Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS
 (CTB2400)
 Thursday June 23 2022, 13:30-16:30

1. (a) The local truncation error is given by

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{y_{n+1}-z_{n+1}}{\Delta t} \tag{1}
\end{equation*}
$$

in which we determine y_{n+1} by the use of Taylor expansions around t_{n} :

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t y^{\prime}\left(t_{n}\right)+\frac{\Delta t^{2}}{2} y^{\prime \prime}\left(t_{n}\right)+\mathcal{O}\left(\Delta t^{3}\right) . \tag{2}
\end{equation*}
$$

We bear in mind that

$$
\begin{aligned}
y^{\prime}\left(t_{n}\right) & =f\left(t_{n}, y_{n}\right) \\
y^{\prime \prime}\left(t_{n}\right) & =\frac{d f\left(t_{n}, y_{n}\right)}{d t}=\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} y^{\prime}\left(t_{n}\right) \\
& =\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
y_{n+1}=y_{n}+\Delta t y^{\prime}\left(t_{n}\right)+\frac{\Delta t^{2}}{2}\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y} f\left(t_{n}, y_{n}\right)\right)+\mathcal{O}\left(\Delta t^{3}\right) . \tag{3}
\end{equation*}
$$

After substitution of the predictor $z_{n+1}^{*}=y_{n}+\Delta t f\left(t_{n}, y_{n}\right)$ into the corrector, and after using a Taylor expansion around $\left(t_{n}, y_{n}\right)$, we obtain for z_{n+1} :

$$
\begin{aligned}
z_{n+1} & =y_{n}+\frac{\Delta t}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n}+\Delta t, y_{n}+\Delta t f\left(t_{n}, y_{n}\right)\right)\right) \\
& =y_{n}+\frac{\Delta t}{2}\left(2 f\left(t_{n}, y_{n}\right)+\Delta t\left(\frac{\partial f\left(t_{n}, y_{n}\right)}{\partial t}+f\left(t_{n}, y_{n}\right) \frac{\partial f\left(t_{n}, y_{n}\right)}{\partial y}\right)+\mathcal{O}\left(\Delta t^{2}\right)\right) .
\end{aligned}
$$

Herewith, one obtains

$$
\begin{equation*}
y_{n+1}-z_{n+1}=\mathcal{O}\left(\Delta t^{3}\right), \text { and hence } \tau_{n+1}(\Delta t)=\frac{\mathcal{O}\left(\Delta t^{3}\right)}{\Delta t}=\mathcal{O}\left(\Delta t^{2}\right) \tag{4}
\end{equation*}
$$

(b) Let $x_{1}=y$ and $x_{2}=y^{\prime}$, then $y^{\prime \prime}=x_{2}^{\prime}$, and hence

$$
\begin{align*}
& x_{2}^{\prime}+4 x_{1}+4 x_{2}=\cos (\pi t), \\
& x_{1}^{\prime}=x_{2} . \tag{5}
\end{align*}
$$

We write this as

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{2}, \tag{6}\\
x_{2}^{\prime}=-4 x_{1}-4 x_{2}+\cos (\pi t) .
\end{array}\right.
$$

Finally, this is represented in the following matrix-vector form:

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{7}\\
-4 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos (\pi t)} .
$$

In which, we have the following matrix $A=\left(\begin{array}{cc}0 & 1 \\ -4 & -4\end{array}\right)$ and $\underline{f}=\binom{0}{\cos (\pi t)}$. The initial conditions are defined by $\binom{x_{1}(0)}{x_{2}(0)}=\binom{1}{0}$.
(c) Note: Every miscalculation in the calculation of \underline{w}_{1}^{*} gives a subtraction of $1 / 4$ point, with at most $1 / 2$ point being subtracted.
Note: The calculation of \underline{w}_{1} must be consistent with the value for \underline{w}_{1}^{*}. If not, 1 point is subtracted.
Note: Every miscalculation in the calculation of \underline{w}_{1} gives a subtraction of $1 / 4$ point, with at most 1 point being subtracted.
Application of the integration method to the system $\underline{x}^{\prime}=A \underline{x}+\underline{f}$, gives

$$
\begin{align*}
& \underline{w}_{1}^{*}=\underline{w}_{0}+\Delta t\left(A \underline{w}_{0}+\underline{f}_{0}\right), \\
& \underline{w}_{1}=\underline{w}_{0}+\frac{\Delta t}{2}\left(A \underline{w}_{0}+f_{0}+A \underline{w}_{1}^{*}+\underline{f}_{1}\right) . \tag{8}
\end{align*}
$$

With the initial condition $\underline{w}_{0}=\binom{1}{0}$ and $\Delta t=0.5$, this gives the following result for the predictor

$$
\underline{w}_{1}^{*}=\binom{1}{0}+0.5\left(\left(\begin{array}{cc}
0 & 1 \tag{9}\\
-4 & -4
\end{array}\right)\binom{1}{0}+\binom{0}{1}\right)=\binom{1}{-1.5} .
$$

The corrector is calculated as follows

$$
\begin{aligned}
\underline{w}_{1} & =\binom{1}{0}+0.25\left(\left(\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right)\binom{1}{0}+\binom{0}{1}+\left(\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right)\binom{1}{-1.5}+\binom{0}{0}\right) \\
& =\binom{0.625}{-0.25}
\end{aligned}
$$

(d) Consider the test equation $y^{\prime}=\lambda y$, then one gets

$$
\begin{aligned}
w_{n+1}^{*} & =w_{n}+\Delta t \lambda w_{n}=(1+\Delta t \lambda) w_{n} \\
w_{n+1} & =w_{n}+\frac{\Delta t}{2}\left(\lambda w_{n}+\lambda w_{n+1}^{*}\right) \\
& =w_{n}+\frac{\Delta t}{2}\left(\lambda w_{n}+\lambda\left(w_{n}+\Delta t \lambda w_{n}\right)\right) \\
& =\left(1+\Delta t \lambda+\frac{(\Delta t \lambda)^{2}}{2}\right) w_{n} .
\end{aligned}
$$

Hence the amplification factor is given by

$$
\begin{equation*}
Q(\lambda \Delta t)=1+\lambda \Delta t+\frac{(\lambda \Delta t)^{2}}{2} \tag{10}
\end{equation*}
$$

(e) Note: Every miscalculation in the calculation of $\left|Q\left(\lambda_{1} \Delta t\right)\right|^{2}$ gives a subtraction of $1 / 4$ point, with at most $1 / 2$ point being subtracted.

Note: The calculation of $\left|Q\left(\lambda_{1} \Delta t\right)\right|^{2}$ must be consistent with the eigenvalues found. If not, $1 / 2$ point is subtracted.
First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues are substituted into the amplification factor.
The eigenvalues of the matrix A are given by $\lambda_{1}=-2$ and $\lambda_{2}=-2$.
Since both eigenvalues are the same it is sufficient to check if $\left|Q\left(\lambda_{1} \Delta t\right)\right| \leq 1$. Since $Q\left(\lambda_{1} \Delta t\right)=1+\lambda_{1} \Delta t+\frac{1}{2}\left(\lambda_{1} \Delta t\right)^{2}$ we have to check that $\left|1-2 \Delta t+2(\Delta t)^{2}\right| \leq 1$. This leads to

$$
-1 \leq 1-2 \Delta t+2(\Delta t)^{2} \leq 1
$$

We start with the left inequality:

$$
-1 \leq 1-2 \Delta t+2(\Delta t)^{2}
$$

This can be written as

$$
0 \leq 2-2 \Delta t+2(\Delta t)^{2}
$$

This is a second order polynomial. Since the discriminant $(-2)^{2}-4 \times 2 \times 2$ is negative there are no real roots. The inequality holds for $\Delta t=0$ so it holds for all Δt-values. For the right inequality we have:

$$
1-2 \Delta t+2(\Delta t)^{2} \leq 1
$$

This is equivalent to

$$
-2 \Delta t+2(\Delta t)^{2} \leq 0
$$

Dividing

$$
2(\Delta t)^{2} \leq-2 \Delta t
$$

by $2 \Delta t$ leads to

$$
\Delta t \leq 1
$$

So the method is stable for all $\Delta t \leq 1$.
2. (a) The first order backward difference formula for the first derivative is given by

$$
d^{\prime}(t) \approx \frac{d(t)-d(t-h)}{h}
$$

Using $t=20$, and $h=10$ the approximation of the velocity is

$$
\frac{d(20)-d(10)}{10}=\frac{100-40}{10}=6(\mathrm{~m} / \mathrm{s}) .
$$

(b) Taylor polynomials are:

$$
\begin{aligned}
d(0) & =d(2 h)-2 h d^{\prime}(2 h)+2 h^{2} d^{\prime \prime}(2 h)-\frac{(2 h)^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right) \\
d(h) & =d(2 h)-h d^{\prime}(2 h)+\frac{h^{2}}{2} d^{\prime \prime}(2 h)-\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right) \\
d(2 h) & =d(2 h)
\end{aligned}
$$

We know that $Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h)$, which should be equal to $d^{\prime}(2 h)+$ $O\left(h^{2}\right)$. This leads to the following conditions:

$$
\begin{aligned}
\frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h} & =0, \\
-2 \alpha_{0}-\alpha_{1} & =1, \\
2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h & =0 .
\end{aligned}
$$

(c) The truncation error follows from the Taylor polynomials:

$$
d^{\prime}(2 h)-Q(h)=d^{\prime}(2 h)-\frac{d(0)-4 d(h)+3 d(2 h)}{2 h}=\frac{\frac{8 h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{0}\right)-4\left(\frac{h^{3}}{6} d^{\prime \prime \prime}\left(\xi_{1}\right)\right)}{2 h}=O\left(h^{2}\right) .
$$

(d) Using the new formula with $h=10$ we obtain the estimate:

$$
\frac{d(0)-4 d(10)+3 d(20)}{20}=\frac{0-4 \times 40+3 \times 100}{20}=7(\mathrm{~m} / \mathrm{s}) .
$$

3. (a) Newton-Raphson's method is an iterative method to find $p \in \mathbb{R}$ such that $f(p)=$ 0 . Suppose $f \in C^{2}[a, b]$. Let $\bar{x} \in[a, b]$ be an approximation of the root p such that $f^{\prime}(\bar{x}) \neq 0$, and suppose that $|p-\bar{x}|$ is small. Consider the first-degree Taylor polynomial about \bar{x} :

$$
\begin{equation*}
f(x)=f(\bar{x})+(x-\bar{x}) f^{\prime}(\bar{x})+\frac{(x-\bar{x})^{2}}{2} f^{\prime \prime}(\xi(x)), \tag{11}
\end{equation*}
$$

in which $\xi(x)$ between x and \bar{x}. Using that $f(p)=0$, equation (11) yields

$$
0=f(\bar{x})+(p-\bar{x}) f^{\prime}(\bar{x})+\frac{(p-\bar{x})^{2}}{2} f^{\prime \prime}(\xi(x))
$$

Because $|p-\bar{x}|$ is small, $(p-\bar{x})^{2}$ can be neglected, such that

$$
0 \approx f(\bar{x})+(p-\bar{x}) f^{\prime}(\bar{x}) .
$$

Note that the right-hand side is the formula for the tangent in $(\bar{x}, f(\bar{x}))$. Solving for p yields

$$
p \approx \bar{x}-\frac{f(\bar{x})}{f^{\prime}(\bar{x})}
$$

This motivates the Newton-Raphson method, that starts with an approximation p_{0} and generates a sequence $\left\{p_{n}\right\}$ by

$$
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}, \quad \text { for } \quad n \geq 1
$$

Remark 1 One can also give a graphical derivation following Figure 4.2 from the book.
(b) It follows from the linearization of the function \mathbf{f} about the iterate \mathbf{x}_{n-1} that

$$
\begin{aligned}
f_{1}(\mathbf{p}) & \approx f_{1}\left(\mathbf{p}^{(n-1)}\right)+\frac{\partial f_{1}}{\partial p_{1}}\left(\mathbf{p}^{(n-1)}\right)\left(p_{1}-p_{1}^{(n-1)}\right)+\ldots+\frac{\partial f_{1}}{\partial p_{m}}\left(\mathbf{p}^{(n-1)}\right)\left(p_{m}-p_{m}^{(n-1)}\right) \\
& \vdots \\
f_{m}(\mathbf{p}) & \approx f_{m}\left(\mathbf{p}^{(n-1)}\right)+\frac{\partial f_{m}}{\partial p_{1}}\left(\mathbf{p}^{(n-1)}\right)\left(p_{1}-p_{1}^{(n-1)}\right)+\ldots+\frac{\partial f_{m}}{\partial p_{m}}\left(\mathbf{p}^{(n-1)}\right)\left(p_{m}-p_{m}^{(n-1)}\right)
\end{aligned}
$$

Defining the Jacobian matrix of $\mathbf{f}(\mathbf{x})$ by

$$
\mathbf{J}(\mathbf{x})=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \ldots & \frac{\partial f_{1}}{\partial x_{m}}(\mathbf{x}) \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{x}) & \ldots & \frac{\partial f_{m}}{\partial x_{m}}(\mathbf{x})
\end{array}\right)
$$

the linearization can be written in the more compact form

$$
\mathbf{f}(\mathbf{p}) \approx \mathbf{f}\left(\mathbf{p}^{(n-1)}\right)+\mathbf{J}\left(\mathbf{p}^{(n-1)}\right)\left(\mathbf{p}-\mathbf{p}^{(n-1)}\right)
$$

The next iterate, $\mathbf{p}^{(n)}$, is obtained by setting the linearization equal to zero:

$$
\begin{equation*}
\mathbf{f}\left(\mathbf{p}^{(n-1)}\right)+\mathbf{J}\left(\mathbf{p}^{(n-1)}\right)\left(\mathbf{p}^{(n)}-\mathbf{p}^{(n-1)}\right)=0, \tag{12}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\mathbf{J}\left(\mathbf{p}^{(n-1)}\right) \mathbf{s}^{(n)}=-\mathbf{f}\left(\mathbf{p}^{(n-1)}\right), \tag{13}
\end{equation*}
$$

where $\mathbf{s}^{(n)}=\mathbf{p}^{(n)}-\mathbf{p}^{(n-1)}$. The new approximation equals $\mathbf{p}^{(n)}=\mathbf{p}^{(n-1)}+\mathbf{s}^{(n)}$. Finally, Newton-Raphson's formula for general nonlinear problems reads:

$$
\begin{equation*}
\mathbf{p}^{(n)}=\mathbf{p}^{(n-1)}-\mathbf{J}^{-1}\left(\mathbf{p}^{(n-1)}\right) \mathbf{f}\left(\mathbf{p}^{(n-1)}\right) \tag{14}
\end{equation*}
$$

(c) First, we rewrite the system into the form

$$
\begin{align*}
& f_{1}\left(w_{1}, w_{2}\right)=0, \\
& f_{2}\left(w_{1}, w_{2}\right)=0, \tag{15}
\end{align*}
$$

by setting

$$
\begin{align*}
& f_{1}\left(w_{1}, w_{2}\right):=18 w_{1}-9 w_{2}+\left(w_{1}\right)^{2}, \\
& f_{2}\left(w_{1}, w_{2}\right):=-9 w_{1}+18 w_{2}+\left(w_{2}\right)^{2}-9 . \tag{16}
\end{align*}
$$

We denote the Jacobi-matrix by $J\left(w_{1}, w_{2}\right)$. At the first step we compute

$$
\begin{equation*}
\underline{w}^{(1)}=\underline{w}^{(0)}-J\left(\underline{w}^{(0)}\right)^{-1} F\left(\underline{w}^{(0)}\right), \tag{17}
\end{equation*}
$$

where $\underline{w}=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]^{T}$. Note that

$$
J\left(\underline{w}^{(0)}\right)=\left(\begin{array}{cc}
18+2 w_{1}^{(0)} & -9 \tag{18}\\
-9 & 18+2 w_{2}^{(0)}
\end{array}\right) .
$$

Using $w_{1}^{(0)}=w_{2}^{(0)}=0$ we obtain:

$$
J\left(\underline{w}^{(0)}\right)=\left(\begin{array}{cc}
18 & -9 \tag{19}\\
-9 & 18
\end{array}\right) .
$$

This implies that

$$
J\left(\underline{w}^{(0)}\right)^{-1}=\frac{1}{18^{2}-81}\left(\begin{array}{cc}
18 & 9 \tag{20}\\
9 & 18
\end{array}\right) .
$$

Furthermore

$$
\begin{equation*}
F\left(\underline{w}^{(0)}\right)=\binom{0}{-9}, \tag{21}
\end{equation*}
$$

so

$$
\underline{w}^{(1)}=\binom{0}{0}-\frac{1}{18^{2}-81}\left(\begin{array}{cc}
18 & 9 \tag{22}\\
9 & 18
\end{array}\right)\binom{0}{-9}=\binom{\frac{1}{3}}{\frac{2}{3}} .
$$

