DELFT UNIVERSITY OF TECHNOLOGY
faculty of Electrical Engineering, Mathematics and Computer Science

Examiner responsible: C. Vuik
Examination reviewer: D. den Ouden-van der Horst

TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS (CTB2400)
 Thursday June 23 2022, 13:30-16:30

Number of questions: This is an exam with 12 open questions, subdivided in 3 main questions.
Answers All answers require arguments and/or shown calculation steps. Answers without arguments or calculation steps will not give points.
Tools Only a non-graphical, non-programmable calculator is permitted. All other electronic tools are not permitted.
Assessment In total 20 points can be earned. The final not-rounded grade is given by $P / 2$, where P is the number of points earned.

1. For the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$, we use the following integration method:

$$
\left\{\begin{array}{l}
w_{n+1}^{*}=w_{n}+\Delta t f\left(t_{n}, w_{n}\right) \tag{1}\\
w_{n+1}=w_{n}+\frac{\Delta t}{2}\left(f\left(t_{n}, w_{n}\right)+f\left(t_{n+1}, w_{n+1}^{*}\right)\right)
\end{array}\right.
$$

Here Δt denotes the timestep and w_{n} represents the numerical approximation at time t_{n}.
(a) Show that the local truncation error of the integration method is of the order $\mathcal{O}\left(\Delta t^{2}\right)$. (You are not allowed to use the test equation here.)

Consider the following initial value problem

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+4 y=\cos \pi t \tag{2}\\
y(0)=1, \quad \frac{d y}{d t}(0)=0
\end{array}\right.
$$

(b) Show that the above initial value problem can be written as

$$
\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
-4 & -4
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\cos \pi t} .
$$

Give the initial conditions for $x_{1}(0)$ and $x_{2}(0)$ as well.
(c) Calculate one step with integration method (1), in which $\Delta t=0.5$ and $t_{0}=0$, applied to (3) and use the given initial conditions.
(d) Show that the amplification factor for this integration method is given by: $Q(\lambda \Delta t)=$ $1+\lambda \Delta t+\frac{(\lambda \Delta t)^{2}}{2}$.
(e) Examine for which stepsizes Δt, the integration method (1), applied to the initial value problem (3), is stable.
2. In this exercise an estimate is determined for the velocity of a bike. The measured distances of the bike from the starting line are given in the table below.

$t(\mathrm{~s})$	0	10	20
$d(t)(\mathrm{m})$	0	40	100

(a) Give the first order backward difference formula for $d^{\prime}(2 h)$ and use this to determine an estimate of the velocity for $t=20$.
(b) We are looking for a difference formula of the first derivative of d in $2 h$ of the form:

$$
Q(h)=\frac{\alpha_{0}}{h} d(0)+\frac{\alpha_{1}}{h} d(h)+\frac{\alpha_{2}}{h} d(2 h), \text { such that } Q(h)-d^{\prime}(2 h)=O\left(h^{2}\right) .
$$

In the remainder of this exercise we use this formula. Show that the coefficients α_{0}, α_{1} and α_{2} should satisfy the next system:

$$
\begin{align*}
& \frac{\alpha_{0}}{h}+\frac{\alpha_{1}}{h}+\frac{\alpha_{2}}{h}=0, \\
&-2 \alpha_{0}-\alpha_{1}=1, \tag{2pt.}\\
& 2 \alpha_{0} h+\frac{1}{2} \alpha_{1} h \\
&=0 .
\end{align*}
$$

(c) The solution of this system is given by $\alpha_{0}=\frac{1}{2}, \alpha_{1}=-2$ and $\alpha_{2}=\frac{3}{2}$. Show that the truncation error can be written as: $Q(h)-d^{\prime}(2 h)=O\left(h^{2}\right)$.
(d) Use $\alpha_{0}=\frac{1}{2}, \alpha_{1}=-2$ and $\alpha_{2}=\frac{3}{2}$ in $Q(h)$ to give an estimate of the velocity at $t=20$.
3. We derive and use Newton-Raphson's method to solve a nonlinear problem.
(a) Given is the scalar nonlinear problem:

$$
\begin{equation*}
\text { Find } p \in \mathbb{R} \text { such that } f(p)=0 \tag{4}
\end{equation*}
$$

Derive Newton-Raphson's formula (a graphical explanation is also allowed), given by

$$
\begin{equation*}
p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}, \text { for } n \geq 1 \tag{5}
\end{equation*}
$$

(b) Derive Newton-Raphson's method for the general nonlinear problem:

$$
\begin{equation*}
\text { Find } \mathbf{p} \in \mathbb{R}^{m} \text { such that } \mathbf{f}(\mathbf{p})=\mathbf{0} \tag{6}
\end{equation*}
$$

(c) Perform one step of Newton-Raphson's method applied to the following nonlinear problem for w_{1} and w_{2} :

$$
\left\{\begin{array}{r}
18 w_{1}-9 w_{2}+w_{1}^{2}=0 \tag{7}\\
-9 w_{1}+18 w_{2}+w_{2}^{2}=9
\end{array}\right.
$$

Use $w_{1}=w_{2}=0$ as the initial estimate.

