ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS

(WI3097TU WI3197Minor AESB2210-18 CTB2400)
January $31^{\text {st }}, 2020,13: 30-16: 30$

1. (a) The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{y_{n+1}-z_{n+1}}{\Delta t} \tag{1}
\end{equation*}
$$

with $y_{n+1}=y\left(t_{n+1}\right)$ the exact solution at time t_{n+1} and
z_{n+1} the numerical approximation obtained with $w_{n}=y_{n}$.
y_{n+1} can be expanded by the use of Taylor expansions around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t y^{\prime}\left(t_{n}\right)+\frac{\Delta t^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+\mathcal{O}\left(\Delta t^{3}\right) \tag{2}
\end{equation*}
$$

After substitution of the predictor $z_{n+1}^{*}=y_{n}+\Delta t f\left(t_{n}, y_{n}\right)$ into the corrector, and after using a Taylor expansion around $\left(t_{n}, y_{n}\right)$, we obtain for z_{n+1} :

$$
\begin{aligned}
z_{n+1} & =y_{n}+\frac{\Delta t}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n}+\Delta t, y_{n}+\Delta t f\left(t_{n}, y_{n}\right)\right)\right) \\
& =y_{n}+\frac{\Delta t}{2}\left(2 f\left(t_{n}, y_{n}\right)+\Delta t\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+y^{\prime}\left(t_{n}\right) \frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y}\right)+\mathcal{O}\left(\Delta t^{2}\right)\right), \\
& =y_{n}+\Delta t y^{\prime}\left(t_{n}\right)+\frac{\Delta t^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+\mathcal{O}\left(\Delta t^{3}\right) .
\end{aligned}
$$

So we obtain

$$
\begin{equation*}
y_{n+1}-z_{n+1}=\mathcal{O}\left(\Delta t^{3}\right), \text { and hence } \tau_{n+1}(\Delta t)=\frac{\mathcal{O}\left(\Delta t^{3}\right)}{\Delta t}=\mathcal{O}\left(\Delta t^{2}\right) \tag{3}
\end{equation*}
$$

(b) Application of the integration method to the system $\underline{x}^{\prime}=A \underline{x}+\underline{f}$, gives

$$
\begin{align*}
& \underline{w}_{1}^{*}=\underline{w}_{0}+\Delta t\left(A \underline{w}_{0}+\underline{f}_{0}\right), \tag{4}\\
& \underline{w}_{1}=\underline{w}_{0}+\frac{\Delta t}{2}\left(A \underline{w}_{0}+f_{0}+A \underline{w}_{1}^{*}+\underline{f}_{1}\right) .
\end{align*}
$$

With the initial condition $\underline{w}_{0}=\binom{0}{1}$ and $\Delta t=1$, this gives the following result for the predictor

$$
\begin{aligned}
\underline{w}_{1}^{*} & =\binom{0}{1}+1\left(\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right)\binom{0}{1}+\binom{0}{0}\right) \\
& =\binom{0}{1}+\binom{1}{-1}+\binom{0}{0} \\
& =\binom{1}{0} .
\end{aligned}
$$

The corrector is calculated as follows

$$
\begin{aligned}
\underline{w}_{1} & =\binom{0}{1}+\frac{1}{2}\left(\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right)\binom{0}{1}+\binom{0}{0}+\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right)\binom{1}{0}+\binom{0}{\sin (1)}\right) \\
& =\binom{0}{1}+\frac{1}{2}\left(\binom{1}{-1}+\binom{0}{0}+\binom{0}{0}+\binom{0}{\sin (1)}\right) \\
& =\binom{0}{1}+\frac{1}{2}\binom{1}{-1+\sin (1)} \\
& =\binom{1 / 2}{1 / 2+1 / 2 \sin (1)} .
\end{aligned}
$$

(c) The amplification factor $Q(\lambda \Delta t)$ is defined as

$$
Q(\lambda \Delta t)=\frac{w_{n+1}}{w_{n}}
$$

with w_{n+1} de result of applying the given method to the test equation $y^{\prime}=\lambda y$. Applying the method results in:

$$
\begin{aligned}
w_{n+1}^{*} & =w_{n}+\Delta t\left(\lambda w_{n}\right) \\
& =(1+\lambda \Delta t) w_{n},
\end{aligned}
$$

and

$$
\begin{aligned}
w_{n+1} & =w_{n}+\frac{\Delta t}{2}\left(\lambda w_{n}+\lambda\left((1+\lambda \Delta t) w_{n}\right)\right) \\
& =w_{n}+\frac{\Delta t}{2}\left(\lambda w_{n}+\left(\lambda+\lambda^{2} \Delta t\right) w_{n}\right) \\
& =w_{n}+\frac{\Delta t}{2}\left(2 \lambda w_{n}+\lambda^{2} \Delta t w_{n}\right) \\
& =w_{n}+\lambda \Delta t w_{n}+\frac{1}{2} \lambda^{2} \Delta t^{2} w_{n} \\
& =\left(1+\lambda \Delta t+\frac{1}{2} \lambda^{2} \Delta t^{2}\right) w_{n} .
\end{aligned}
$$

This finally leads to

$$
Q(\lambda \Delta t)=1+\lambda \Delta t+\frac{1}{2} \lambda^{2} \Delta t^{2} .
$$

(d) For stability,

$$
|Q(\lambda \Delta t)| \leq 1,
$$

must hold for all eigenvalues of the linear initial value problem, with Q the amplification factor of the given method.
First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues are substituted into the amplification factor.
The eigenvalues of the matrix A are given by $\lambda_{1}=0$ and $\lambda_{2}=-1$.
We first consider $\lambda_{1}=0$:

$$
\begin{aligned}
Q\left(\lambda_{1} \Delta t\right) & =1+0 \Delta t+\frac{1}{2}(0 \Delta t)^{2} \\
& =1
\end{aligned}
$$

From this it easily follows that

$$
\left|Q\left(\lambda_{1} \Delta t\right)\right| \leq 1
$$

and therefore $\lambda_{1}=0$ sets no restrictions on the value of Δt.
Now we consider $\lambda_{2}=-1$:

$$
\begin{aligned}
Q\left(\lambda_{2} \Delta t\right) & =1+(-1) \Delta t+\frac{1}{2}(-1 \Delta t)^{2} \\
& =1-\Delta t+\frac{1}{2} \Delta t^{2} .
\end{aligned}
$$

From this it follows that Δt should satisfy

$$
-1 \leq 1-\Delta t+\frac{1}{2} \Delta t^{2} \leq 1
$$

Consider the left inequality, which can be rewritten to:

$$
\frac{1}{2} \Delta t^{2}-\Delta t+2 \geq 0 .
$$

This inequality is satisfied if the quadratic function on the left has no real roots and there is one value of Δt such that the inequality is satisfied.
Substituting $\Delta t=1(\Delta t=0$ cannot be taken, as $\Delta t>0$ is given in the exercise $)$ gives

$$
3 / 2 \geq 0
$$

which is true. The discriminant of the function is given by

$$
D=(-1)^{2}-4 \cdot \frac{1}{2} \cdot 2=-3<0
$$

so the quadratic function has no real roots. Therefore the left inequality sets no restrictions on the value of Δt.
Consider the right inequality, which can be rewritten as:

$$
\begin{aligned}
1-\Delta t+\frac{1}{2} \Delta t^{2} & \leq 1 \\
-\Delta t+\frac{1}{2} \Delta t^{2} & \leq 0 \\
-1+\frac{1}{2} \Delta t & \leq 0 \quad \text { because } \Delta t>0 \text { is given. } \\
\frac{1}{2} \Delta t & \leq 1 \\
\Delta t & \leq 2
\end{aligned}
$$

From the above it follows that the method applied to the initial value problem is stable if

$$
\Delta t \leq 2
$$

2. (a) Evaluation of the ode in $x=x_{j}$ and replacing $y^{\prime \prime}\left(x_{j}\right)$ with a finite difference of $\mathcal{O}\left(\Delta x^{2}\right)$ gives

$$
-\frac{y\left(x_{j+1}\right)-2 y\left(x_{j}\right)+y\left(x_{j-1}\right)}{\Delta x^{2}}+\mathcal{O}\left(\Delta x^{2}\right)+4 y\left(x_{j}\right)=4 e^{2 j \Delta x} .
$$

Next, we neglect the truncation error, and set $w_{j} \approx y\left(x_{j}\right)$ to obtain

$$
\begin{equation*}
-\frac{w_{j+1}-2 w_{j}+w_{j-1}}{\Delta x^{2}}+4 w_{j}=4 e^{2 j \Delta x} \tag{5}
\end{equation*}
$$

which is the second of the given equations.
At the left boundary, $x=0$, we have $w_{0}=\frac{3}{2}$, which after substitution in (5) for $j=1$ gives

$$
-\frac{w_{2}-2 w_{1}}{\Delta x^{2}}+4 w_{1}=4 e^{2 \Delta x}+\frac{3}{2 \Delta x^{2}},
$$

which is the first of the given equations.
At the right boundary, $x=1$, we approximate $y^{\prime}(1)$ with a second-order central finite-difference, which transforms the boundary condition in:

$$
\frac{y\left(x_{n+2}\right)-y\left(x_{n}\right)}{2 \Delta x}+\mathcal{O}\left(\Delta x^{2}\right)=0,
$$

which after neglecting the errors results in

$$
w_{n+2}=w_{n} .
$$

Substitution of the above in (5) with $j=n+1$ and division by two gives

$$
-\frac{-w_{n+1}+w_{n}}{\Delta x^{2}}+2 w_{n+1}=2 e^{2},
$$

which is the third of the given equations.
(b) Each mistake in an equation (directly stated A and b) results in a subtraction of $1 / 4$ point, with at most the allocated points being subtracted.
We use $\Delta x=1 / 4$, so $n=4$ and then, from the given equations, one obtains the following system:

$$
\begin{aligned}
36 w_{1}-16 w_{2} & =4 e^{1 / 2}+24 \\
-16 w_{1}+36 w_{2}-16 w_{3} & =4 e \\
-16 w_{2}+36 w_{3}-16 w_{4} & =4 e^{3 / 2} \\
-16 w_{3}+18 w_{4} & =2 e^{2}
\end{aligned}
$$

This means with $\mathbf{w}=\left[w_{1}, w_{2}, w_{3}, w_{4}\right]^{T}$ that

$$
A=\left[\begin{array}{cccc}
36 & -16 & 0 & 0 \\
-16 & 36 & -16 & 0 \\
0 & -16 & 36 & -16 \\
0 & 0 & -16 & 18
\end{array}\right]
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
4 e^{1 / 2}+24 \\
4 e \\
4 e^{3 / 2} \\
2 e^{2}
\end{array}\right]
$$

3. (a) Approximating $f(x)$ by $L_{2}(x)$ and integration over x from a to b gives:

$$
\begin{aligned}
\int_{a}^{b} f(x) \mathrm{d} x & \approx \int_{a}^{b} L_{2}(x) \mathrm{d} x \\
& =\int_{a}^{b} f(a) L_{02}(x)+f\left(\frac{a+b}{2}\right) L_{12}(x)+f(b) L_{22}(x) \mathrm{d} x \\
& =f(a) \int_{a}^{b} L_{02}(x) \mathrm{d} x+f\left(\frac{a+b}{2}\right) \int_{a}^{b} L_{12}(x) \mathrm{d} x+f(b) \int_{a}^{b} L_{22}(x) \mathrm{d} x \\
& =f(a) \frac{b-a}{6}+f\left(\frac{a+b}{2}\right) \frac{2(b-a)}{3}+f(b) \frac{b-a}{6} \\
& =\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right) .
\end{aligned}
$$

(b) Let f be an arbitrary polynomial of degree 3 or lower. So f must be of the form

$$
f(x)=c_{1} x^{3}+c_{2} x^{2}+c_{3} x+c_{4},
$$

with $c_{i}, i=1,2,3,4$ constants. But this means:

$$
\begin{array}{rlrl}
& & f^{\prime}(x) & =3 c_{1} x^{2}+2 c_{2} x+c_{3}, \\
\Rightarrow & f^{\prime \prime}(x) & =6 c_{1} x+2 c_{2}, \\
\Rightarrow & f^{(3)}(x) & =6 c_{1}, \\
\Rightarrow & f^{(4)}(x) & =0, \\
\Rightarrow & \left|f^{(4)}(x)\right| & =0, \\
\Rightarrow & \max _{a \leq x \leq b}\left|f^{(4)}(x)\right| & =0, \\
\Rightarrow & m_{4} & =0 .
\end{array}
$$

The given inequality for the truncation error therefore becomes

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-I_{S}\right| \leq 0
$$

which shows that the Simpon's rule is exact for polynomials of degree 3 and lower.
(c) Applying Simpson's rule with $a=0, b=\pi$ and $f(x)=\sin (x)$ results in

$$
\begin{aligned}
\int_{0}^{\pi} \sin (x) \mathrm{d} x & \approx \frac{\pi}{6}(0+4 \cdot 1+0) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

We have $f^{(4)}(x)=\sin (x)$, so $m_{4}=1$, which gives

$$
\left|\int_{0}^{\pi} \sin (x) \mathrm{d} x-I\right| \leq \frac{\pi^{5}}{2880} .
$$

