With ∆t = 1 and the initial condition, w0 =
[
1 0

]T
, this gives[

3
2

3
2

−3
2

3
2

]
w1 =

[
1
2
−3

2
3
2

1
2

] [
1
0

]
=

[
1
2
3
2

]
.

Solving for w1 gives

w1 =

[
−1

3
2
3

]
.
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2. (a) The three relevant Lagrange basis polynomials are with n = 2 given by

L02(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)

=
(x− 3)(x− 4)

(1− 3)(1− 4)

=
1

6
x2 − 7

6
x+ 2,

L12(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)

=
(x− 1)(x− 4)

(3− 1)(3− 4)

= −1

2
x2 +

5

2
x− 2,

L22(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

=
(x− 1)(x− 3)

(4− 1)(4− 3)

=
1

3
x2 − 4

3
x+ 1.

The resulting perturbed interpolating polynomial is then

L̂2(x) = f̂(x0)L02(x) + f̂(x1)L12(x) + f̂(x2)L22(x)

= 3

(
1

6
x2 − 7

6
x+ 2

)
+ 6

(
−1

2
x2 +

5

2
x− 2

)
+ 5

(
1

3
x2 − 4

3
x+ 1

)
= −5

6
x2 +

29

6
x− 1.

Evaluation in x = 2 finally gives

L̂2(2) =
16

3
.

Any alternative, but correct, route to the above answer gives the same amount
of (total) points.

(b) The unperturbed error |f(2)− L2(2)| can be bounded from above by the fol-
lowing steps:

|f(2)− L2(2)| ≤
∣∣∣∣(2− 1)(2− 3)(2− 4)

3!
f ′′′(ζ(x))

∣∣∣∣
=

1

3
|f ′′′(ζ(x))|

≤ δ

3
.
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The perturbation error
∣∣∣L2(2)− L̂2(2)

∣∣∣ can be bounded from above by the fol-

lowing steps:∣∣∣L2(2)− L̂2(2)
∣∣∣ =

∣∣∣(f(x0)− f̂(x0))L02(2) + (f(x1)− f̂(x1))L12(2) + (f(x2)− f̂(x2))L22(2)
∣∣∣

≤ 1

3

∣∣∣f(x0)− f̂(x0)
∣∣∣ +

∣∣∣f(x1)− f̂(x1)
∣∣∣ +

1

3

∣∣∣f(x2)− f̂(x2)
∣∣∣

≤ 5ε

3
.

Combining these upper bounds gives for the total error∣∣∣f(2)− L̂2(2)
∣∣∣ =

∣∣∣f(2)− L2(2) + L2(2)− L̂2(2)
∣∣∣

≤ |f(2)− L2(2)|+
∣∣∣L2(2)− L̂2(2)

∣∣∣
≤ δ + 5ε

3
.

3. (a) A fixed point p satisfies the equation p = g(p). Substitution gives: p = p3

6
+ 23

48
.

Rewriting this expression gives:

−p3

6
+ p− 23

48
= 0

⇒ −p3 + 6p− 23
8

= 0

⇒ f(p) = 0,

which shows that a fixed point of g(x) also a root of f(x) is.

(b) Starting with p0 = 1 we obtain:

p1 = 31
48

≈ 0.6458,

p2 = 347743
663552

≈ 0.5241,

p3 = 882018880783482655
1752976676930715648

≈ 0.5032.

A sketch of this fixed-point iteration is given by
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(c) For the convergence three conditions should be satisfied:

• g ∈ C[0, 1].

• g(p) ∈ [0, 1] for all p ∈ [0, 1].

• |g′(p)| ≤ k < 1 for all p ∈ [0, 1].

Since g(p) = p3

6
+ 23

48
it follows that g is continuous everywhere, so the first

condition holds.

Furthermore, g′(x) = x2

2
. Note that g′(p) ≥ 0 for all p ∈ [0, 1]. This implies that

g(x) is increasing on [0, 1]. A lower bound for g(x) is given by

g(x) ≥ g(0) =
23

48
≥ 0,

and an upper bound is given by

g(x) ≤ g(1) =
31

48
≤ 1.

So 0 ≤ g(x) ≤ 1 and the second conditions holds.

For the third condition we note that |g′(x)| = x2

2
≤ 1

2
= k < 1 for all x ∈ [0, 1],

so the third condition is also satisfied.

As all conditions are satisfied, the fixed point iteration converges for all p0 ∈ [0, 1]
to the fixed point p ∈ [0, 1].
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