Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS
 (WI3097TU WI3097Minor WI3197Minor AESB2210 AESB2210-18 CTB2400) Tuesday April 16th 2019, 13:30-16:30

1. (a) Remark: Using the test equation $y^{\prime}=\lambda y$ results in no points for question (a).

The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{y_{n+1}-z_{n+1}}{\Delta t} . \tag{1}
\end{equation*}
$$

with $y_{n+1}=y\left(t_{n+1}\right)$ the exact solution and z_{n+1} the result of applying the method with starting value $y_{n}=y\left(t_{n}\right)$.
A Taylor expansion of y_{n+1} around t_{n} yields

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t y_{n}^{\prime}+\frac{1}{2} \Delta t^{2} y_{n}^{\prime \prime}+\frac{1}{6} \Delta t^{3} y_{n}^{\prime \prime \prime}+\mathcal{O}\left(\Delta t^{4}\right) \tag{2}
\end{equation*}
$$

For the given system $y^{\prime}=g(y)$ holds

$$
z_{n+1}=y_{n}+\frac{1}{2} \Delta t\left(g\left(y_{n}\right)+g\left(y_{n}+\Delta t g\left(y_{n}\right)\right)\right) .
$$

A Taylor expansion of $g\left(y_{n}+\Delta t g\left(y_{n}\right)\right)$ around y_{n} yields

$$
\begin{equation*}
g\left(y_{n}+\Delta t g\left(y_{n}\right)\right)=g\left(y_{n}\right)+\Delta t g\left(y_{n}\right) g^{\prime}\left(y_{n}\right)+\frac{1}{2}\left(\Delta t g\left(y_{n}\right)\right)^{2} g^{\prime \prime}\left(y_{n}\right)+\mathcal{O}\left(\Delta t^{3}\right) \tag{3}
\end{equation*}
$$

Usage of $y^{\prime}=g(y)$ and the given hint gives

$$
g\left(y_{n}+\Delta t g\left(y_{n}\right)\right)=y_{n}^{\prime}+\Delta t y_{n}^{\prime \prime}+\frac{1}{2}\left(\Delta t g\left(y_{n}\right)\right)^{2} g^{\prime \prime}\left(y_{n}\right)+\mathcal{O}\left(\Delta t^{3}\right) .
$$

Substitution of the above in z_{n+1} gives

$$
\begin{equation*}
z_{n+1}=y_{n}+\Delta t y_{n}^{\prime}+\frac{1}{2} \Delta t^{2} y_{n}^{\prime \prime}+\frac{1}{4} \Delta t^{3} g\left(y_{n}\right) g^{\prime \prime}\left(y_{n}\right)+\mathcal{O}\left(\Delta t^{4}\right) \tag{4}
\end{equation*}
$$

Equations (2) and (4) are substituted into relation (1) to obtain

$$
\tau_{n+1}=\left(\frac{1}{6} y_{n}^{\prime \prime \prime}-\frac{1}{4} g\left(y_{n}\right) g^{\prime \prime}\left(y_{n}\right)\right) \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right),
$$

hence

$$
P=\frac{1}{6} y_{n}^{\prime \prime \prime}-\frac{1}{4} g\left(y_{n}\right)^{2} g^{\prime \prime}\left(y_{n}\right) .
$$

Alternative correct formulae for P :

$$
\begin{aligned}
P & =\frac{1}{6} y_{n}^{\prime \prime \prime}-\frac{1}{4}\left(y_{n}^{\prime}\right)^{2} g^{\prime \prime}\left(y_{n}\right), \\
P & =-\frac{1}{12} g^{\prime \prime}\left(y_{n}\right)\left(y_{n}^{\prime}\right)^{2}+\frac{1}{6} g^{\prime}\left(y_{n}\right) y_{n}^{\prime \prime}, \\
P & =-\frac{1}{12} g^{\prime \prime}\left(y_{n}\right) g\left(y_{n}\right)^{2}+\frac{1}{6} g^{\prime}\left(y_{n}\right) y_{n}^{\prime \prime}, \\
P & =-\frac{1}{12} g^{\prime \prime}\left(y_{n}\right)\left(y_{n}^{\prime}\right)^{2}+\frac{1}{6}\left(g^{\prime}\left(y_{n}\right)\right)^{2} y_{n}^{\prime}, \\
P & =-\frac{1}{12} g^{\prime \prime}\left(y_{n}\right) g\left(y_{n}\right)^{2}+\frac{1}{6}\left(g^{\prime}\left(y_{n}\right)\right)^{2} g\left(y_{n}\right),
\end{aligned}
$$

(b) The test equation is given by

$$
y^{\prime}=\lambda y .
$$

Application of the method to the test equation gives

$$
w_{n+1}=w_{n}+\frac{1}{2} \Delta t\left(\lambda w_{n}+\lambda\left(w_{n}+\Delta t \lambda w_{n}\right)\right) .
$$

This is equivalent to

$$
w_{n+1}=\left(1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}\right) w_{n} .
$$

Hence the amplification factor is given by

$$
Q(\lambda \Delta t)=1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}
$$

(c) Remark: Wrong eigenvalues causes a deduction of 1 point in question (c).

Remark: A correct analysis with wrong eigenvalues still gives the allocated points.
With $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$, the problem can be written as $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$, with

$$
A=\left[\begin{array}{ll}
-3 / 2 & -1 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right],
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

The characteristic equation of A is given by

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I) & =0 \\
\Rightarrow & \left|\begin{array}{cc}
-3 / 2-\lambda & -1 / 2 \\
-1 / 2 & -3 / 2-\lambda
\end{array}\right| & =0 \\
\Rightarrow & (-3 / 2-\lambda)^{2}-(-1 / 2)^{2} & =0
\end{aligned}
$$

The eigenvalues of A are calculated from this as $\lambda_{1}=-2$ and $\lambda_{2}=-1$.
For $\lambda_{1}=-2$ we obtain

$$
\begin{aligned}
Q\left(\lambda_{1} \Delta t\right) & =Q(-2 \Delta t) \\
& =1+(-2 \Delta t)+\frac{1}{2}(-2 \Delta t)^{2} \\
& =1-2 \Delta t+2 \Delta t^{2} .
\end{aligned}
$$

For stability we must have

$$
\left|Q\left(\lambda_{1} \Delta t\right)\right| \leq 1
$$

or equivalently

$$
\begin{equation*}
-1 \leq 1-2 \Delta t+2 \Delta t^{2} \leq 1 \tag{5}
\end{equation*}
$$

as $Q(-2 \Delta t)$ is a real number.
For the left inequality of (5), we obtain:

$$
\begin{align*}
& & -1 & \leq 1-2 \Delta t+2 \Delta t^{2} \\
\Rightarrow & & 0 & \leq 2-2 \Delta t+2 \Delta t^{2} \\
\Rightarrow & & 0 & \leq 1-\Delta t+\Delta t^{2} \tag{6}
\end{align*}
$$

The right-hand side above evaluates for $\Delta t=1$ to 1 and its discriminant

$$
D=(-1)^{2}-4 \cdot 1 \cdot 1=-3
$$

is negative. Therefore the right-hand side of (6) has no real roots and (6) is always satisfied for $\Delta t \geq 0$.
For the right inequality of (5), we obtain:

$$
\begin{array}{rr}
& 1-2 \Delta t+2 \Delta t^{2}
\end{array} \leq 19 子 \begin{array}{lr}
\Rightarrow & -2 \Delta t+2 \Delta t^{2}
\end{array} \leq 0
$$

For $\lambda_{2}=-1$ we obtain

$$
\begin{aligned}
Q\left(\lambda_{2} \Delta t\right) & =Q(-\Delta t) \\
& =1+(-\Delta t)+\frac{1}{2}(-\Delta t)^{2} \\
& =1-\Delta t+\frac{1}{2} \Delta t^{2} .
\end{aligned}
$$

For stability we must have

$$
\left|Q\left(\lambda_{2} \Delta t\right)\right| \leq 1
$$

or equivalently

$$
\begin{equation*}
-1 \leq 1-\Delta t+\frac{1}{2} \Delta t^{2} \leq 1 \tag{8}
\end{equation*}
$$

as $Q(-\Delta t)$ is a real number.
For the left inequality of (8), we obtain:

$$
\begin{array}{ll}
& -1 \leq 1-\Delta t+\frac{1}{2} \Delta t^{2} \\
\Rightarrow & 0 \leq 2-\Delta t+\frac{1}{2} \Delta t^{2} \\
\Rightarrow & 0 \leq 4-2 \Delta t+\Delta t^{2} \tag{9}
\end{array}
$$

The right-hand side above evaluates for $\Delta t=1$ to 3 and its discriminant

$$
D=(-2)^{2}-4 \cdot 1 \cdot 4=-12
$$

is negative. Therefore the right-hand side of (9) has no real roots and (9) is always satisfied for $\Delta t \geq 0$.
For the right inequality of (8), we obtain:

$$
\begin{array}{rlrl}
& & 1-\Delta t+\frac{1}{2} \Delta t^{2} & \leq 1 \\
\Rightarrow & -\Delta t+\frac{1}{2} \Delta t^{2} & \leq 0 \\
\Rightarrow & -2 \Delta t+\Delta t^{2} & \leq 0 \\
\Rightarrow & -2+\Delta t & \leq 0 \\
\Rightarrow & \Delta t & \leq 2 \tag{10}
\end{array}
$$

So for stability we must have from (6), (7), (9) and (10)

$$
\Delta t \leq 1
$$

and therefore

$$
\Delta t_{\max }=1
$$

Alternative (c) With $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$, the problem can be written as $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$, with

$$
A=\left[\begin{array}{ll}
-3 / 2 & -1 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right],
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

The characteristic equation of A is given by

$$
\begin{array}{rlr}
\operatorname{det}(A-\lambda I) & =0 \\
\Rightarrow & \left|\begin{array}{cc}
-3 / 2-\lambda & -1 / 2 \\
-1 / 2 & -3 / 2-\lambda
\end{array}\right| & =0 \\
\Rightarrow & (-3 / 2-\lambda)^{2}-(-1 / 2)^{2} & =0
\end{array}
$$

The eigenvalues of A are calculated from this as $\lambda_{1}=-2$ and $\lambda_{2}=-1$.
The given method is the Modified Euler method.
From the stability region of this method can be deduced:

$$
\Delta t \leq \frac{2}{|\lambda|}
$$

for all eigenvalues of A, if these eigenvalues are all real.
In this case we obtain:

$$
\Delta t \leq \frac{2}{\left|\lambda_{1}\right|}=1,
$$

and

$$
\Delta t \leq \frac{2}{\left|\lambda_{2}\right|}=2
$$

So for stability we must have

$$
\Delta t \leq 1
$$

and therefore

$$
\Delta t_{\max }=1
$$

(d) Remark: No points will be given if a different method is used or a different system of differential equations is solved.
Remark: Small miscalculations cost $\frac{1}{4}$ point per miscalculation.
First note:

$$
\mathbf{w}_{0}=\mathbf{0}
$$

Therefore

$$
A \mathbf{w}_{0}=\mathbf{0}
$$

Applying the given method with $\Delta t=1$ gives

$$
\begin{aligned}
\mathbf{w}_{1} & =\mathbf{w}_{0}+\frac{1}{2}\left(A \mathbf{w}_{0}+\mathbf{b}+A\left(\mathbf{w}_{0}+A \mathbf{w}_{0}+\mathbf{b}\right)+\mathbf{b}\right) \\
& =\mathbf{0}+\frac{1}{2}(\mathbf{0}+\mathbf{b}+A(\mathbf{0}+\mathbf{0}+\mathbf{b})+\mathbf{b}) \\
& =\frac{1}{2}(\mathbf{b}+A \mathbf{b}+\mathbf{b}) \\
& =\mathbf{b}+\frac{1}{2} A \mathbf{b} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
-3 / 2 & -1 / 2 \\
-1 / 2 & -3 / 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right] .
\end{aligned}
$$

2. (a) Remark: A correct analysis of the order with the wrong choice for $U(\Delta x)$ is at most rewarded with 1 point.
Remark: A choice for $U(\Delta x)$ without a correct argument gives a subtraction of $\frac{1}{2}$ points.
For the given differential equation the convection speed is -3 . As this is negative, the forward difference

$$
U(\Delta x)=\frac{y(x+\Delta x)-y(x)}{\Delta x}
$$

should be taken.
The order can be determined with the use of Taylor expansions. We need the following:

$$
y(x+\Delta x)=y(x)+y^{\prime}(x) \Delta x+\frac{1}{2} y^{\prime \prime}(x) \Delta x^{2}+\frac{1}{6} y^{\prime \prime \prime}(x) \Delta x^{3}+\mathcal{O}\left(\Delta x^{4}\right)
$$

Substitution of the above in the chosen finite difference $U(\Delta x)$ gives

$$
\begin{aligned}
U(\Delta x) & =\frac{y^{\prime}(x) \Delta x+\frac{1}{2} \Delta x^{2} y^{\prime \prime}(x)+\frac{1}{6} \Delta x^{3} y^{\prime \prime \prime}(x)+\mathcal{O}\left(\Delta x^{4}\right)}{\Delta x} \\
& =y^{\prime}(x)+\mathcal{O}(\Delta x) .
\end{aligned}
$$

This shows that $U(\Delta x)$ is a $\mathcal{O}(\Delta x)$ approximation of $y^{\prime}(x)$.
(b) To obtain the correct formula, we use Taylor expansions:

$$
\begin{aligned}
& y(x+\Delta x)=y(x)+y^{\prime}(x) \Delta x+\frac{1}{2} y^{\prime \prime}(x) \Delta x^{2}+\frac{1}{6} y^{\prime \prime \prime}(x) \Delta x^{3}+\mathcal{O}\left(\Delta x^{4}\right), \\
& y(x-\Delta x)=y(x)-y^{\prime}(x) \Delta x+\frac{1}{2} y^{\prime \prime}(x) \Delta x^{2}-\frac{1}{6} y^{\prime \prime \prime}(x) \Delta x^{3}+\mathcal{O}\left(\Delta x^{4}\right) .
\end{aligned}
$$

Substitution of the above in the given formula gives

$$
\begin{aligned}
Q(\Delta x) & =\frac{\left(\alpha_{1}+\alpha_{0}+\alpha_{-1}\right) y(x)+\left(\alpha_{1}-\alpha_{-1}\right) \Delta x y^{\prime}(x)}{\Delta x^{2}} \\
& +\frac{\frac{1}{2}\left(\alpha_{1}+\alpha_{-1}\right) \Delta x^{2} y^{\prime \prime}(x)+\frac{1}{6}\left(\alpha_{1}-\alpha_{-1}\right) \Delta x^{3} y^{\prime \prime \prime}(x)+\mathcal{O}\left(\Delta x^{4}\right)}{\Delta x^{2}} .
\end{aligned}
$$

From this we obtain the following system of linear equations:

$$
\begin{cases}\alpha_{1}+\alpha_{0} & +\alpha_{-1}=0 \\ \alpha_{1} & -\alpha_{-1}=0 \\ \alpha_{1} & +\alpha_{-1}=2\end{cases}
$$

The solution of this system is $\alpha_{1}=\alpha_{-1}=1, \alpha_{0}=-2$, which leads to the formula

$$
Q(\Delta x)=\frac{y(x+\Delta x)-2 y(x)+y(x-\Delta x)}{\Delta x^{2}}
$$

(c) Remark: No points will be deducted for incorrect $U(\Delta x)$ and/or incorrect $Q(\Delta x)$, if applied correctly.
Evaluation of the ode in $x=x_{j}$ and replacing $y^{\prime \prime}\left(x_{j}\right)$ with $Q(\Delta x)$ and $y^{\prime}\left(x_{j}\right)$ with $U(\Delta x)$ gives

$$
-\frac{y\left(x_{j+1}\right)-2 y\left(x_{j}\right)+y\left(x_{j-1}\right)}{\Delta x^{2}}+\mathcal{O}\left(\Delta x^{2}\right)-3 \frac{y\left(x_{j+1}\right)-y\left(x_{j}\right)}{\Delta x}+\mathcal{O}(\Delta x)=1
$$

Next, we neglect the truncation errors, and set $w_{j} \approx y\left(x_{j}\right)$ to obtain

$$
\begin{equation*}
-\frac{w_{j+1}-2 w_{j}+w_{j-1}}{\Delta x^{2}}-3 \frac{w_{j+1}-w_{j}}{\Delta x}=1, \tag{11}
\end{equation*}
$$

the general equation for an internal point x_{j}.
At the left boundary, $x=0=x_{0}$, substitution of $j=0$ in (11) gives

$$
-\frac{w_{1}-2 w_{0}+w_{-1}}{\Delta x^{2}}-3 \frac{w_{1}-w_{0}}{\Delta x}=1
$$

from which the virtual value w_{-1} must be eliminated.
The boundary condition $y^{\prime}(0)=0$ can be transformed (after ignoring errors) to

$$
\frac{w_{1}-w_{-1}}{2 \Delta x}=0
$$

from which $w_{-1}=w_{1}$ follows and the final equation for $j=0$ becomes

$$
-\frac{2 w_{1}-2 w_{0}}{\Delta x^{2}}-3 \frac{w_{1}-w_{0}}{\Delta x}=1
$$

At the right boundary, $x=1$, we have $w_{n+1}=1$, which after substitution in (11) for $j=n$ gives

$$
-\frac{-2 w_{n}+w_{n-1}}{\Delta x^{2}}-3 \frac{-w_{n}}{\Delta x}=1+\frac{1}{\Delta x^{2}}+\frac{3}{\Delta x} .
$$

The entire scheme therefore is

$$
\begin{aligned}
-\frac{2 w_{1}-2 w_{0}}{\Delta x^{2}}-3 \frac{w_{1}-w_{0}}{\Delta x} & =1 \\
-\frac{w_{j+1}-2 w_{j}+w_{j-1}}{\Delta x^{2}}-3 \frac{w_{j+1}-w_{j}}{\Delta x} & =1, \\
-\frac{-2 w_{n}+w_{n-1}}{\Delta x^{2}}-3 \frac{-w_{n}}{\Delta x} & =1+\frac{1}{\Delta x^{2}}+\frac{3}{\Delta x}
\end{aligned} \quad \text { for } j=1, \ldots, n,
$$

3. (a) $p=\sqrt{3}$ is a fixed point of the function g if $g(\sqrt{3})=\sqrt{3}$. We calculate $g(p)$:

$$
\begin{aligned}
g(p) & =g(\sqrt{3}) \\
& =-\frac{1}{3}(\sqrt{3})^{2}+\sqrt{3}+1 \\
& =-1+\sqrt{3}+1 \\
& =\sqrt{3},
\end{aligned}
$$

So $p=\sqrt{3}$ is indeed a fixed-point of the function g.
(b) The function g is a polynomial and polynomials are continuous everywhere, so there for g also is continuous on the interval [1,2].
(c) First note that g is a parabola opening to the bottom and therefore g has a maximum at the point where $g^{\prime}(x)=0$. We solve this equation:

$$
\begin{array}{rlrl}
g^{\prime}(x) & =0 \\
\Rightarrow & -\frac{2}{3} x+1 & =0 \\
\Rightarrow & x & =\frac{3}{2},
\end{array}
$$

so the position of the maximum of g is located in the interval $[1,2]$ and attains the value $g(3 / 2)=7 / 4$. Therefore we conclude

$$
g(x) \leq 2 \quad \text { for } x \in[1,2]
$$

The function g attains its minimum on the boundary of the interval $[1,2]$, so evaluation of g at these points gives

$$
\begin{aligned}
& g(1)=5 / 3 \\
& g(2)=5 / 3
\end{aligned}
$$

Therefore we conclude

$$
g(x) \geq 1 \quad \text { for } x \in[1,2] .
$$

Putting everything together, we have found

$$
1 \leq g(x) \leq 2, \quad \text { for } x \in[1,2]
$$

as requested.
(d) The derivative of g is given by

$$
g^{\prime}(x)=-\frac{2}{3} x+1
$$

which is a monotonous decreasing function. Therefore the minimum and maximum value are located on the boundary of the interval, leading to

$$
\begin{aligned}
& g^{\prime}(2) \leq g^{\prime}(x) \leq g^{\prime}(1) \\
& \begin{array}{l}
\Rightarrow-1 / 3 \leq g^{\prime}(x) \leq 1 / 3 \\
\Rightarrow
\end{array}
\end{aligned}
$$

So $k=1 / 3$.
(e) Remark: The final value of p_{1} should be given in 4 significant digits. Failure to do so results in a deduction of $\frac{1}{4}$ point if $p_{1}=5 / 3$ is stated.
Remark: Calculation of p_{2} using $p_{1}=5 / 3$ is incorrect, and causes a deduction of $\frac{1}{4}$ point.
Remark: The final value of p_{2} should be given in 4 significant digits. Failure to do so results in a deduction of $\frac{1}{4}$ point if $p_{2}={ }^{47} / 27$ is stated.
Straightforward application of the fixed point iteration gives

$$
\begin{aligned}
p_{1} & =g\left(p_{0}\right) \\
& =g(2.000) \\
& =1.667,
\end{aligned}
$$

and

$$
\begin{aligned}
p_{2} & =g\left(p_{1}\right) \\
& =g(1.667) \\
& =1.741 .
\end{aligned}
$$

