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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
, (1)

in which we determine yn+1 by the use of Taylor expansions around tn:

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3). (2)

We bear in mind that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn)

=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn).

Hence

yn+1 = yn + ∆ty′(tn) +
∆t2

2

(
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn)

)
+O(∆t3). (3)

After substitution of the predictor z∗n+1 = yn + ∆tf(tn, yn) into the corrector, and
after using a Taylor expansion around (tn, yn), we obtain for zn+1:

zn+1 = yn +
∆t

2
(f(tn, yn) + f(tn + ∆t, yn + ∆tf(tn, yn)))

= yn +
∆t

2

(
2f(tn, yn) + ∆t

(
∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y

)
+O(∆t2)

)
.

Herewith, one obtains

yn+1 − zn+1 = O(∆t3), and hence τn+1(∆t) =
O(∆t3)

∆t
= O(∆t2). (4)

(b) Let x1 = y and x2 = y′, then y′′ = x′2, and hence

x′2 + 4x1 = cos(t),
x′1 = x2.

(5)

We write this as {
x′1 = x2,
x′2 = −4x1 + cos(t).

(6)
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Finally, this is represented in the following matrix-vector form:(
x1

x2

)′
=

(
0 1
−4 0

)(
x1

x2

)
+

(
0

cos(t)

)
. (7)

In which, we have the following matrix A =

(
0 1
−4 0

)
and f =

(
0

cos(t)

)
. The initial

conditions are defined by

(
x1(0)
x2(0)

)
=

(
1
0

)
.

(c) Note: Every miscalculation in the calculation of w∗1 gives a subtraction of 1/4 point,
with at most 1/2 point being subtracted.

Note: The calculation of w1 must be consistent with the value for w∗1. If not, 1 point
is subtracted.

Note: Every miscalculation in the calculation of w1 gives a subtraction of 1/4 point,
with at most 1 point being subtracted.

Application of the integration method to the system x′ = Ax+ f , gives

w∗1 = w0 + ∆t
(
Aw0 + f

0

)
,

w1 = w0 + ∆t
2

(
Aw0 + f0 + Aw∗1 + f

1

)
.

(8)

With the initial condition w0 =

(
1
0

)
and ∆t = 0.1, this gives the following result

for the predictor

w∗1 =

(
1
0

)
+

1

10

((
0 1
−4 0

)(
1
0

)
+

(
0
1

))
=

(
1
−0.3

)
. (9)

The corrector is calculated as follows

w1 =

(
1
0

)
+

1

20

((
0 1
−4 0

)(
1
0

)
+

(
0
1

)
+

(
0 1
−4 0

)(
1
−0.3

)
+

(
0

cos( 1
10

)

))
=

(
0.9850
−0.3002

)
(d) Consider the test equation y′ = λy, then one gets

w∗n+1 = wn + ∆tλwn = (1 + ∆tλ)wn,

wn+1 = wn +
∆t

2
(λwn + λw∗n+1)

= wn +
∆t

2
(λwn + λ(wn + ∆tλwn))

=

(
1 + ∆tλ+

(∆tλ)2

2

)
wn.

Hence the amplification factor is given by

Q(λ∆t) = 1 + λ∆t+
(λ∆t)2

2
. (10)

(e) Note: Every miscalculation in the calculation of |Q(λ1∆t)|2 gives a subtraction of
1/4 point, with at most 1/2 point being subtracted.
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Note: The calculation of |Q(λ1∆t)|2 must be consistent with the eigenvalues found.
If not, 1/2 point is subtracted.

First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.

The eigenvalues of the matrix A are given by λ1 = 2i and λ2 = −2i.

Since we have complex eigenvalues it is sufficient to check when |Q(λ1∆t)| ≤ 1.

Note that

Q(λ1∆t) = 1 + 2i∆t+
(2i∆t)2

2

Q(λ1∆t) = 1− 2(∆t)2 + 2i∆t.

This implies that
|Q(λ1∆t)|2 = (1− 2∆t2)2 + (2∆t)2

and thus
|Q(λ1∆t)|2 = 1− 4∆t2 + 4∆t4 + 4∆t2 = 1 + 4∆t4.

It is easy to see that |Q(λ1∆t)|2 ≤ 1 only for ∆t = 0, which is not a valid step size
to integrate the initial value problem.

Therefore the considered method is never stable for the given problem.
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2. (a) The equation that needs to be solved is

f(p0) +
f(p1)− f(p0)

p1 − p0

(p2 − p0) = 0.

Solving this equation gives the steps:

f(p1)− f(p0)

p1 − p0

(p2 − p0) = −f(p0),

⇒ p2 − p0 = − p1 − p0

f(p1)− f(p0)
f(p0),

⇒ p2 = p0 −
p1 − p0

f(p1)− f(p0)
f(p0).

We write the above as one quotient:

p2 =
f(p1)− f(p0)

f(p1)− f(p0)
p0 −

p1 − p0

f(p1)− f(p0)
f(p0),

⇒ p2 =
p0f(p1)− p1f(p0)

f(p1)− f(p0)
. (11)

Now we have two options:

A. Rewrite the above formula to the form given in the exercise, with n = 2, and
conclude the formula for K1;

B. Fill in the formula for K1 into the formula for pn, with n = 2, given in the
exercise and show this results in the same formula.

Note: Only one of the options has to be present within your answer and earns at
most 1/2 point.

Option A: We can rewrite Equation (11) to:

p2 =
p0f(p1)− p1f(p0)

f(p1)− f(p0)
,

⇒ p2 =
p0f(p1)− p1f(p0)− p1f(p1) + p1f(p1)

f(p1)− f(p0)
,

⇒ p2 =
p1(f(p1)− f(p0))− (p1 − p0)f(p1)

f(p1)− f(p0)
,

⇒ p2 = p1 −
p1 − p0

f(p1)− f(p0)
f(p1),

which is indeed of the form given in the exercise. Therefore, K1 indeed has the
formula

K1 =
f(p1)− f(p0)

(p1 − p0)
.

Option B: The formula of the exercise, with n = 2 and the given formula for K1 is:

p2 = p1 −
p1 − p0

f(p1)− f(p0)
f(p1).
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We write the above as one quotient:

p2 =
f(p1)− f(p0)

f(p1)− f(p0)
p1 −

p1 − p0

f(p1)− f(p0)
f(p1),

⇒ p2 =
p0f(p1)− p1f(p0)

f(p1)− f(p0)
.

The above equation is equal to Equation (11). Therefore, K1 indeed has the formula

K1 =
f(p1)− f(p0)

p1 − p0

.

(b) Note: Every miscalculation in the calculation of K1 gives a subtraction of 1/4 point,
with at most 1/2 point being subtracted.

Given that p0 = 1 and p1 = 2, we first calculate K1, using the values from the given
table:

K1 =
f(p1)− f(p0)

p1 − p0

,

=
f(2)− f(1)

2− 1
,

= f(2)− f(1),

= 2− (−1),

= 3.

Note: Every miscalculation in the calculation of p2 gives a subtraction of 1/4 point,
with at most 1/2 point being subtracted.

Note: The value of p2 should be consistent with your value for K1.

Now p2 can be calculated with the Secant method, with n = 2 and the values from
the given table:

p2 = p1 −
f(p1)

K1

,

= 2− f(2)

3
,

= 2− 2

3
,

=
4

3
.

(c) The formula for K2 is given by

K2 =
f(p2)− f(p1)

p2 − p1

.

Note: Every miscalculation in the calculation of K2 gives a subtraction of 1/4 point,
with at most 3/4 point being subtracted.

Note: The value of K2 should be consistent with your formula for K2.
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This formula gives

K2 =
f(p2)− f(p1)

p2 − p1

,

=
f(4

3
)− f(2)
4
3
− 2

,

=

(
−2

9

)
− 2

−2
3

,

=
−20

9

−2
3

,

=
10

3
,

Note: Every miscalculation in the calculation of p3 gives a subtraction of 1/4 point,
with at most 3/4 point being subtracted.

Note: The value of p3 should be consistent with your value for K2.

and finally

p3 = p2 −
f(p2)

K2

,

=
4

3
−
f(4

3
)

10
3

,

=
4

3
−
−2

9
10
3

,

=
4

3
− 1

15
,

=
7

5
.
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3. (a) The right composite Rectangle rule is given by∫ b

a

y(x)dx ≈ h

n∑
j=1

y(xj),

with hn = b− a and xj = a+ jh for j = 0, . . . , n.

From h = π/2, a = 0 and b = 2π, it follows that n = 4 and the following table also
follows:

j 0 1 2 3 4
xj 0 π/2 π 3π/2 2π

y(xj) 1 2 1 0 1

Note: Every miscalculation in the calculation below gives a subtraction of 1/2 point,
with at most 1 point being subtracted.

Applying the right composite Rectangle rule with h = π/2 gives∫ 2π

0

y(x)dx ≈ π

2

(
y
(π

2

)
+ y (π) + y

(
3π

2

)
+ y (2π)

)
,

=
π

2
(2 + 1 + 0 + 1) ,

= 2π.

(b) The composite Trapezoidal rule is given by∫ b

a

y(x)dx ≈ h
n∑
j=1

1

2
(y(xj−1) + y(xj)) ,

with hn = b− a and xj = a+ jh for j = 0, . . . , n.

Note: Every miscalculation in the calculation below gives a subtraction of 1/2 point,
with at most 1/2 point being subtracted.

Applying the composite Trapezoidal rule with h = π/2 gives∫ 2π

0

y(x)dx ≈ π

2

(
1

2
y(0) + y

(π
2

)
+ y (π) + y

(
3π

2

)
+

1

2
y (2π)

)
,

=
π

2

(
1

2
+ 2 + 1 + 0 +

1

2

)
,

= 2π.

(c) Note: Your answers should be consistent with each other. For each inconsistency 1/4

point will be subtracted, with at most 11/2 points being subtracted.

The derivatives of the function y are given by

y′(x) = cos(x),

y′′(x) = − sin(x).

From this it follows

max
x∈[0,2π]

|y′(x)| = 1,

max
x∈[0,2π]

|y′′(x)| = 1.
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Therefore the explicit upper bounds for εR and εT are given by

εR ≤ πh,

εT ≤
π

6
h2.

(d) Note: No points are given if one of the following holds:

• no arguments are presented;

• the selected method is inconsistent with the arguments.

Note: Incorrect arguments on topics other than the amount of work and accuracy give
per such argument a subtraction of 1/4 point, with at most 1/2 points being subtracted.

From the above upper bounds one can conclude that

εT < εR

if h < 6. Hence, the error for the composite Trapezoidal method is much smaller for
small h then the error for the right composite Rectangle rule.

Furthermore, with n = b−a/h, the number of function evaluations of the right com-
posite Rectangle rule is n, and n+1 for the composite Trapezoidal rule. It also holds
that

n+ 1

n
≈ 1,

for large n. Hence, for small h the amount of work within both methods is similar.

Therefore the composite Trapezoidal method should be preferred for small h.
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