Computer Science

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS
 (CTB2400)

Tuesday July 12 2022, 13:30-16:30

1. (a) The test equation is given by

$$
y^{\prime}=\lambda y .
$$

Application of the method to the test equation gives

$$
w_{n+1}=w_{n}+\frac{1}{2} \lambda \Delta t w_{n}+\frac{1}{2} \lambda \Delta t w_{n+1} .
$$

This is equivalent to

$$
\left(1-\frac{1}{2} \lambda \Delta t\right) w_{n+1}=\left(1+\frac{1}{2} \lambda \Delta t\right) w_{n} .
$$

Hence the amplification factor is given by

$$
Q(\lambda \Delta t)=\frac{1+\frac{1}{2} \lambda \Delta t}{1-\frac{1}{2} \lambda \Delta t}
$$

(b) The local truncation error for the test equation is given as

$$
\begin{equation*}
\tau_{n+1}(\Delta t)=\frac{e^{\lambda \Delta t}-Q(\lambda \Delta t)}{\Delta t} y_{n} . \tag{1}
\end{equation*}
$$

A Taylor expansion of $e^{\lambda \Delta t}$ around $\lambda \Delta t=0$ yields

$$
\begin{equation*}
e^{\lambda \Delta t}=1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}+\frac{1}{6}(\lambda \Delta t)^{3}+\mathcal{O}\left(\Delta t^{4}\right) \tag{2}
\end{equation*}
$$

A Taylor expansion of $Q(\lambda \Delta t)$ around $\frac{1}{2} \lambda \Delta t=0$ yields

$$
\begin{align*}
Q(\lambda \Delta t) & =\frac{1+\frac{1}{2} \lambda \Delta t}{1-\frac{1}{2} \lambda \Delta t} \\
& =\left(1+\frac{1}{2} \lambda \Delta t\right)\left(1+\frac{1}{2} \lambda \Delta t+\left(\frac{1}{2} \lambda \Delta t\right)^{2}+\left(\frac{1}{2} \lambda \Delta t\right)^{3}+\mathcal{O}\left(\Delta t^{4}\right)\right) \\
& =1+\lambda \Delta t+\frac{1}{2}(\lambda \Delta t)^{2}+\frac{1}{4}(\lambda \Delta t)^{3}+\mathcal{O}\left(\Delta t^{4}\right) . \tag{3}
\end{align*}
$$

Equations (2) and (3) are substituted into relation (1) to obtain

$$
\tau_{n+1}=-\frac{1}{12} y_{n} \lambda^{3} \Delta t^{2}+\mathcal{O}\left(\Delta t^{3}\right)
$$

hence

$$
T=-\frac{1}{12} y_{n} \lambda^{3} .
$$

(c) The characteristic equation of A is given by

$$
\begin{array}{ll}
\Rightarrow & \left|\begin{array}{ccc}
-1-\lambda & 2 & -2 \\
0 & -2-\lambda & -2 \\
0 & 2 & -2-\lambda
\end{array}\right|=0 \\
\Rightarrow & (-1-\lambda)\left|\begin{array}{cc}
-2-\lambda & -2 \\
2 & -2-\lambda
\end{array}\right|=0 \\
\Rightarrow & (-1-\lambda)\left((-2-\lambda)^{2}+4\right)=0 .
\end{array}
$$

The eigenvalues of A are calculated from this as $\lambda_{1}=-1$ and $\lambda_{2}=\overline{\lambda_{3}}=-2+2 i$.
Because λ_{2} and λ_{3} are each other complex conjugates, stability is governed by λ_{1} and λ_{2}.
For $\lambda_{1}=-1$ and $\Delta t=1$ we obtain

$$
\begin{aligned}
Q\left(\lambda_{1} \Delta t\right) & =Q(-1) \\
& =\frac{1+\frac{1}{2}(-1)}{1-\frac{1}{2}(-1)} \\
& =\frac{\frac{1}{2}}{\frac{3}{2}} \\
& =\frac{1}{3},
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left|Q\left(\lambda_{1} \Delta t\right)\right|=\frac{1}{3} \leq 1 \tag{4}
\end{equation*}
$$

For $\lambda_{2}=-2+2 i$ and $\Delta t=1$ we obtain

$$
\begin{aligned}
Q\left(\lambda_{2} \Delta t\right) & =Q(-2+2 i) \\
& =\frac{1+\frac{1}{2}(-2+2 i)}{1-\frac{1}{2}(-2+2 i)} \\
& =\frac{i}{2-i)} \\
& =-\frac{1}{5}+\frac{2}{5} i,
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left|Q\left(\lambda_{2} \Delta t\right)\right|=\sqrt{\frac{1}{25}+\frac{4}{25}}=\sqrt{\frac{1}{5}} \leq 1 \tag{5}
\end{equation*}
$$

From (4) and (5) it follows that the method applied to the given IVP is stable for $\Delta t=1$.
(d) First note that holds

$$
\mathbf{w}_{0}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right] .
$$

We can show that

$$
\begin{equation*}
A \mathbf{w}_{0}+\mathbf{b}=\mathbf{0} . \tag{6}
\end{equation*}
$$

The given value for \mathbf{w}_{1} is exactly equal to \mathbf{w}_{0}, so we also have as a direct consequence:

$$
\begin{equation*}
A \mathbf{w}_{1}+\mathbf{b}=\mathbf{0} . \tag{7}
\end{equation*}
$$

(6), (7) and the values for \mathbf{w}_{0} and \mathbf{w}_{1} can be substituted in the method, which leads to

$$
\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right],
$$

which is mathematically correct. Therefor \mathbf{w}_{1} as given is indeed the approximation of the exact solution at time $t=1$.
Alternative solution: \mathbf{w}_{1} can also be calculated explicitly be direct application of the method, which has the following calculations:

$$
\begin{array}{ll}
& \mathbf{w}_{0}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right], \\
\text { Method: } & \mathbf{w}_{1}=\mathbf{w}_{0}+\frac{1}{2}\left(A \mathbf{w}_{0}+\mathbf{b}+A \mathbf{w}_{1}+\mathbf{b}\right), \\
\Rightarrow & \left(I-\frac{1}{2} A\right) \mathbf{w}_{1}=\left(I+\frac{1}{2} A\right) \mathbf{w}_{0}+\mathbf{b}, \\
\Rightarrow & {\left[\begin{array}{ccc}
3 / 2 & -1 & 1 \\
0 & 2 & 1 \\
0 & -1 & 2
\end{array}\right] \mathbf{w}_{1}=\left[\begin{array}{c}
11 / 2 \\
1 \\
7
\end{array}\right]} \\
\Rightarrow & \mathbf{w}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]
\end{array}
$$

No points will be given if a different method is used or a different system of differential equations is solved.
2. (a) The linear Lagrangian interpolation polynomial, with nodes a and b, is given by

$$
p_{1}(x)=\frac{x-b}{a-b} f(a)+\frac{x-a}{b-a} f(b) .
$$

We approximate $f(x)$ by $p_{1}(x)$ in the integral $\int_{a}^{b} f(x) \mathrm{d} x$, from which follows:

$$
\begin{aligned}
\int_{a}^{b} f(x) \mathrm{d} x & \approx \int_{a}^{b} p_{1}(x) \mathrm{d} x \\
& =\int_{a}^{b}\left\{\frac{x-b}{a-b} f(a)+\frac{x-a}{b-a} f(b)\right\} \mathrm{d} x \\
& =\left[\frac{1}{2} \frac{(x-b)^{2}}{a-b} f(a)\right]_{a}^{b}+\left[\frac{1}{2} \frac{(x-a)^{2}}{b-a} f(b)\right]_{a}^{b} \\
& =\frac{1}{2}(b-a)(f(a)+f(b)) .
\end{aligned}
$$

This is the Trapezoidal rule.
(b) The magnitude of the error of the numerical integration over interval $[a, b]$ is given by

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{b} p_{1}(x) \mathrm{d} x\right| & =\left|\int_{a}^{b}\left(f(x)-p_{1}(x)\right) \mathrm{d} x\right| \\
& =\left|\int_{a}^{b} \frac{1}{2}(x-a)(x-b) f^{\prime \prime}(\xi(x)) \mathrm{d} x\right| \\
& \leq \frac{1}{2} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right| \int_{a}^{b}|(x-a)(x-b)| \mathrm{d} x \\
& =\frac{1}{12}(b-a)^{3} \max _{x \in[a, b]}\left|f^{\prime \prime}(x)\right|
\end{aligned}
$$

(c) The composite Trapezoidal rule for $\int_{0}^{1} x^{2} \mathrm{~d} x$ with $h=1 / 4$ is given by

$$
\begin{aligned}
\frac{1}{h}\left(\frac{1}{2} x_{0}^{2}+\left(\sum_{j=2}^{3} x_{j}^{2}\right)+\frac{1}{2} x_{4}^{2}\right) & =\frac{1}{4}\left(\frac{1}{2} 0^{2}+\frac{1}{4}^{2}+\frac{1}{2}^{2}+\frac{3}{4}^{2}+\frac{1}{2} 1^{2}\right) \\
& =\frac{11}{32}=0.34375
\end{aligned}
$$

(d) Since $\int_{0}^{1} x^{2} \mathrm{~d} x=\frac{1}{3}$ the absolute value of the truncation error is:

$$
\left|\frac{1}{3}-\frac{22}{64}\right|=\frac{1}{96}=0.01041 \overline{6}
$$

3. (a) Using central differences for the second order derivative at a node $x_{j}=j \Delta x$ gives

$$
\begin{equation*}
y^{\prime \prime}\left(x_{j}\right) \approx \frac{y_{j+1}-2 y_{j}+y_{j-1}}{\Delta x^{2}}=: Q(\Delta x) . \tag{8}
\end{equation*}
$$

Here, $y_{j}:=y\left(x_{j}\right)$. Next, we will prove that this approximation is second order accurate, that is $\left|y^{\prime \prime}\left(x_{j}\right)-Q(\Delta x)\right|=\mathcal{O}\left(\Delta x^{2}\right)$.
Using Taylor's Theorem around $x=x_{j}$ gives

$$
\begin{align*}
& y_{j+1}=y\left(x_{j}+\Delta x\right)=y\left(x_{j}\right)+\Delta x y^{\prime}\left(x_{j}\right)+\frac{\Delta x^{2}}{2} y^{\prime \prime}\left(x_{j}\right)+\frac{\Delta x^{3}}{3!} y^{\prime \prime \prime}\left(x_{j}\right)+O\left(\Delta x^{4}\right) \\
& y_{j-1}=y\left(x_{j}-\Delta x\right)=y\left(x_{j}\right)-\Delta x y^{\prime}\left(x_{j}\right)+\frac{\Delta x^{2}}{2} y^{\prime \prime}\left(x_{j}\right)-\frac{\Delta x^{3}}{3!} y^{\prime \prime \prime}\left(x_{j}\right)+O\left(\Delta x^{4}\right) \tag{9}
\end{align*}
$$

Substitution of these expressions into $Q(\Delta x)$ gives

$$
\left|y^{\prime \prime}\left(x_{j}\right)-Q(\Delta x)\right|=\mathcal{O}\left(\Delta x^{2}\right) .
$$

This leads to the following discretisation formula for internal grid nodes:

$$
\begin{equation*}
\frac{-w_{j-1}+2 w_{j}-w_{j+1}}{\Delta x^{2}}+\left(x_{j}+1\right) w_{j}=x_{j}^{3}+x_{j}^{2}-2 \tag{10}
\end{equation*}
$$

Here, w_{j} represents the numerical approximation of the solution y_{j}. To deal with the boundary $x=0$, we use a virtual node at $x=-\Delta x$, and we define $y_{-1}:=y(-\Delta x)$. Then, using central differences at $x=0$ gives

$$
\begin{equation*}
0=y^{\prime}(0) \approx \frac{y_{1}-y_{-1}}{2 \Delta x}=: Q_{b}(\Delta x) . \tag{11}
\end{equation*}
$$

Using Taylor's Theorem, gives

$$
\begin{aligned}
Q_{b}(\Delta x) & = \\
& =\frac{y(0)+\Delta x y^{\prime}(0)+\frac{\Delta x^{2}}{2} y^{\prime \prime}(0)+O\left(\Delta x^{3}\right)}{2 \Delta x} \\
& -\frac{y(0)-\Delta x y^{\prime}(0)+\frac{\Delta x^{2}}{2} y^{\prime \prime}(0)+O\left(\Delta x^{3}\right)}{2 \Delta x} \\
& =y^{\prime}(0)+\mathcal{O}\left(\Delta x^{2}\right) .
\end{aligned}
$$

Again, we get an error of $\mathcal{O}\left(\Delta x^{2}\right)$.
(b) With respect to the numerical approximation at the virtual node, we get

$$
\begin{equation*}
\frac{w_{1}-w_{-1}}{2 \Delta x}=0 \quad \Leftrightarrow \quad w_{-1}=w_{1} . \tag{12}
\end{equation*}
$$

The discretisation at $x=0$ is given by

$$
\begin{equation*}
\frac{-w_{-1}+2 w_{0}-w_{1}}{\Delta x^{2}}+w_{0}=-2 . \tag{13}
\end{equation*}
$$

Substitution of equation (12) into the above equation, yields

$$
\begin{equation*}
\frac{2 w_{0}-2 w_{1}}{\Delta x^{2}}+w_{0}=-2 \tag{14}
\end{equation*}
$$

Subsequently, we consider the boundary $x=1$. To this extent, we consider its neighbouring point x_{n-1} and substitute the boundary condition $w_{n}=y(1)=y_{n}=1$ into equation (10) to obtain

$$
\begin{align*}
& \frac{-w_{n-2}+2 w_{n-1}}{\Delta x^{2}}+\left(x_{n-1}+1\right) w_{n-1} \tag{15}\\
= & x_{n-1}^{3}+x_{n-1}^{2}-2+\frac{1}{\Delta x^{2}} \tag{16}\\
= & (1-\Delta x)^{3}+(1-\Delta x)^{2}-2+\frac{1}{\Delta x^{2}} . \tag{17}
\end{align*}
$$

This concludes our discretisation of the boundary conditions. In order to get a symmetric discretisation matrix, one divides equation (14) by 2 .

Next, we use $\Delta x=1 / 3$. From equations $(10,14,17)$ we obtain the following system

$$
\begin{aligned}
9 \frac{1}{2} w_{0}-9 w_{1} & =-1 \\
-9 w_{0}+19 \frac{1}{3} w_{1}-9 w_{2} & =-\frac{50}{27} \\
-9 w_{1}+19 \frac{2}{3} w_{2} & =\frac{209}{27} .
\end{aligned}
$$

(c) The Gershgorin circle theorem states that the eigenvalues of a square matrix \mathbf{A} are located in the complex plane in the union of circles

$$
\begin{equation*}
\left|z-a_{i i}\right| \leq \sum_{\substack{j \neq i \\ j=1}}^{n}\left|a_{i j}\right| \quad \text { where } \quad z \in \mathbb{C} \tag{18}
\end{equation*}
$$

For the $n \times n$ matrix given in part (c) we have

- For $i=1$:

$$
\begin{equation*}
\left|z-\left(\frac{2}{(\Delta x)^{2}}+1\right)\right| \leq \frac{1}{(\Delta x)^{2}} \quad \Rightarrow \quad|\lambda|_{\min } \geq 1+\frac{1}{(\Delta x)^{2}} \tag{19}
\end{equation*}
$$

- For $i=2 \ldots n-1$:

$$
\begin{equation*}
\left|z-\left(\frac{2}{(\Delta x)^{2}}+1\right)\right| \leq \frac{2}{(\Delta x)^{2}} \quad \Rightarrow \quad|\lambda|_{\min } \geq 1 \tag{20}
\end{equation*}
$$

- For $i=n$:

$$
\begin{equation*}
\left|z-\left(\frac{2}{(\Delta x)^{2}}+1\right)\right| \leq \frac{1}{(\Delta x)^{2}} \quad \Rightarrow \quad|\lambda|_{\min } \geq 1+\frac{1}{(\Delta x)^{2}} \tag{21}
\end{equation*}
$$

Hence, a lower bound for the smallest eigenvalue is 1 . For a symmetric matrix \mathbf{A} we have

$$
\begin{equation*}
\left\|\mathbf{A}^{-1}\right\|=\frac{1}{|\lambda|_{\min }} \leq 1 \tag{22}
\end{equation*}
$$

This proves that the finite-difference scheme is stable, e.g., with constant $C=1$.

