DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR
DIFFERENTIAL EQUATIONS (WI3097 TU/Minor AESB2210)
Thursday July 5th 2018, 13:30-16:30

1. (a) Consider the test equation $y^{\prime}=\lambda y$, then it follows that

$$
w_{n+1}=w_{n}+(1-\theta) \lambda \Delta t w_{n}+\theta \lambda \Delta t w_{n+1}
$$

Solving for w_{n+1} gives

$$
w_{n+1}=\frac{1+(1-\theta) \lambda \Delta t}{1-\theta \lambda \Delta t} w_{n}
$$

Hence the amplification factor is given by

$$
Q(\lambda \Delta t)=\frac{1+(1-\theta) \lambda \Delta t}{1-\theta \lambda \Delta t}
$$

(b) The local truncation error for the test equation $y^{\prime}=\lambda y$ is given by

$$
\tau_{n+1}(\Delta t)=\frac{e^{\lambda \Delta t}-Q(\lambda \Delta t)}{\Delta t} y_{n}
$$

The Taylor Series around 0 for $e^{\lambda \Delta t}$ is:

$$
e^{\lambda \Delta t}=1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}+\mathcal{O}\left(\Delta t^{3}\right)
$$

The Taylor Series around 0 for $Q(\lambda \Delta t)$ is:

$$
\begin{aligned}
Q(\lambda \Delta t) & =(1+(1-\theta) \lambda \Delta t) \frac{1}{1-\theta \lambda \Delta t} \\
& =(1+(1-\theta) \lambda \Delta t)\left(1+\theta \lambda \Delta t+\theta^{2}(\lambda \Delta t)^{2}+\mathcal{O}\left(\Delta t^{3}\right)\right) \\
& =1+\lambda \Delta t+\theta(\lambda \Delta t)^{2}+\mathcal{O}\left(\Delta t^{3}\right)
\end{aligned}
$$

Hence, this gives

$$
e^{\lambda \Delta t}-Q(\lambda \Delta t)=\left(\frac{1}{2}-\theta\right)\left(\lambda \Delta t^{2}\right)+\mathcal{O}\left(\Delta t^{3}\right)
$$

and hence

$$
\begin{aligned}
\tau_{n+1}(\Delta t) & =\frac{\left(\frac{1}{2}-\theta\right)\left(\lambda \Delta t^{2}\right)+\mathcal{O}\left(\Delta t^{3}\right)}{\Delta t} y_{n} \\
& =\left(\frac{1}{2}-\theta\right)(\lambda \Delta t) y_{n}+\mathcal{O}\left(\Delta t^{2}\right)=\mathcal{O}(\Delta t)
\end{aligned}
$$

Furthermore, $\tau_{n+1}=\mathcal{O}\left(\Delta t^{2}\right)$ if and only if $\theta=\frac{1}{2}$.
(c) To this extent, we determine the eigenvalues of the matrix. Subsequently, these eigenvalues are substituted into the amplification factor. The eigenvalues of the matrix are given by $-1 \pm 3 i$.
Using $\Delta t=1, \theta=\frac{1}{2}$ and taking $\lambda=-1-3 i$ (alternatively, $\lambda=-1+3 i$), it follows that

$$
\begin{aligned}
Q(\lambda \Delta t) & =\frac{1+\frac{1}{2}(-1-3 i)}{1-\frac{1}{2}(-1-3 i)} \\
& =\frac{\frac{1}{2}-\frac{3}{2} i}{\frac{3}{2}+\frac{3}{2} i} .
\end{aligned}
$$

Herewith, it follows that $|Q(\lambda \Delta t)|^{2}=\frac{5}{9} \leq 1$. (Different methods to show this are possible.)
As the two eigenvalues are each others complex conjugate, only one eigenvalue has to be considered during the stability analysis. (Also correct: Repeating the above calculations for the other eigenvalue.)
Hence for $\Delta t=1$ and $\theta=\frac{1}{2}$ it follows that the method applied to the given system is stable.
(d) The given method, applied to the system $\underline{x}^{\prime}=A \underline{x}$ as given in the question and taking $\theta=\frac{1}{2}$, gives

$$
\underline{w}_{n+1}=\underline{w}_{n}+\frac{1}{2} \Delta t A \underline{w}_{n}+\frac{1}{2} \Delta t A \underline{w}_{n+1} .
$$

Rearranging gives the linear system

$$
\left(I-\frac{1}{2} \Delta t A\right) \underline{w}_{n+1}=\left(I+\frac{1}{2} \Delta t A\right) \underline{w}_{n} .
$$

With $\Delta t=1$ and the initial condition, $\underline{w}_{0}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$, this gives

$$
\left[\begin{array}{cc}
\frac{3}{2} & \frac{3}{2} \\
-\frac{3}{2} & \frac{3}{2}
\end{array}\right] \underline{w}_{1}=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{3}{2} \\
\frac{3}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{3}{2}
\end{array}\right] .
$$

Solving for \underline{w}_{1} gives

$$
\underline{w}_{1}=\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{2}{3}
\end{array}\right] .
$$

2. (a) The three relevant Lagrange basis polynomials are with $n=2$ given by

$$
\begin{aligned}
L_{02}(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
& =\frac{(x-3)(x-4)}{(1-3)(1-4)} \\
& =\frac{1}{6} x^{2}-\frac{7}{6} x+2, \\
L_{12}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
& =\frac{(x-1)(x-4)}{(3-1)(3-4)} \\
& =-\frac{1}{2} x^{2}+\frac{5}{2} x-2, \\
L_{22}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} \\
& =\frac{(x-1)(x-3)}{(4-1)(4-3)} \\
& =\frac{1}{3} x^{2}-\frac{4}{3} x+1 .
\end{aligned}
$$

The resulting perturbed interpolating polynomial is then

$$
\begin{aligned}
\hat{L}_{2}(x) & =\hat{f}\left(x_{0}\right) L_{02}(x)+\hat{f}\left(x_{1}\right) L_{12}(x)+\hat{f}\left(x_{2}\right) L_{22}(x) \\
& =3\left(\frac{1}{6} x^{2}-\frac{7}{6} x+2\right)+6\left(-\frac{1}{2} x^{2}+\frac{5}{2} x-2\right)+5\left(\frac{1}{3} x^{2}-\frac{4}{3} x+1\right) \\
& =-\frac{5}{6} x^{2}+\frac{29}{6} x-1 .
\end{aligned}
$$

Evaluation in $x=2$ finally gives

$$
\hat{L}_{2}(2)=\frac{16}{3}
$$

Any alternative, but correct, route to the above answer gives the same amount of (total) points.
(b) The unperturbed error $\left|f(2)-L_{2}(2)\right|$ can be bounded from above by the following steps:

$$
\begin{aligned}
\left|f(2)-L_{2}(2)\right| & \leq\left|\frac{(2-1)(2-3)(2-4)}{3!} f^{\prime \prime \prime}(\zeta(x))\right| \\
& =\frac{1}{3}\left|f^{\prime \prime \prime}(\zeta(x))\right| \\
& \leq \frac{\delta}{3} .
\end{aligned}
$$

The perturbation error $\left|L_{2}(2)-\hat{L}_{2}(2)\right|$ can be bounded from above by the following steps:

$$
\begin{aligned}
\left|L_{2}(2)-\hat{L}_{2}(2)\right| & =\left|\left(f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right) L_{02}(2)+\left(f\left(x_{1}\right)-\hat{f}\left(x_{1}\right)\right) L_{12}(2)+\left(f\left(x_{2}\right)-\hat{f}\left(x_{2}\right)\right) L_{22}(2)\right| \\
& \leq \frac{1}{3}\left|f\left(x_{0}\right)-\hat{f}\left(x_{0}\right)\right|+\left|f\left(x_{1}\right)-\hat{f}\left(x_{1}\right)\right|+\frac{1}{3}\left|f\left(x_{2}\right)-\hat{f}\left(x_{2}\right)\right| \\
& \leq \frac{5 \epsilon}{3}
\end{aligned}
$$

Combining these upper bounds gives for the total error

$$
\begin{aligned}
\left|f(2)-\hat{L}_{2}(2)\right| & =\left|f(2)-L_{2}(2)+L_{2}(2)-\hat{L}_{2}(2)\right| \\
& \leq\left|f(2)-L_{2}(2)\right|+\left|L_{2}(2)-\hat{L}_{2}(2)\right| \\
& \leq \frac{\delta+5 \epsilon}{3} .
\end{aligned}
$$

3. (a) A fixed point p satisfies the equation $p=g(p)$. Substitution gives: $p=\frac{p^{3}}{6}+\frac{23}{48}$. Rewriting this expression gives:

$$
\begin{aligned}
& -\frac{p^{3}}{6}+p-\frac{23}{48} & =0 \\
\Rightarrow & -p^{3}+6 p-\frac{23}{8} & =0 \\
\Rightarrow & f(p) & =0
\end{aligned}
$$

which shows that a fixed point of $g(x)$ also a root of $f(x)$ is.
(b) Starting with $p_{0}=1$ we obtain:

$$
\begin{array}{llll}
p_{1}= & \frac{31}{48} & \approx 0.6458 \\
p_{2}= & \frac{347743}{663552} & \approx 0.5241, \\
p_{3} & = & \frac{882018880783482655}{1752976676930715648} & \approx 0.5032 .
\end{array}
$$

A sketch of this fixed-point iteration is given by

(c) For the convergence three conditions should be satisfied:

- $g \in C[0,1]$.
- $g(p) \in[0,1]$ for all $p \in[0,1]$.
- $\left|g^{\prime}(p)\right| \leq k<1$ for all $p \in[0,1]$.

Since $g(p)=\frac{p^{3}}{6}+\frac{23}{48}$ it follows that g is continuous everywhere, so the first condition holds.
Furthermore, $g^{\prime}(x)=\frac{x^{2}}{2}$. Note that $g^{\prime}(p) \geq 0$ for all $p \in[0,1]$. This implies that $g(x)$ is increasing on $[0,1]$. A lower bound for $g(x)$ is given by

$$
g(x) \geq g(0)=\frac{23}{48} \geq 0
$$

and an upper bound is given by

$$
g(x) \leq g(1)=\frac{31}{48} \leq 1
$$

So $0 \leq g(x) \leq 1$ and the second conditions holds.
For the third condition we note that $\left|g^{\prime}(x)\right|=\frac{x^{2}}{2} \leq \frac{1}{2}=k<1$ for all $x \in[0,1]$, so the third condition is also satisfied.
As all conditions are satisfied, the fixed point iteration converges for all $p_{0} \in[0,1]$ to the fixed point $p \in[0,1]$.

