Computer Science

## ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS <br> ( WI3097TU WI3097Minor WI3197Minor AESB2210 AESB2210-18 CTB2400 ) <br> Thursday January 31st 2019, 13:30-16:30

1. (a) The test equation is given by

$$
y^{\prime}=\lambda y .
$$

Application of the method to the test equation gives

$$
w_{n+1}=w_{n}+\frac{1}{2} \lambda \Delta t w_{n}+\frac{1}{2} \lambda \Delta t w_{n+1} .
$$

This is equivalent to

$$
\left(1-\frac{1}{2} \lambda \Delta t\right) w_{n+1}=\left(1+\frac{1}{2} \lambda \Delta t\right) w_{n} .
$$

Hence the amplification factor is given by

$$
Q(\lambda \Delta t)=\frac{1+\frac{1}{2} \lambda \Delta t}{1-\frac{1}{2} \lambda \Delta t}
$$

(b) The local truncation error for the test equation is given as

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{e^{\lambda \Delta t}-Q(\lambda \Delta t)}{\Delta t} y_{n} . \tag{1}
\end{equation*}
$$

A Taylor expansion of $e^{\lambda \Delta t}$ around $\lambda \Delta t=0$ yields

$$
\begin{equation*}
e^{\lambda \Delta t}=1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}+\frac{1}{6}(\lambda \Delta t)^{3}+\mathcal{O}\left(\Delta t^{4}\right) . \tag{2}
\end{equation*}
$$

A Taylor expansion of $Q(\lambda \Delta t)$ around $\frac{1}{2} \lambda \Delta t=0$ yields

$$
\begin{align*}
Q(\lambda \Delta t) & =\frac{1+\frac{1}{2} \lambda \Delta t}{1-\frac{1}{2} \lambda \Delta t} \\
& =\left(1+\frac{1}{2} \lambda \Delta t\right)\left(1+\frac{1}{2} \lambda \Delta t+\left(\frac{1}{2} \lambda \Delta t\right)^{2}+\left(\frac{1}{2} \lambda \Delta t\right)^{3}+\mathcal{O}\left(\Delta t^{4}\right)\right) \\
& =1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}+\frac{1}{4}(\lambda \Delta t)^{3}+\mathcal{O}\left(\Delta t^{4}\right) . \tag{3}
\end{align*}
$$

Equations (2) and (3) are substituted into relation (1) to obtain

$$
\tau_{n+1}=-\frac{1}{12} y_{n} \lambda^{3} \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)
$$

hence

$$
T=-\frac{1}{12} y_{n} \lambda^{3} .
$$

(c) With $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]^{T}$, the problem can be written as $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$, with

$$
A=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
0 & -2 & -2 \\
0 & 2 & -2
\end{array}\right],
$$

and

$$
\mathbf{b}=\left[\begin{array}{l}
9 \\
4 \\
8
\end{array}\right]
$$

The characteristic equation of $A$ is given by

$$
\begin{array}{ll} 
& \Rightarrow \\
\Rightarrow & \left|\begin{array}{ccc}
-1-\lambda & 2 & -2 \\
0 & -2-\lambda & -2 \\
0 & 2 & -2-\lambda
\end{array}\right|=0 \\
\Rightarrow & (-1-\lambda)\left|\begin{array}{cc}
-2-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right|=0 \\
\Rightarrow & (-1-\lambda)\left((-2-\lambda)^{2}+4\right)=0
\end{array}
$$

The eigenvalues of $A$ are calculated from this as $\lambda_{1}=-1$ and $\lambda_{2}=\overline{\lambda_{3}}=-2+2 i$. Because $\lambda_{2}$ and $\lambda_{3}$ are each other complex conjugates, stability is governed by $\lambda_{1}$ and $\lambda_{2}$.
For $\lambda_{1}=-1$ and $\Delta t=1$ we obtain

$$
\begin{aligned}
Q\left(\lambda_{1} \Delta t\right) & =Q(-1) \\
& =\frac{1+\frac{1}{2}(-1)}{1-\frac{1}{2}(-1)} \\
& =\frac{\frac{1}{2}}{\frac{3}{2}} \\
& =\frac{1}{3},
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left|Q\left(\lambda_{1} \Delta t\right)\right|=\frac{1}{3} \leq 1 \tag{4}
\end{equation*}
$$

For $\lambda_{2}=-2+2 i$ and $\Delta t=1$ we obtain

$$
\begin{aligned}
Q\left(\lambda_{2} \Delta t\right) & =Q(-2+2 i) \\
& =\frac{1+\frac{1}{2}(-2+2 i)}{1-\frac{1}{2}(-2+2 i)} \\
& =\frac{i}{2-i)} \\
& =-\frac{1}{5}+\frac{2}{5} i
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left|Q\left(\lambda_{2} \Delta t\right)\right|=\sqrt{\frac{1}{25}+\frac{4}{25}}=\sqrt{\frac{1}{5}} \leq 1 \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that the method applied to the given IVP is stable for $\Delta t=1$.
(d) First note that holds

$$
\mathbf{w}_{0}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]
$$

We can show that

$$
\begin{equation*}
A \mathbf{w}_{0}+\mathbf{b}=\mathbf{0} \tag{6}
\end{equation*}
$$

The given value for $\mathbf{w}_{1}$ is exactly equal to $\mathbf{w}_{0}$, so we also have as a direct consequence:

$$
\begin{equation*}
A \mathbf{w}_{1}+\mathbf{b}=\mathbf{0} \tag{7}
\end{equation*}
$$

(6), (7) and the values for $\mathbf{w}_{0}$ and $\mathbf{w}_{1}$ can be substituted in the method, which leads to

$$
\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right],
$$

which is mathematically correct. Therefor $\mathbf{w}_{1}$ as given is indeed the approximation of the exact solution at time $t=1$.
Alternative solution: $\mathbf{w}_{1}$ can also be calculated explicitly be direct application of the method, which has the following calculations:

$$
\begin{array}{ll} 
& \mathbf{w}_{0}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right], \\
\text { Method: } & \mathbf{w}_{1}=\mathbf{w}_{0}+\frac{1}{2}\left(A \mathbf{w}_{0}+\mathbf{b}+A \mathbf{w}_{1}+\mathbf{b}\right), \\
\Rightarrow & \left(I-\frac{1}{2} A\right) \mathbf{w}_{1}=\left(I+\frac{1}{2} A\right) \mathbf{w}_{0}+\mathbf{b}, \\
\Rightarrow & {\left[\begin{array}{ccc}
3 / 2 & -1 & 1 \\
0 & 2 & 1 \\
0 & -1 & 2
\end{array}\right] \mathbf{w}_{1}=\left[\begin{array}{c}
11 / 2 \\
1 \\
7
\end{array}\right]} \\
\Rightarrow & \mathbf{w}_{1}
\end{array}
$$

No points will be given if a different method is used or a different system of differential equations is solved.
2. (a) The order can be determined with the use of Taylor expansions. We need the following:

$$
\begin{aligned}
y(x+\Delta x) & =y(x)+y^{\prime}(x) \Delta x+\frac{1}{2} y^{\prime \prime}(x) \Delta x^{2}+\frac{1}{6} y^{\prime \prime \prime}(x) \Delta x^{3}+\mathcal{O}\left(\Delta x^{4}\right), \\
y(x) & =y(x), \\
y(x-\Delta x) & =y(x)-y^{\prime}(x) \Delta x+\frac{1}{2} y^{\prime \prime}(x) \Delta x^{2}-\frac{1}{6} y^{\prime \prime \prime}(x) \Delta x^{3}+\mathcal{O}\left(\Delta x^{4}\right) .
\end{aligned}
$$

Substitution of the above in the given finite difference $Q(\Delta x)$ gives

$$
\begin{aligned}
Q(\Delta x) & =\frac{y^{\prime \prime}(x) \Delta x^{2}+\mathcal{O}\left(\Delta x^{4}\right)}{\Delta x^{2}} \\
& =y^{\prime \prime}(x)+\mathcal{O}\left(\Delta x^{2}\right)
\end{aligned}
$$

This shows that $Q(\Delta x)$ is indeed a $\mathcal{O}\left(\Delta x^{2}\right)$ approximation of $y^{\prime \prime}(x)$.
(b) Evaulation of the ode in $x=x_{j}$ and replacing $y^{\prime \prime}\left(x_{j}\right)$ with the given finite difference $Q(\Delta x)$ gives

$$
-\frac{y\left(x_{j+1}\right)-2 y\left(x_{j}\right)+y\left(x_{j-1}\right)}{\Delta x^{2}}+\mathcal{O}\left(\Delta x^{2}\right)+x_{j} y\left(x_{j}\right)=\sin \left(2 \pi x_{j}\right) .
$$

Next, we neglect the truncation error, and set $w_{j} \approx y\left(x_{j}\right)$ to obtain

$$
\begin{equation*}
-\frac{w_{j+1}-2 w_{j}+w_{j-1}}{\Delta x^{2}}+j \Delta x w_{j}=\sin (2 \pi j \Delta x) \tag{8}
\end{equation*}
$$

which is the second of the given equations.
At the left boundary, $x=0$, we have $w_{0}=0$, which after substitution in (8) for $j=1$ gives

$$
-\frac{w_{2}-2 w_{1}}{\Delta x^{2}}+\Delta x w_{1}=\sin (2 \pi \Delta x),
$$

which is the first of the given equations.
At the right boundary, $x=1$, we have $w_{n+1}=1$, which after substitution in (8) for $j=n$ gives

$$
-\frac{-2 w_{n}+w_{n-1}}{\Delta x^{2}}+n \Delta x w_{n}=\sin (2 \pi n \Delta x)+\frac{1}{\Delta x^{2}}
$$

which is the third of the given equations.
(c) The matrix $A$ of the scheme is given by

$$
A=\frac{1}{\Delta x^{2}}\left[\begin{array}{cccccc}
2 & -1 & & & & \\
-1 & 2 & -1 & & & \\
& -1 & 2 & -1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & -1 & 2 & -1 \\
& & & & -1 & 2
\end{array}\right]+\Delta x\left[\begin{array}{llll}
1 & & & \\
& 2 & & \\
& & \ddots & \\
& & & n
\end{array}\right]
$$

Because $A$ is symmetric $\left(A^{T}=A\right)$, all eigenvalues of $A$ are real, so the Gershgorin circle theorem will give intervals in $\mathbb{R}$ instead of circles in $\mathbb{C}$.
The first row of $A$ gives the inequalities

$$
-\frac{1}{\Delta x^{2}} \leq \lambda-\left(\frac{2}{\Delta x^{2}}+\Delta x\right) \leq \frac{1}{\Delta x^{2}}
$$

These can be rewritten to

$$
\begin{equation*}
\frac{1}{\Delta x^{2}}+\Delta x \leq \lambda \leq \frac{3}{\Delta x^{2}}+\Delta x . \tag{9}
\end{equation*}
$$

In a similar manner, row $j$ of matrix A with $j \in\{2, \ldots, n-1\}$ gives

$$
\begin{equation*}
j \Delta x \leq \lambda \leq \frac{4}{\Delta x^{2}}+j \Delta x \tag{10}
\end{equation*}
$$

and row $n$ finally gives

$$
\begin{equation*}
\frac{1}{\Delta x^{2}}+n \Delta x \leq \lambda \leq \frac{3}{\Delta x^{2}}+n \Delta x \tag{11}
\end{equation*}
$$

Combining Equations (9), (10) and (11) gives

$$
\Delta x \leq \lambda \leq \frac{4}{\Delta x^{2}}+n \Delta x
$$

as was requested to show.
3. (a) The given formula for $s(x)$ consists of two polynomials of degree 3 on disjunct intervals dividing $[-1,1]$, so $s(x)$ is a piecewise function consisting of polynomials of degree 3 or lower.
(b) The nodes of the spline are $x=-1, x=0$ and $x=1$.

We will evaluate $s(x)$ in these three nodes and show that it is equal to $f(x)$ in these nodes:

$$
\begin{aligned}
s(-1) & =-\frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+\left.2\right|_{x=-1} \\
& =-\frac{3}{4}(-1)^{3}-\frac{9}{4}(-1)^{2}+\frac{1}{2}(-1)+2 \\
& =\frac{3}{4}-\frac{9}{4}-\frac{1}{2}+2 \\
& =0 \\
& =f(-1), \\
s(0) & =\frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+\left.2\right|_{x=0} \\
& =\frac{3}{4}(0)^{3}-\frac{9}{4}(0)^{2}+\frac{1}{2}(0)+2 \\
& =0-0+0+2 \\
& =2 \\
& =f(0), \\
s(1) & =\frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+\left.2\right|_{x=1} \\
& =\frac{3}{4}(1)^{3}-\frac{9}{4}(1)^{2}+\frac{1}{2}(1)+2 \\
& =\frac{3}{4}-\frac{9}{4}+\frac{1}{2}+2 \\
& =1 \\
& =f(1) .
\end{aligned}
$$

(c) Because $s(x)$ consists of polynomials, the only possible point of discontinuity is the node $x=0$, so $s(x)$ is continuous if it is continuous in $x=0$.
Therefore we have to show

$$
\lim _{x \rightarrow 0^{-}} s(x)=\lim _{x \rightarrow 0^{+}} s(x) .
$$

The left limit equals:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} s(x) & =\lim _{x \rightarrow 0^{-}}-\frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+2 \\
& =2
\end{aligned}
$$

The right limit equals:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} s(x) & =\lim _{x \rightarrow 0^{+}} \frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+2 \\
& =2 .
\end{aligned}
$$

So $s(x)$ is continuous.

The derivative $s^{\prime}(x)$ is given by

$$
s^{\prime}(x)=\left\{\begin{aligned}
-\frac{9}{4} x^{2}-\frac{9}{2} x+\frac{1}{2} & \text { if } \quad x \in[-1,0) \\
\frac{9}{4} x^{2}-\frac{9}{2} x+\frac{1}{2} & \text { if } \quad x \in[0,1]
\end{aligned}\right.
$$

$s^{\prime}(x)$ is continuous if it is continuous in $x=0$, so we have to show

$$
\lim _{x \rightarrow 0^{-}} s^{\prime}(x)=\lim _{x \rightarrow 0^{+}} s^{\prime}(x)
$$

The left limit equals:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} s^{\prime}(x) & =\lim _{x \rightarrow 0^{-}}-\frac{9}{4} x^{2}-\frac{9}{2} x+\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

The right limit equals:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} s^{\prime}(x) & =\lim _{x \rightarrow 0^{+}} \frac{9}{4} x^{2}-\frac{9}{2} x+\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

So $s^{\prime}(x)$ is continuous.
The second derivative $s^{\prime \prime}(x)$ is given by

$$
s^{\prime \prime}(x)=\left\{\begin{array}{rll}
-\frac{9}{2} x-\frac{9}{2} & \text { if } & x \in[-1,0) \\
\frac{9}{2} x-\frac{9}{2} & \text { if } & x \in[0,1]
\end{array}\right.
$$

$s^{\prime \prime}(x)$ is continuous if it is continuous in $x=0$, so we have to show

$$
\lim _{x \rightarrow 0^{-}} s^{\prime \prime}(x)=\lim _{x \rightarrow 0^{+}} s^{\prime \prime}(x)
$$

The left limit equals:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} s^{\prime \prime}(x) & =\lim _{x \rightarrow 0^{-}}-\frac{9}{2} x-\frac{9}{2} \\
& =-\frac{9}{2}
\end{aligned}
$$

The right limit equals:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} s^{\prime \prime}(x) & =\lim _{x \rightarrow 0^{+}} \frac{9}{2} x-\frac{9}{2} \\
& =-\frac{9}{2}
\end{aligned}
$$

So $s^{\prime \prime}(x)$ is continuous.
(d) Evualuating $s^{\prime \prime}(x)$ in $x=-1$ gives:

$$
s^{\prime \prime}(-1)=-\frac{9}{2} x-\left.\frac{9}{2}\right|_{x=-1}=\frac{9}{2}-\frac{9}{2}=0
$$

and evaluation at $x=1$ gives

$$
s^{\prime \prime}(1)=\frac{9}{2} x-\left.\frac{9}{2}\right|_{x=1}=\frac{9}{2}-\frac{9}{2}=0
$$

so indeed $s^{\prime \prime}(x)=0$ in the end points.
(e) $x=-\frac{1}{2}$ lies in the left interval, so we need to perform the next calculation:

$$
\begin{aligned}
f\left(-\frac{1}{2}\right) & \approx s\left(-\frac{1}{2}\right) \\
& =-\frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+\left.2\right|_{x=-\frac{1}{2}} \\
& =-\frac{3}{4}\left(-\frac{1}{2}\right)^{3}-\frac{9}{4}\left(-\frac{1}{2}\right)^{2}+\frac{1}{2}\left(-\frac{1}{2}\right)+2 \\
& =-\frac{3}{4}\left(-\frac{1}{8}\right)-\frac{9}{4}\left(\frac{1}{4}\right)+\frac{1}{2}\left(-\frac{1}{2}\right)+2 \\
& =\frac{3}{32}-\frac{9}{16}-\frac{1}{4}+2 \\
& =\frac{3}{32}-\frac{18}{32}-\frac{8}{32}+\frac{64}{32} \\
& =\frac{3-18-8+64}{32} \\
& =\frac{41}{32} .
\end{aligned}
$$

