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Outline of the Talk

Objective of the talk:

A fast, robust iterative solver for the 2D Helmholtz equation in inhomogeneous media with high wave numbers

(of typically 300–600 wave numbers in a unit square domain)

Outline:

• Problem definition: Helmholtz equation, discretization

• Krylov subspace method and multigrid

• Multigrid based preconditioner

• Numerical examples

• Conclusion
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Time-harmonic (Helmholtz) wave equation

Helmholtz problem: Given k = k(x, y), the wave number, in a domain Ω ⊂ R
2. Find u ∈ C such that

the following PDE is satisfied:

Lu ≡
(

−∂xx − ∂yy − (1 − iα)k2
)

u = f in Ω

∂u

∂ν
− iku − i

2k

∂2u

∂τ 2
= 0 on Γ = ∂Ω

with:

• ν the outward normal direction to Γ,

• τ the tangential direction to Γ

• k the wavenumber with k = 2πf/c. f and c are the frequency and the speed of sound, respectively.

• 0 ≤ α � 1

Example of applications: aeroacoustics (sound produced by an engine), electromagnetics (lithophotography),

geophysics (subsurface mapping).

Typical in geophysical applications:

• High wave number

• Extreme constrast of k
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Discretization

Few discretization methods:

• Finite difference

• Finite element

In our application, finite difference is used. This is common practice in geophysics in which simple domain is

usually considered (e.g. rectangular).

• compact, 5 (or 9)-point finite difference stencil [Harari and Turkel, 1995]

• boundary: one-sided finite difference, O(h) (or central difference, O(h2))

This leads to the linear system

Ax = b, A ∈ C
N×N , b, x ∈ C

N ,

where A is a sparse, large, highly indefinite symmetric matrix.

For high resolution solutions, very fine grid is required.
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Numerical methods for solving Ax = b

We solve the linear system iteratively using a Krylov subspace method.

Iterative methods: Krylov subspace methods

Definition

Kj(A, r0) = span{r0, Ar0, A
2r0, · · · , Aj−1r0}

where Kj(A, r0) is the j-th Krylov subspace and r0 = b−Ax0 the initial residual related to the starting vector

x0.

• requires only matrix/vector multiplications (of order O(N)) (exploiting sparsity of A)

Computational constraint:

• The Krylov method is chosen such that the iteration can be performed within limited computer storage

• The Krylov method with constant amount of work per iteration is the method of choice

• With respect to the preconditioner, the method should be less stringent to the symmetry property of the

preconditioning matrix

Currently we choose BiCGSTAB. [However, if M−1A is symmetric, COCG or SQMR may be the best choice]
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Numerical methods for solving Ax = b: illustration

Illustrative problem: The Helmholtz problem in homogeneous medium. Ω = (0, 1)2, k = 50, N = 2502, with

Sommerfeld’s condition at x = 0, 1 and y = 1, and Dirichlet condition at y = 0. Without residual smoother.
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For unpreconditioned case, COCG outperforms BiCGSTAB. GMRES is found to be less effective as compared

to Bi-CGSTAB

Workshop on the frequency domain wave equation. Delft, 24 September 2004 (slide 6)



Multigrid

Multigrid is known as a good and efficient method for elliptic PDE. For Poisson equation, e.g., the complexity

can be up to order O(N).

Multigrid principles:

• Error smoothing → some iterative methods may have smoothing property of the error

• Coarse grid correction → a smooth error can be well approximated on the coarse grid

Multigrid for the Helmholtz equation: the problem is indefinite,

• standard iteration (e.g. Jacobi) does not converge. Multigrid only converges if the coarsest grid is fine

enough to represent smooth frequencies → the convergence is limited by the coarsest grid. Therefore, the

method is no longer O(N).

• eigenvalues close to the origin may change signs → convergence degradation

Example: Standard multigrid, constant k, N = 2562, 0.8-JAC, V(1,1)

k 1 2.5 5

Iter 17 14 div

ρ 0.535 0.44 >1.0
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Multigrid based preconditioner

The idea: use multigrid as the preconditioner to accelerate the Krylov subspace iteration.

Meaning: solve

AC−1x̃ = b, x̃ = Cx,

where C ∈ C
N×N is the preconditioner and C−1 is approximated by multigrid.

Example: C = A. C−1 is approximated with one V(1,1) multigrid iteration

k 1 2.5 5 20

GMRES 8 9 14 93

Bi-CGSTAB 5 5 11 >100

Choosing C = A does not result in a good method. As the problem becomes more indefinite (more eigenvalues

change signs) for larger k, the method diverges
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Multigrid based preconditioner

Find C such that:

• AC−1 better conditioned than A

• C−1 easy to solve using multigrid

Complex shift of the Laplace operator as the preconditioner:

M := −∂xx − ∂yy − (β1 − iβ2)k
2, β1, β2 ∈ R, i =

√
−1.

C is built based on discretization of M.

For operator based preconditioner:

• the convergence of CG-like iteration can be made h-independent

• for AC−1, h-independent convergence is obtained if the same boundary condition is used in L and M.

Workshop on the frequency domain wave equation. Delft, 24 September 2004 (slide 9)



Multigrid based preconditioner

Case 1: M is a complex, symmetric positive definite operator (CSPD). In this case β1 ≤ 0.

We find for AC−1 that [E, Vuik, Oosterlee, 2004]:

• |λ|max → 1

• |λ|min ∼ O(ε/k2)

• the condition number κ is minimal if (β1, β2) = (0,±1)

Example: Multigrid as solver for C(0,1). Constant k, N = 2562, 0.8-JAC, V(1,1)

k 1 2.5 5 20

Iter 10 8 8 8

ρ 0.310 0.269 0.201 0.201
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Multigrid based preconditioner

Case 2: M is a more general operator, but is still suitable for multigrid convergence. For example: β1 = 1

and β2 ∈ R.

We investigate the following pairs: (β1, β2) = (1, 1), (1, 0.5).
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Numerical example

Problem 1: Homogeneous medium. Ω = (0, 1)2, k = 50, N = 2502.

Convergence with respect to k: Bi-CSGTAB, F(1,1) multigrid cycle. Second order absorbing condition.

Multigrid components:

• for (β1, β2) = (0, 1): 0.8-JAC

• for (β1, β2) = (1, 1): 0.7-JAC

• for (β1, β2) = (1, 0.5): 0.5-JAC

• Coarse grid operator: Galerkin

• Prolongator: bi-linear interpolation/matrix dependent

• Restrictor: full weighting

k :

(β1, β2) 40 50 80 100 150 200 500 600

(0,1) 57 (0.44) 73 (0.92) 112 (4.3) 126 (7.7) 188 (28.5) – – –

(1,1) 36 (0.30) 39 (0.51) 54 (2.2) 74 (4.5) 90 (13.9) 114 (30.8) 291 (515) 352 (890)

(1,0.5) 26 (0.21) 31 (0.40) 44 (1.8) 52 (3.3) 73 (10.8) 92(25.4) 250 (425) 298 (726)

Workshop on the frequency domain wave equation. Delft, 24 September 2004 (slide 12)



Numerical Example

Problem 2: Wedge problem. Ω = (0, 600) × (0, 1000) m2. Bi-CSSTAB. Second order absorbing condition.

Multigrid components:

• prolongator : matrix dependent

• restrictor : full weighting

(β1, β2)

f (Hz) Grid (0,1) (1,1) (1,0.5)

10 75 × 125 52 (1.2) 30 (0.67) 19 (0.42)

20 149 × 249 91 (8.8) 45 (4.5) 27 (2.8)

40 301 × 501 161 (66.1) 80 (33.5) 49 (20.8)

60 481 × 801 232 (247.3) 118 (127.6) 66 (71.9)

In [Plessix, Mulder, 2004], Separation of Variables based preconditioner does not converge for f = 50 Hz after

2000 iterations.
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Numerical Example

Solution of wedge problem, f = 50 Hz.
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Numerical Example

Problem 3: Marmousi. Ω = (0, 6000) × (0, 1600) m2. Bi-CGSTAB and F(1,1) multigrid. Second order

absorbing condition.

(β1, β2)

f (Hz) Grid damping (0,1) (1,1) (1,0.5)

1 751 × 201 0.0% 74 (37.5) 54 (27.6) 38 (19.7)

5.0% 64 (32.5) 53 (27.3) 31 (16.5)

10 751 × 201 0.0% 180 (89.2) 84 (42.4) 47 (24.2)

5.0% 96 (48.3) 48 (24.8) 28 (15.0)

20 1501 × 401 0.0% 414 (832.3) 168 (308.7) 104 (212.1)

5.0% 145 (294.7) 64 (133.4) 37 (79.3)

30 2001 × 534 0.0% 458 (1724.8) 211 (799.4) 136 (519.4)

5.0% 119 (455.3) 61 (238.4) 38 (151.9)

In [Plessix, Mulder, 2004], Separation of Variables based preconditioner does not converge for f = 30 Hz after

2000 iterations.
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Numerical Example

Solution of Marmousi problem, f = 30 Hz. Figure (b): 0 % damping. (c): 5 % damping.
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Conclusion

• A new class of preconditioner for the Helmholtz equation based on Shifted-Laplace operator is proposed

and analyzed.

• This class of preconditioners clusters the eigenvalues around the origin, which give some very small eigen-

values

• Numerical tests show the effectiveness of the preconditioners

• Extension to varying k can be done easily
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