Material to know for Numerical methods for differential equations (wi3097)

For all subjects we assume that you know the definition/expression and you are able to use these concepts.

- 1. Introduction numerical analysis
 - Taylorpolynomial and remainder term
 - Big O symbol and computational rules
 - Definition absolute and relative error
 - Floating point numbers and rounding error
- 2. Interpolation
 - Linear interpolation formula, Lagrange interpolation, if the formulas are given you should be able to use them.
 - Remainder term for Linear and Lagrange interpolation
 - Be familiar with the definition of a spline. If the formulas are given you should be able to construct a cubic spline.
- 3. Numerical differentiation
 - Forward, Backward and central difference for the first order derivative
 - Be able to derive general difference formulas for first order and higher order derivatives.
 - derivation of the truncation and rounding error
 - Richardson error estimate
- 4. Non-linear equations
 - Bisection and fixed point method, know the formulas and be able to use them
 - Termination criterion for bisection and a linear convergent process, derivation and application
 - Be able to give a graphical convergence/divergence plot of the fixed point iteration
 - Newton Raphson method know the formulas and be able to use them, including graphical interpretation and local convergence
 - Be able to derive the quadratic convergence of the Newton Raphson method
 - Use of the Newton Raphson method for non-linear systems
 - Application: non-linear boundary value problem
- 5. Numerical integration
 - Rectangular rule and Trapezoidal rule, know the formulas and be able to use them
 - For both methods you are able to derive the truncation and rounding error behavior.
 - For both methods you can give the composite rule and the remainder term of the composite rule.

- 6. Initial value problems
 - Forward Euler, Backward Euler, Implicit Trapezoidal rule, Modified Euler
 - If the formulas of RK4 are given you are able to use them
 - explicit and implicit
 - derivation of local truncation error
 - Order global error = order local truncation error effect of rounding errors
 - Efficiency comparison of various numerical methods
 - Stability, stable differential equation
 - Test equation, stability numerical method
 - Derivation of amplification factor $Q(h\lambda)$, investigate when $|Q(h\lambda)| \leq 1$
 - Analysis of the stability of a general differential equation
 - Stability numerical method for a general differential equation
 - If a numerical method is stable the the order of the global and local truncation error are the same
 - Be able to apply a numerical method to a system of differential equations
 - rewrite a higher order initial value problem to a system of first order differential equations
 - numerical stability of a (general) system of first order differential equations, use of a stability region
 - implicit methods are very suitable for stiff systems
- 7. Boundary value problems
 - Norm of a vector and the norm of a symmetric matrix
 - Condition number of a system of equations
 - Know the Gershgorin theorem and be able to use it
 - Be able to discretize a general second order boundary value problem with finite differences
 - Derive the local truncation error
 - Use of the boundary conditions and construction of the resulting linear system
 - Definition of stability, global error. If the method is stable, then the order of the global and local truncation error are the same
 - Use of a Neumann boundary condition and derivation of the local truncation error, use of a virtual point