Multigrid-based preconditioners for the heterogeneous Helmholtz equation

Yogi A. Erlangga, Cornelis Vuik, Cornelis W. Oosterlee

Department of Applied Mathematical Analysis Delft University of Technology, The Netherlands

Email: Y.A.Erlangga@EWI.TUDelft.nl,

The research is financially supported by the Dutch Ministry of Economic Affairs under the project BTS01044

Outline of the Talk

Objective of the talk:

A fast, robust iterative solver for the 2D Helmholtz equation in inhomogeneous media with high wave numbers (of typically 300–600 wave numbers in a unit square domain)

Outline:

- Problem definition: Helmholtz equation, discretization
- Krylov subspace method and multigrid
- Multigrid based preconditioner
- Numerical examples
- Conclusion

Time-harmonic (Helmholtz) wave equation

Helmholtz problem: Given k = k(x, y), the wave number, in a domain $\Omega \subset \mathbb{R}^2$. Find $u \in \mathbb{C}$ such that the following PDE is satisfied:

$$\mathcal{L}u \equiv \left(-\partial_{xx} - \partial_{yy} - (1 - i\alpha)k^2\right)u = f \text{ in } \Omega$$

$$\frac{\partial u}{\partial \nu} - iku - \frac{i}{2k}\frac{\partial^2 u}{\partial \tau^2} = 0 \text{ on } \Gamma = \partial\Omega$$

with:

- ν the outward normal direction to Γ ,
- τ the tangential direction to Γ
- \bullet k the wavenumber with $k=2\pi f/c$. f and c are the frequency and the speed of sound, respectively.
- $0 < \alpha \ll 1$

Example of applications: aeroacoustics (sound produced by an engine), electromagnetics (lithophotography), geophysics (subsurface mapping).

Typical in geophysical applications:

- High wave number
- Extreme constrast of k

Discretization

Few discretization methods:

- Finite difference
- Finite element

In our application, finite difference is used. This is common practice in geophysics in which simple domain is usually considered (e.g. rectangular).

- compact, 5 (or 9)-point finite difference stencil [Harari and Turkel, 1995]
- ullet boundary: one-sided finite difference, $\mathcal{O}(h)$ (or central difference, $\mathcal{O}(h^2)$)

This leads to the linear system

$$Ax = b, \ A \in \mathbb{C}^{N \times N}, \ b, x \in \mathbb{C}^N,$$

where A is a sparse, large, highly indefinite symmetric matrix.

For high resolution solutions, very fine grid is required.

Numerical methods for solving Ax = b

We solve the linear system iteratively using a Krylov subspace method.

Iterative methods: Krylov subspace methods

Definition

$$\mathcal{K}^{j}(A, r_0) = \mathsf{span}\{r_0, Ar_0, A^2r_0, \cdots, A^{j-1}r_0\}$$

where $\mathcal{K}^j(A, r_0)$ is the j-th Krylov subspace and $r_0 = b - Ax_0$ the initial residual related to the starting vector x_0 .

ullet requires only matrix/vector multiplications (of order $\mathcal{O}(N)$) (exploiting sparsity of A)

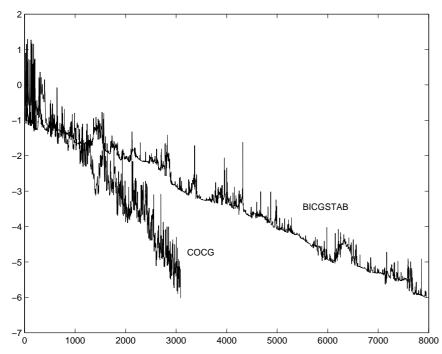
Computational constraint:

- The Krylov method is chosen such that the iteration can be performed within limited computer storage
- The Krylov method with constant amount of work per iteration is the method of choice
- With respect to the preconditioner, the method should be less stringent to the symmetry property of the preconditioning matrix

Currently we choose BiCGSTAB. [However, if $M^{-1}A$ is symmetric, COCG or SQMR may be the best choice]

Numerical methods for solving Ax = b: illustration

Illustrative problem: The Helmholtz problem in homogeneous medium. $\Omega=(0,1)^2$, k=50, $N=250^2$, with Sommerfeld's condition at x=0,1 and y=1, and Dirichlet condition at y=0. Without residual smoother.



 \overline{z}_{8000} x-axis: number of iteration, y-axis: $\log_{10}\left(\|r\|_2/\|b\|_2\right)$

For unpreconditioned case, COCG outperforms BiCGSTAB. GMRES is found to be less effective as compared to Bi-CGSTAB

Multigrid

Multigrid is known as a good and efficient method for elliptic PDE. For Poisson equation, e.g., the complexity can be up to order O(N).

Multigrid principles:

- Error smoothing → some iterative methods may have smoothing property of the error
- ullet Coarse grid correction o a smooth error can be well approximated on the coarse grid

Multigrid for the Helmholtz equation: the problem is indefinite,

- ullet standard iteration (e.g. Jacobi) does not converge. Multigrid only converges if the coarsest grid is fine enough to represent smooth frequencies \to the convergence is limited by the coarsest grid. Therefore, the method is no longer O(N).
- eigenvalues close to the origin may change signs → convergence degradation

Example: Standard multigrid, constant k, $N=256^2$, 0.8-JAC, V(1,1)

k	1	2.5	5
Iter	17	14	div
ρ	0.535	0.44	>1.0

The idea: use multigrid as the preconditioner to accelerate the Krylov subspace iteration.

Meaning: solve

$$AC^{-1}\tilde{x} = b, \qquad \tilde{x} = Cx,$$

where $C \in \mathbb{C}^{N \times N}$ is the preconditioner and C^{-1} is approximated by multigrid.

Example: C = A. C^{-1} is approximated with one V(1,1) multigrid iteration

k	1	2.5	5	20
GMRES	8	9	14	93
Bi-CGSTAB	5	5	11	>100

Choosing C = A does not result in a good method. As the problem becomes more indefinite (more eigenvalues change signs) for larger k, the method diverges

Find C such that:

- \bullet AC^{-1} better conditioned than A
- ullet C^{-1} easy to solve using multigrid

Complex shift of the Laplace operator as the preconditioner:

$$\mathcal{M} := -\partial_{xx} - \partial_{yy} - (\beta_1 - i\beta_2)k^2, \qquad \beta_1, \beta_2 \in \mathbb{R}, \qquad i = \sqrt{-1}.$$

C is built based on discretization of \mathcal{M} .

For operator based preconditioner:

- ullet the convergence of CG-like iteration can be made h-independent
- for AC^{-1} , h-independent convergence is obtained if the same boundary condition is used in \mathcal{L} and \mathcal{M} .

Case 1: \mathcal{M} is a complex, symmetric positive definite operator (CSPD). In this case $\beta_1 \leq 0$.

We find for AC^{-1} that [E, Vuik, Oosterlee, 2004]:

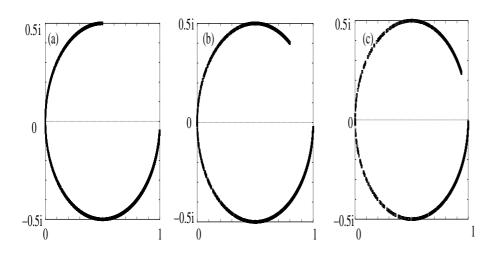
- $|\lambda|_{\max} \to 1$
- $|\lambda|_{\min} \sim \mathcal{O}(\epsilon/k^2)$
- ullet the condition number κ is minimal if $(\beta_1,\beta_2)=(0,\pm 1)$

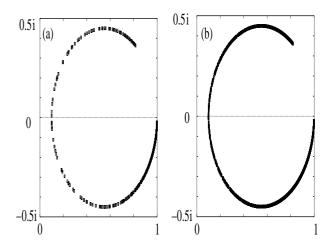
Example: Multigrid as solver for $C_{(0,1)}$. Constant k, $N=256^2$, 0.8-JAC, V(1,1)

k	1	2.5	5	20
Iter	10	8	8	8
ρ	0.310	0.269	0.201	0.201

Case 2: \mathcal{M} is a more general operator, but is still suitable for multigrid convergence. For example: $\beta_1 = 1$ and $\beta_2 \in \mathbb{R}$.

We investigate the following pairs: $(\beta_1, \beta_2) = (1, 1), (1, 0.5).$





0% damp, k = 100: (a) $\beta = (1,1)$ (b) $\beta = (1,0.5)$ (c) $\beta = (1,0.3)$

5% damp, $\beta = (1,0.5)$: (a) k = 40 h = 1/64 (b) k = 100, h = 1/160

Problem 1: Homogeneous medium. $\Omega = (0, 1)^2$, k = 50, $N = 250^2$.

Convergence with respect to k: Bi-CSGTAB, F(1,1) multigrid cycle. Second order absorbing condition.

Multigrid components:

• for $(\beta_1, \beta_2) = (0, 1)$: 0.8-JAC

• for $(\beta_1, \beta_2) = (1, 1)$: 0.7-JAC

• for $(\beta_1, \beta_2) = (1, 0.5)$: 0.5-JAC

• Coarse grid operator: Galerkin

• Prolongator: bi-linear interpolation/matrix dependent

• Restrictor: full weighting

	k:							
(β_1,β_2)	40	50	80	100	150	200	500	600
(0,1)	57 (0.44)	73 (0.92)	112 (4.3)	126 (7.7)	188 (28.5)	_	_	_
(1,1)	36 (0.30)	39 (0.51)	54 (2.2)	74 (4.5)	90 (13.9)	114 (30.8)	291 (515)	352 (890)
(1,0.5)	26 (0.21)	31 (0.40)	44 (1.8)	52 (3.3)	73 (10.8)	92(25.4)	250 (425)	298 (726)

Problem 2: Wedge problem. $\Omega = (0,600) \times (0,1000)$ m2. Bi-CSSTAB. Second order absorbing condition.

Multigrid components:

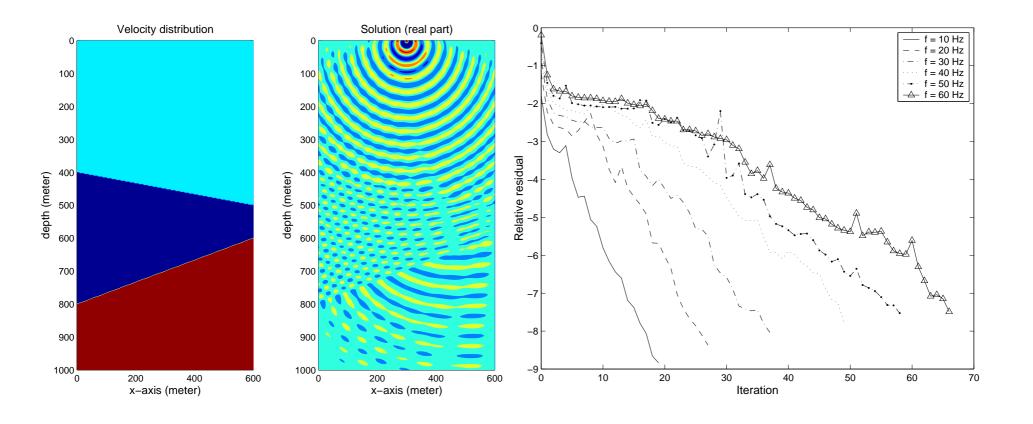
• prolongator : matrix dependent

• restrictor : full weighting

			(β_1,β_2)	
f (Hz)	Grid	(0,1)	(1,1)	(1,0.5)
10	75×125	52 (1.2)	30 (0.67)	19 (0.42)
20	149×249	91 (8.8)	45 (4.5)	27 (2.8)
40	301×501	161 (66.1)	80 (33.5)	49 (20.8)
60	481×801	232 (247.3)	118 (127.6)	66 (71.9)

In [Plessix, Mulder, 2004], Separation of Variables based preconditioner does not converge for f = 50 Hz after 2000 iterations.

Solution of wedge problem, f = 50 Hz.

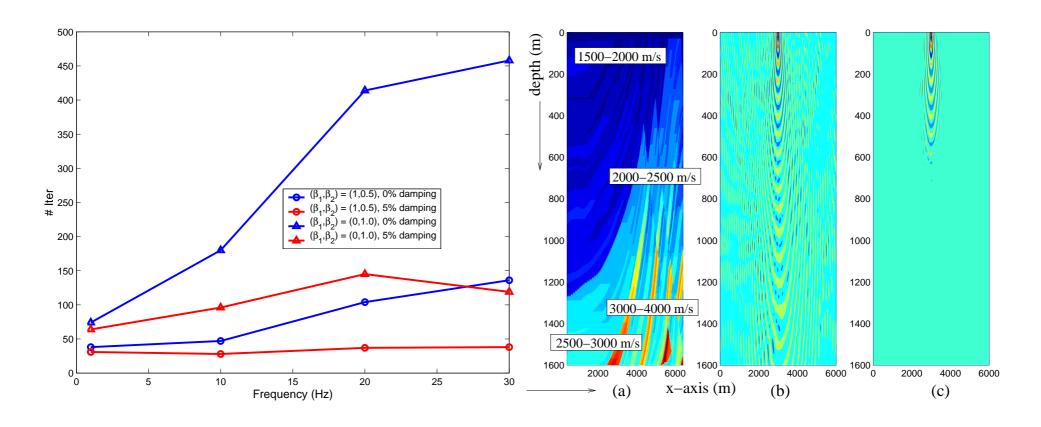


Problem 3: Marmousi. $\Omega = (0,6000) \times (0,1600)$ m2. Bi-CGSTAB and F(1,1) multigrid. Second order absorbing condition.

				(β_1,β_2)	
f (Hz)	Grid	damping	(0,1)	(1,1)	(1,0.5)
1	751×201	0.0%	74 (37.5)	54 (27.6)	38 (19.7)
		5.0%	64 (32.5)	53 (27.3)	31 (16.5)
10	751×201	0.0%	180 (89.2)	84 (42.4)	47 (24.2)
		5.0%	96 (48.3)	48 (24.8)	28 (15.0)
20	1501×401	0.0%	414 (832.3)	168 (308.7)	104 (212.1)
		5.0%	145 (294.7)	64 (133.4)	37 (79.3)
30	2001×534	0.0%	458 (1724.8)	211 (799.4)	136 (519.4)
		5.0%	119 (455.3)	61 (238.4)	38 (151.9)

In [Plessix, Mulder, 2004], Separation of Variables based preconditioner does not converge for f=30~Hz after 2000 iterations.

Solution of Marmousi problem, f = 30 Hz. Figure (b): 0 % damping. (c): 5 % damping.



Conclusion

- A new class of preconditioner for the Helmholtz equation based on Shifted-Laplace operator is proposed and analyzed.
- This class of preconditioners clusters the eigenvalues around the origin, which give some very small eigenvalues
- Numerical tests show the effectiveness of the preconditioners
- Extension to varying k can be done easily

