DELFT UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering, Mathematics and Computer Science

Examiner responsible: D. den Ouden-van der Horst
Examination reviewer: C. Vuik

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097TU WI3097Minor WI3197Minor AESB2210 AESB2210-18 CTB2400) Thursday January 31st 2019, 13:30-16:30

Number of questions: This is an exam with 12 open questions, subdivided in 3 main questions.
Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will not give points.
Tools Only a non-graphical, non-programmable calculator is permitted. All other tools are not permitted.
Assessment In total 20 points can be earned. The final not-rounded grade is given by $P / 2$, where P is the number of points earned.

1. We consider the following method

$$
\begin{equation*}
w_{n+1}=w_{n}+\frac{1}{2} \Delta t\left(f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, w_{n+1}\right)\right) \tag{1}
\end{equation*}
$$

for the integration of the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$.
(a) Demonstrate that the amplification factor is given by

$$
Q(\lambda \Delta t)=\frac{1+\frac{1}{2} \lambda \Delta t}{1-\frac{1}{2} \lambda \Delta t} .
$$

(b) Show that the local truncation error of (1) for the test equation $y^{\prime}=\lambda y$ takes on the form

$$
\tau_{n+1}=T \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)
$$

and give a formula for T.
Hint: $e^{x}=1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\mathcal{O}\left(x^{4}\right)$.
Hint: $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\mathcal{O}\left(x^{4}\right)$.
(c) We consider the following system of linear differential equations:

$$
\left\{\begin{align*}
x_{1}^{\prime} & =-x_{1}+2 x_{2}-2 x_{3}+9 \tag{2}\\
x_{2}^{\prime} & =-2 x_{2}-2 x_{3}+4 \\
x_{3}^{\prime} & =2 x_{2}-2 x_{3}+8 \\
x_{1}(0) & =1, x_{2}(0)=-1, x_{3}(0)=3
\end{align*}\right.
$$

Write the above system as $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$ and show that the application of (1) to (2) is stable for $\Delta t=1$.
(d) The approximation \mathbf{w}_{1} of the solution of the system (2) at time $t=1$ obtained by applying (1) to (2) with $\Delta t=1$ is calculated by us as

$$
\mathbf{w}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]
$$

Show that the given value for \mathbf{w}_{1} is correct.
2. We consider the following boundary-value problem:

$$
\left\{\begin{align*}
-y^{\prime \prime}(x)+x y(x) & =\sin (2 \pi x), \quad x \in(0,1) \tag{3}\\
y(0) & =0 \\
y(1) & =1
\end{align*}\right.
$$

In this exercise we approximate the exact solution with a numerical method.
(a) Show that

$$
\begin{equation*}
Q(\Delta x)=\frac{y(x+\Delta x)-2 y(x)+y(x-\Delta x)}{\Delta x^{2}}, \tag{4}
\end{equation*}
$$

is a $\mathcal{O}\left(\Delta x^{2}\right)$ approximation of $y^{\prime \prime}(x)$.
(b) We solve the boundary value problem (3) using the finite difference (4), upon setting $x_{j}=j \Delta x,(n+1) \Delta x=1$, with Δx as the uniform stepsize. We then obtain the following formulas:

$$
\begin{aligned}
-\frac{w_{2}-2 w_{1}}{(\Delta x)^{2}}+\Delta x w_{1} & =\sin (2 \pi \Delta x), \\
-\frac{w_{j+1}-2 w_{j}+w_{j-1}}{(\Delta x)^{2}}+j \Delta x w_{j} & =\sin (2 \pi j \Delta x), \\
-\frac{-2 w_{n}+w_{n-1}}{(\Delta x)^{2}}+n \Delta x w_{n} & =\sin (2 \pi n \Delta x)+\frac{1}{\Delta x^{2}} .
\end{aligned} \quad \text { for } j \in\{2, \ldots, n-1\},
$$

Give a derivation (with arguments) of this scheme.
(c) The Gershgorin circle theorem states:

The eigenvalues of a general $n \times n$ matrix A are located in the complex plane in the union of circles

$$
\left|z-a_{i i}\right| \leq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|a_{i j}\right| \quad \text { where } \quad z \in \mathbb{C} .
$$

Use this theorem to show that any eigenvalue λ of the given scheme (in the form $A \mathbf{w}=\mathbf{f})$ satisfies

$$
\begin{equation*}
\Delta x \leq \lambda \leq \frac{4}{(\Delta x)^{2}}+n \Delta x \tag{2pt.}
\end{equation*}
$$

3. We have approximated a function f satisfying $f(-1)=0, f(0)=2$ and $f(1)=1$ with a natural cubic spline s given by

$$
s(x)=\left\{\begin{align*}
-\frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+2 & \text { if } \quad x \in[-1,0), \tag{5}\\
\frac{3}{4} x^{3}-\frac{9}{4} x^{2}+\frac{1}{2} x+2 & \text { if } \quad x \in[0,1] .
\end{align*}\right.
$$

In the next exercises you will prove that s is indeed the natural cubic spline based on f. Then you will use s to approximate $f\left(-\frac{1}{2}\right)$.
(a) Show that s is a piecewise function consisting of polynomials of degree 3 or lower.
(b) Show that $s(x)$ equals $f(x)$ in the nodes.
(c) Show that s, s^{\prime} and $s^{\prime \prime}$ are continuous on the interval $[-1,1]$.
(d) Show that $s^{\prime \prime}(x)$ equals zero in the end points.
(e) Approximate $f\left(-\frac{1}{2}\right)$ with the use of (5).

