DELFT UNIVERSITY OF TECHNOLOGY Faculty of Electrical Engineering, Mathematics and Computer Science

Examiner responsible: D. den Ouden-van der Horst
Examination reviewer: C. Vuik

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (WI3097TU WI3197Minor AESB2210-18 CTB2400)
 January $31^{\text {st }}, 2020,13: 30-16: 30$

Number of questions: This is an exam with 9 open questions, subdivided in 3 main questions.
Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will give less or no points.
Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic tools are not permitted.
Assessment In total 20 points can be earned. The final not-rounded grade is given by $P / 2$, where P is the number of points earned.

1. For the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$, we use the Modified Euler method:

$$
\left\{\begin{array}{l}
w_{n+1}^{*}=w_{n}+\Delta t f\left(t_{n}, w_{n}\right) \tag{1}\\
w_{n+1}=w_{n}+\frac{\Delta t}{2}\left(f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, w_{n+1}^{*}\right)\right)
\end{array}\right.
$$

Here Δt denotes the time step and w_{n} represents the numerical approximation of $y\left(t_{n}\right)$ after n time steps.
We also consider the following system of differential equations

$$
\frac{d}{d t}\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
0 & 1 \tag{2}\\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\sin (t)},
$$

combined with the initial conditions $x_{1}(0)=0$ and $x_{2}(0)=1$ into an initial value problem.
(a) Show that the local truncation error of the time integration method is of the order $\mathcal{O}\left(\Delta t^{2}\right)$.
(You are not allowed to use the test equation here.)
(b) Calculate one step with the Modified Euler method (1), in which $\Delta t=1$ and $t_{0}=0$, applied to (2) and use the given initial conditions.
(c) Determine the amplification factor $Q(\lambda \Delta t)$ of the integration method (1).
(d) Determine for which time steps $\Delta t>0$, the integration method (1), applied to the system (2), is stable.
2. We consider the following boundary-value problem:

$$
\left\{\begin{align*}
-y^{\prime \prime}(x)+4 y(x) & =4 e^{2 x}, \quad x \in(0,1), \tag{3}\\
y(0) & =\frac{3}{2}, \\
y^{\prime}(1) & =0
\end{align*}\right.
$$

In this exercise we try to approximate the exact solution with a numerical method. We solve the boundary value problem (3) using central finite differences with a local truncation error of $\mathcal{O}\left(\Delta x^{2}\right)$, upon setting $x_{j}=j \Delta x,(n+1) \Delta x=1$, where Δx denotes the uniform step size. After discretization we obtain the following formulas:

$$
\begin{aligned}
-\frac{w_{2}-2 w_{1}}{\Delta x^{2}}+4 w_{1} & =4 e^{2 \Delta x}+\frac{3}{2 \Delta x^{2}}, \\
-\frac{w_{j+1}-2 w_{j}+w_{j-1}}{\Delta x^{2}}+4 w_{j} & =4 e^{2 j \Delta x}, \\
-\frac{-w_{n+1}+w_{n}}{\Delta x^{2}}+2 w_{n+1} & =2 e^{2} .
\end{aligned} \quad \text { for } j \in\{2, \ldots, n\},
$$

(a) Give (with arguments) the derivation of this scheme.
(b) Choose $\Delta x=1 / 4$ and derive the system of equations resulting from this choice. Furthermore, rewrite this system to the form $A \mathbf{w}=\mathbf{b}$ with $\mathbf{w}=$ $\left[w_{1}, \ldots, w_{n+1}\right]^{T}$. Explicitly state A and \mathbf{b} in your answer.
3. To approximate $\int_{a}^{b} f(x) \mathrm{d} x$ Simpson's rule

$$
I_{S}=\frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)
$$

can be used. Simpson's rule is based on the assumption $f(x) \approx L_{2}(x)$, with $L_{2}(x)$ the quadratic Lagrange interpolation polynomial with nodes $x_{0}=a, x_{1}=\frac{a+b}{2}$ and $x_{2}=b$:

$$
L_{2}(x)=\sum_{k=0}^{2} L_{k 2}(x) f\left(x_{k}\right),
$$

where $L_{k 2}(x)$ is the quadratic Lagrange basis polynomial of node x_{k}.
We furthermore know the following integrals:

$$
\int_{x_{0}}^{x_{2}} L_{k 2}(x) \mathrm{d} x= \begin{cases}\frac{1}{6}\left(x_{2}-x_{0}\right) & \text { if } k \in\{0,2\}, \\ \frac{2}{3}\left(x_{2}-x_{0}\right) & \text { if } k=1\end{cases}
$$

Given is also that an upper bound for the truncation error of Simpson's rule I_{S} is

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-I_{S}\right| \leq \frac{1}{2880} m_{4}(b-a)^{5}
$$

where $m_{4}=\max _{a \leq x \leq b}\left|f^{(4)}(x)\right|$.
(a) Give a derivation of Simpson's rule I_{S}.
(b) Show that Simpson's rule is exact for polynomials of degree 3 and lower.
(c) Approximate $\int_{0}^{\pi} \sin (x) \mathrm{d} x$ with Simpson's rule and give an upper bound for the absolute value of the truncation error in this approximation.

