
P. Wesseling

ELEMENTS OF

COMPUTATIONAL FLUID

DYNAMICS

Lecture notes WI 4011 Numerieke Stromingsleer

Copyright c©2001 by P. Wesseling

Faculty ITS

Applied Mathematics

Preface

The technological value of computational fluid dynamics has become undis-
puted. A capability has been established to compute flows that can be inves-
tigated experimentally only at reduced Reynolds numbers, or at greater cost,
or not at all, such as the flow around a space vehicle at re-entry, or a loss-of-
coolant accident in a nuclear reactor. Large commercial computational fluid
dynamics computer codes have arisen, and found widespread use in industry.
Users of these codes need to be familiar with the basic principles. It has been
observed on numerous occasions, that even simple flows are not correctly
predicted by advanced computational fluid dynamics codes, if used without
sufficient insight in both the numerics and the physics involved. This course
aims to elucidate some basic principles of computational fluid dynamics.

Because the subject is vast we have to confine ourselves here to just a few as-
pects. A more complete introduction is given in Wesseling (2001), and other
sources quoted there. Occasionally, we will refer to the literature for further
information. But the student will be examined only about material presented
in these lecture notes.

Fluid dynamics is governed by partial differential equations. These may be
solved numerically by finite difference, finite volume, finite element and spec-
tral methods. In engineering applications, finite difference and finite volume
methods are predominant. We will confine ourselves here to finite difference
and finite volume methods.

Although most practical flows are turbulent, we restrict ourselves here to
laminar flow, because this book is on numerics only. The numerical principles
uncovered for the laminar case carry over to the turbulent case. Furthermore,
we will discuss only incompressible flow. Considerable attention is given to
the convection-diffusion equation, because much can be learned from this
simple model about numerical aspects of the Navier-Stokes equations. One
chapter is devoted to direct and iterative solution methods.

II

Errata and MATLAB software related to a number of examples discussed in
these course notes may be obtained via the author’s website, to be found at
ta.twi.tudelft.nl/nw/users/wesseling

(see under “Information for students’ / “College WI4 011 Numerieke Stro-
mingsleer”)

Delft, September 2001 P. Wesseling

Table of Contents

Preface . I

1. The basic equations of fluid dynamics . 1
1.1 Introduction . 1
1.2 Vector analysis . 2
1.3 The total derivative and the transport theorem 4
1.4 Conservation of mass . 5
1.5 Conservation of momentum . 7
1.6 The convection-diffusion equation . 12
1.7 Summary of this chapter . 14

2. The stationary convection-diffusion equation in one dimen-

sion . 15
2.1 Introduction . 15
2.2 Analytic aspects . 16
2.3 Finite volume method . 20

3. The stationary convection-diffusion equation in two dimen-

sions . 41
3.1 Introduction . 41
3.2 Singular perturbation theory . 42
3.3 Finite volume method . 51

4. The nonstationary convection-diffusion equation 61
4.1 Introduction . 61
4.2 A numerical example . 62
4.3 Convergence, consistency and stability . 66
4.4 Fourier stability analysis . 69
4.5 Numerical experiments . 78

5. The incompressible Navier-Stokes equations 83
5.1 Introduction . 83
5.2 Equations of motion and boundary conditions 84
5.3 Spatial discretization on staggered grid . 86

IV Table of Contents

5.4 Temporal discretization on staggered grid. 92
5.5 Numerical experiments . 97

6. Iterative solution methods . 105
6.1 Introduction . 105
6.2 Direct methods for sparse systems . 108
6.3 Basic iterative methods . 113
6.4 Krylov subspace methods . 122
6.5 Distributive iteration . 126

References . 132

Index . 133

1. The basic equations of fluid dynamics

1.1 Introduction

Fluid dynamics is a classic discipline. The physical principles governing the
flow of simple fluids and gases, such as water and air, have been understood
since the times of Newton. Since about 1950 classic fluid dynamics finds itself
in the company of computational fluid dynamics. This newer discipline still
lacks the elegance and unification of its classic counterpart, and is in a state
of rapid development.

Good starting points for exploration of the Internet for material related to
computational fluid dynamics are the following websites:

www.cfd-online.com/

www.princeton.edu/~gasdyn/fluids.html

and the ERCOFTAC (European Research Community on Flow, Turbulence
and Combustion) site:

imhefwww.epfl.ch/ERCOFTAC/

The author’s website ta.twi.tudelft.nl/users/wesseling also has some
links to relevant websites.

Readers well-versed in theoretical fluid dynamics may skip the remainder of
this chapter, perhaps after taking note of the notation introduced in the next
section. But those less familiar with this discipline will find it useful to con-
tinue with the present chapter.

The purpose of this chapter is:

• To introduce some notation that will be useful later;
• To recall some basic facts of vector analysis;
• To introduce the governing equations of laminar incompressible fluid dy-
namics;
• To explain that the Reynolds number is usually very large. In later chapters
this will be seen to have a large impact on numerical methods.

2 1. The basic equations of fluid dynamics

1.2 Vector analysis

Cartesian tensor notation

We assume a right-handed Cartesian coordinate system (x1, x2, ..., xd) with
d the number of space dimensions. Bold-faced lower case Latin letters de-
note vectors, for example, x = (x1, x2, ..., xd). Greek letters denote scalars.
In Cartesian tensor notation, which we shall often use, differentiation is de-
noted as follows:

φ,α = ∂φ/∂xα .

Greek subscripts refer to coordinate directions, and the summation conven-
tion is used: summation takes place over Greek indices that occur twice in a
term or product.

Examples

Inner product: u · v = uαvα =
d
∑

α=1
uαvα

Laplace operator: ∇2φ = φ,αα =
d
∑

α=1
∂2φ/∂x2

α

Note that uα + vα does not mean
d
∑

α=1
(uα + vα) (why?) 2

We will also use vector notation, instead of the subscript notation just ex-
plained, and may write divu, if this is more elegant or convenient than the
tensor equivalent uα,α; and sometimes we write gradφ or ∇φ for the vector
(φ,1, φ,2, φ,3).

The Kronecker delta δαβ is defined by:

δ11 = δ22 = · · · = δdd = 1, δαβ = 0, α 6= β ,

where d is the number of space dimensions.

Divergence theorem

We will need the following fundamental theorem:

Theorem 1.2.1. For any volume V ⊂ R
d with piecewise smooth closed sur-

face S and any differentiable scalar field φ we have

1.2 Vector analysis 3

∫

V

φ,αdV =

∫

S

φnαdS ,

where n is the outward unit normal on S.

For a proof, see for example Aris (1962).

A direct consequence of this theorem is:

Theorem 1.2.2. (Divergence theorem).
For any volume V ⊂ R

d with piecewise smooth closed surface S and any
differentiable vector field u we have

∫

V

divudV =

∫

S

u · ndS ,

where n is the outward unit normal on S.

Proof. Apply Theorem 1.2.1 with φ,α = uα, α = 1, 2, ..., d successively and
add. 2

A vector field satisfying divu = 0 is called solenoidal.

The streamfunction

In two dimensions, if for a given velocity field u there exists a function ψ
such that

ψ,1 = −u2, ψ,2 = u1,

then such a function is called the streamfunction. For the streamfunction
to exist it is obviously necessary that ψ,12 = ψ,21; therefore we must have
u1,1 = −u2,2, or divu = 0. Hence, two-dimensional solenoidal vector fields
have a streamfunction. The normal to an isoline ψ(x) = constant is parallel
to ∇ψ = (ψ,1, ψ,2); therefore the vector u = (ψ,2,−ψ,1) is tangential to
this isoline. Streamlines are curves that are everywhere tangential to u. We
see that in two dimensions the streamfunction is constant along streamlines.
Later this fact will provide us with a convenient way to compute streamline
patterns numerically.

Potential flow

The curl of a vector field is defined by

4 1. The basic equations of fluid dynamics

curlu =

u3,2 − u2,3

u1,3 − u3,1

u2,1 − u1,2

 .

That is, the x1-component of the vector curlu is u3,2−u2,3, etc. Often, the curl
is called rotation, and a vector field satisfying curlu = 0 is called irrotational.
In two dimensions, the curl is obtained by putting the third component and
∂/∂x3 equal to zero. This gives

curlu = u2,1 − u1,2 .

It can be shown (cf. Aris (1962)) that if a vector field u satisfies curlu = 0
there exists a scalar field ϕ such that

u = gradϕ (1.1)

(or uα = ϕ,α). The scalar ϕ is called the potential, and flows with velocity
field u satisfying (1.1) are called potential flows or irrotational flows (since
curl gradϕ = 0, cf. Exercise 1.2.3).

Exercise 1.2.1. Prove Theorem 1.2.1 for the special case that V is the unit
cube.

Exercise 1.2.2. Show that curlu is solenoidal.

Exercise 1.2.3. Show that curl gradϕ = 0.

Exercise 1.2.4. Show that δαα = d.

1.3 The total derivative and the transport theorem

Streamlines

We repeat: a streamline is a curve that is everywhere tangent to the velocity
vector u(t,x) at a given time t. Hence, a streamline may be parametrized
with a parameter s such that a streamline is a curve x = x(s) defined by

dx/ds = u(t,x) .

1.4 Conservation of mass 5

The total derivative

Let x(t,y) be the position of a material particle at time t > 0, that at time
t = 0 had initial position y. Obviously, the velocity field u(t,x) of the flow
satisfies

u(t,x) =
∂x(t,y)

∂t
. (1.2)

The time-derivative of a property φ of a material particle, called a mate-
rial property (for example its temperature), is denoted by Dφ/Dt. This is
called the total derivative. All material particles have some φ, so φ is defined
everywhere in the flow, and is a scalar field φ(t,x). We have

Dφ

Dt
≡ ∂

∂t
φ[t,x(t,y)] , (1.3)

where the partial derivative has to be taken with y constant, since the total
derivative tracks variation for a particular material particle. We obtain

Dφ

Dt
=
∂φ

∂t
+
∂xα(t,y)

∂t

∂φ

∂xα
.

By using (1.2) we get
Dφ

Dt
=
∂φ

∂t
+ uαφ,α .

The transport theorem

A material volume V (t) is a volume of fluid that moves with the flow and
consists permanently of the same material particles.

Theorem 1.3.1. (Reynolds’s transport theorem)
For any material volume V (t) and differentiable scalar field φ we have

d

dt

∫

V (t)

φdV =

∫

V (t)

(
∂φ

∂t
+ div φu)dV . (1.4)

For a proof, see Sect. 1.3 of Wesseling (2001).

We are now ready to formulate the governing equations of fluid dynamics,
which consist of the conservation laws for mass, momentum and energy.

1.4 Conservation of mass

Continuum hypothesis

The dynamics of fluids is governed by the conservation laws of classical
physics, namely conservation of mass, momentum and energy. From these

6 1. The basic equations of fluid dynamics

laws partial differential equations are derived and, under appropriate cir-
cumstances, simplified. It is customary to formulate the conservation laws
under the assumption that the fluid is a continuous medium (continuum hy-
pothesis). Physical properties of the flow, such as density and velocity can
then be described as time-dependent scalar or vector fields on R

2 or R
3, for

example ρ(t,x) and u(t,x).

The mass conservation equation

The mass conservation law says that the rate of change of mass in an arbitrary
material volume V (t) equals the rate of mass production in V (t). This can
be expressed as

d

dt

∫

V (t)

ρdV =

∫

V (t)

σdV , (1.5)

where ρ(t,x) is the density of the material particle at time t and position x,
and σ(t,x) is the rate of mass production per volume. In practice, σ 6= 0 only
in multiphase flows, in which case (1.5) holds for each phase separately. We
take σ = 0, and use the transport theorem to obtain

∫

V (t)

(
∂ρ

∂t
+ divρu)dV = 0 .

Since this holds for every V (t) the integrand must be zero:

∂ρ

∂t
+ divρu = 0 . (1.6)

This is the mass conservation law, also called the continuity equation.

Incompressible flow

An incompressible flow is a flow in which the density of each material particle
remains the same during the motion:

ρ[t,x(t,y)] = ρ(0,y) . (1.7)

Hence
Dρ

Dt
= 0 .

Because
divρu = ρdivu + uαρ,α ,

it follows from the mass conservation law (1.6) that

1.5 Conservation of momentum 7

divu = 0 . (1.8)

This is the form that the mass conservation law takes for incompressible flow.

Sometimes incompressibility is erroneously taken to be a property of the fluid
rather than of the flow. But it may be shown that compressibility depends
only on the speed of the flow, see Sect. 1.12 of Wesseling (2001). If the mag-
nitude of the velocity of the flow is of the order of the speed of sound in the
fluid (∼ 340 m/s in air at sea level at 15◦C, ∼ 1.4 km/s in water at 15◦C,
depending on the amount of dissolved air) the flow is compressible; if the
velocity is much smaller than the speed of sound, incompressibility is a good
approximation. In liquids, flow velocities anywhere near the speed of sound
cannot normally be reached, due to the enormous pressures involved and the
phenomenon of cavitation.

1.5 Conservation of momentum

Body forces and surface forces

Newton’s law of conservation of momentum implies that the rate of change of
momentum of a material volume equals the total force on the volume. There
are body forces and surface forces. A body force acts on a material particle,
and is proportional to its mass. Let the volume of the material particle be
dV (t) and let its density be ρ. Then we can write

body force = f bρdV (t) . (1.9)

A surface force works on the surface of V (t) and is proportional to area. The
surface force working on a surface element dS(t) of V (t) can be written as

surface force = fsdS(t) . (1.10)

Conservation of momentum

The law of conservation of momentum applied to a material volume gives

d

dt

∫

V (t)

ρuαdV =

∫

V (t)

f b
αdV +

∫

S(t)

fs
αdS . (1.11)

By substituting φ = ρuα in the transport theorem (1.4), this can be written
as

∫

V (t)

[∂ρuα

∂t
+ (ρuαuβ),β

]

dV =

∫

V (t)

ρf b
αdV +

∫

S(t)

fs
αdS . (1.12)

8 1. The basic equations of fluid dynamics

It may be shown (see Aris (1962)) there exist nine quantities ταβ such that

fs
α = ταβnβ , (1.13)

where ταβ is the stress tensor and n is the outward unit normal on dS. By
applying Theorem 1.2.1 with φ replaced by ταβ and nα by nβ , equation (1.12)
can be rewritten as

∫

V (t)

[∂ρuα

∂t
+ (ρuαuβ),β

]

dV =

∫

V (t)

(ρf b
α + ταβ,β)dV .

Since this holds for every V (t), we must have

∂ρuα

∂t
+ (ρuαuβ),β = ταβ,β + ρf b

α , (1.14)

which is the momentum conservation law . The left-hand side is called the
inertia term, because it comes from the inertia of the mass of fluid contained
in V (t) in equation (1.11).

An example where f b 6= 0 is stratified flow under the influence of gravity.

Constitutive relation

In order to complete the system of equations it is necessary to relate the
rate of strain tensor to the motion of the fluid. Such a relation is called a
constitutive relation. A full discussion of constitutive relations would lead us
too far. The simplest constitutive relation is (see Batchelor (1967))

ταβ = −pδαβ + 2µ(eαβ − 1

3
∆δαβ) , (1.15)

where p is the pressure, δαβ is the Kronecker delta, µ is the dynamic viscosity,
eαβ is the rate of strain tensor, defined by

eαβ =
1

2
(uα,β + uβ,α) ,

and
∆ = eαα = divu .

The quantity ν = µ/ρ is called the kinematic viscosity. In many fluids and
gases µ depends on temperature, but not on pressure. Fluids satisfying (1.15)
are called Newtonian fluids. Examples are gases and liquids such as water and
mercury. Examples of non-Newtonian fluids are polymers and blood.

1.5 Conservation of momentum 9

The Navier-Stokes equations

Substitution of (1.15) in (1.14) gives

∂ρuα

∂t
+ (ρuαuβ),β = −p,α + 2[µ(eαβ − 1

3
∆δαβ)],β + ρf b

α . (1.16)

These are the Navier-Stokes equations. The terms in the left-hand side are
due to the inertia of the fluid particles, and are called the inertia terms. The
first term on the right represents the pressure force that works on the fluid
particles, and is called the pressure term. The second term on the right rep-
resents the friction force, and is called the viscous term. The third term on
the right is the body force.

Because of the continuity equation (1.6), one may also write

ρ
Duα

Dt
= −p,α + 2[µ(eαβ − 1

3
∆δαβ)],β + ρf b

α . (1.17)

In incompressible flows ∆ = 0, and we get

ρ
Duα

Dt
= −p,α + 2(µeαβ),β + ρf b

α . (1.18)

These are the incompressible Navier-Stokes equations. If, furthermore, µ =
constant then we can use uβ,αβ = uβ,βα = 0 to obtain

ρ
Duα

Dt
= −p,α + µuα,ββ + ρf b

α . (1.19)

This equation was first derived by Navier (1823), Poisson (1831), de Saint-
Venant (1843) and Stokes (1845). Its vector form is

ρ
Du

Dt
= −∇p+ µ∇2u + ρf b ,

where ∇2 is the Laplace operator. The quantity

Du

Dt
=
∂u

∂t
+ uαu,α

is sometimes written as

Du

Dt
=
∂u

∂t
+ u · ∇u .

Making the equations dimensionless

In fluid dynamics there are exactly four independent physical units: those
of length, velocity, mass and temperature, to be denoted by L,U,M and

10 1. The basic equations of fluid dynamics

Tr, respectively. From these all other units can be and should be derived in
order to avoid the introduction of superfluous coefficients in the equations.
For instance, the appropriate unit of time is L/U ; the unit of force F follows
from Newton’s law as MU2/L. Often it is useful not to choose these units
arbitrarily, but to derive them from the problem at hand, and to make the
equations dimensionless. This leads to the identification of the dimensionless
parameters that govern a flow problem. An example follows.

The Reynolds number

Let L and U be typical length and velocity scales for a given flow problem,
and take these as units of length and velocity. The unit of mass is chosen as
M = ρrL

3 with ρr a suitable value for the density, for example the density in
the flow at upstream infinity, or the density of the fluid at rest. Dimensionless
variables are denoted by a prime:

x
′

= x/L, u
′

= u/U, ρ
′

= ρ/ρr . (1.20)

In dimensionless variables, equation (1.16) takes the following form:

L

U

∂ρ
′

u
′

α

∂t
+ (ρ

′

u
′

αu
′

β),β = − 1

ρrU2
p,α +

2

ρrUL
{µ(e

′

αβ − 1

3
∆

′

δαβ)},β +
L

U2
ρ

′

f b
α ,

(1.21)
where now the subscript , α stands for ∂/∂x

′

α, and e
′

αβ = 1
2 (u

′

α,β + u
′

β,α),

∆
′

= e
′

αα. We introduce further dimensionless quantities as follows:

t
′

= Ut/L, p
′

= p/ρrU
2, (f b)

′

=
L

U2
f b. (1.22)

By substitution in (1.21) we obtain the following dimensionless form of the
Navier-Stokes equations, deleting the primes:

∂ρuα

∂t
+ (ρuαuβ),β = −p,α + 2{Re−1(eαβ − 1

3
∆δαβ)},β + f b

α ,

where the Reynolds number Re is defined by

Re =
ρrUL

µ
.

The dimensionless form of (1.19) is, if ρ = constant = ρr,

Duα

Dt
= −p,α + Re−1uα,ββ + f b

α . (1.23)

The transformation (1.20) shows that the inertia term is of order ρrU
2/L

and the viscous term is of order µU/L2. Hence, Re is a measure of the ratio

1.5 Conservation of momentum 11

of inertial and viscous forces in the flow. This can also be seen immediately
from equation (1.23). For Re ≫ 1 inertia dominates, for Re ≪ 1 friction (the
viscous term) dominates. Both are balanced by the pressure gradient.

In the case of constant density, equations (1.23) and (1.8) form a com-
plete system of four equations with four unknowns. The solution depends
on the single dimensionless parameter Re only. What values does Re have
in nature? At a temperature of 150C and atmospheric pressure, for air we
have for the kinematic viscosity µ/ρ = 1.5 ∗ 10−5 m2/s, whereas for wa-
ter µ/ρ = 1.1 ∗ 10−6 m2/s. In the International Civil Aviation Organization
Standard Atmosphere, µ/ρ = 4.9 ∗ 10−5 m2/s at an altitude of 12.5 km. This
gives for the flow over an aircraft wing in cruise condition at 12.5 km al-
titude with wing cord L = 3 m and U = 900 km/h: Re = 1.5 ∗ 107. In a
windtunnel experiment at sea-level with L = 0.5 m and U = 25 m/s we
obtain Re = 8.3 ∗ 105. For landing aircraft at sea-level with L = 3 m and
U = 220 km/h we obtain Re = 1.2 ∗ 107. For a house in a light wind with
L = 10 m and U = 0.5 m/s we have Re = 3.3 ∗ 105. Air circulation in a
room with L = 4 m and U = 0.1 m/s gives Re = 2.7 ∗ 104. A large ship
with L = 200 m and U = 7 m/s gives Re = 1.3 ∗ 108, whereas a yacht with
L = 7 m and U = 3 m/s has Re = 1.9 ∗ 107. A small fish with L = 0.1 m and
U = 0.2 m/s has Re = 1.8 ∗ 104.

All these very different examples have in common that Re ≫ 1, which is
indeed almost the rule in flows of industrial and environmental interest. One
might think that flows around a given shape will be quite similar for different
values of Re, as long as Re ≫ 1, but nothing is farther from the truth. At
Re = 107 a flow may be significantly different from the flow at Re = 105, in
the same geometry. This strong dependence on Re complicates predictions
based on scaled down experiments. Therefore computational fluid dynamics
plays an important role in extrapolation to full scale. The rich variety of so-
lutions of (1.23) that evolves as Re → ∞ is one of the most surprising and
interesting features of fluid dynamics, with important consequences for tech-
nological applications. A ‘route to chaos’ develops as Re → ∞, resulting in
turbulence. Intricate and intriguing flow patterns occur, accurately rendered
in masterful drawings by Leonardo da Vinci, and photographically recorded
in Hinze (1975), Nakayama and Woods (1988), Van Dyke (1982) and Hirsch
(1988).

Turbulent flows are characterized by small rapid fluctuations of a seemingly
random nature. Smooth flows are called laminar. The transition form laminar
to turbulent flow depends on the Reynolds number and the flow geometry.
Very roughly speaking (!), for Re > 10000 flows may be assumed to be tur-
bulent.

The complexity of flows used to be thought surprising, since the physics

12 1. The basic equations of fluid dynamics

underlying the governing equations is simply conservation of mass and mo-
mentum. Since about 1960, however, it is known that the sweeping general-
izations about determinism of Newtonian mechanics made by many scientists
(notably Laplace) in the nineteenth century were wrong. Even simple classic
nonlinear dynamical systems often exibit a complicated seemingly random
behavior, with such a sensitivity to initial conditions, that their long-term
behavior cannot be predicted in detail. For a discussion of the modern view
on (un-)predictability in Newtonian mechanics, see Lighthill (1986).

The Stokes equations

Very viscous flows are flows with Re ≪ 1. For Re ↓ 0 the system (1.23)
simplifies to the Stokes equations. If we multiply (1.23) by Re and let Re ↓ 0,
the pressure drops out, which cannot be correct, since we would have four
equations (Stokes and mass conservation) for three unknowns uα. It follows
that p = O(Re−1). We therefore substitute

p = Re−1p
′

. (1.24)

From (1.24) and (1.22) it follows that the dimensional (physical) pressure is
µUp

′

/L. Substitution of (1.24) in (1.23), multiplying by Re and letting Re ↓ 0
gives the Stokes equations:

uα,ββ − p,α = 0 . (1.25)

These linear equations together with (1.8) were solved by Stokes (1851) for
flow around a sphere. Surprisingly, the Stokes equations do not describe low
Reynolds flow in two dimensions. This is called the Stokes paradox. See Sect.
1.6 of Wesseling (2001) for the equations that govern low Reynolds flows in
two dimensions.

The governing equations of incompressible fluid dynamics are given by, if the
density is constant, equations (1.23) and (1.8). This is the only situation to
be considerd in these lecture notes.

Exercise 1.5.1. Derive equation (1.17) from equation (1.16).

Exercise 1.5.2. What is the speed of sound and the kinematic viscosity in
the air around you? You ride your bike at 18 km/h. Compute your Reynolds
number based on a characteristic length (average of body length and width,
say) of 1 m. Do you think the flow around you will be laminar or turbulent?

1.6 The convection-diffusion equation 13

1.6 The convection-diffusion equation

Conservation law for material properties

Let ϕ be a material property, i.e. a scalar that corresponds to a physical prop-
erty of material particles, such as heat or concentration of a solute in a fluid,
for example salt in water. Assume that ϕ is conserved and can change only
through exchange between material particles or through external sources. Let
ϕ be defined per unit of mass. Then the conservation law for ϕ is:

d

dt

∫

V (t)

ρϕdV =

∫

S(t)

f ·n dS +

∫

V (t)

qdV .

Here f is the flux vector, governing the rate of transfer through the surface,
and q is the source term. For f we assume Fick’s law (called Fourier’s law if
ϕ is temperature):

f = k grad ϕ ,

with k the diffusion coefficient. By arguments that are now familiar it follows
that

∂ρϕ

∂t
+ div(ρϕu) = (kϕ,α),α + q . (1.26)

This is the convection-diffusion equation. The left-hand side represents trans-
port of ϕ by convection with the flow, the first term at the right represents
transport by diffusion.

By using the mass conservation law, equation (1.26) can be written as

ρ
Dϕ

Dt
= (kϕ,α),α + q . (1.27)

If we add a term rϕ to the left-hand side of (1.26) we obtain the convection-
diffusion-reaction equation:

∂ρϕ

∂t
+ div(ρϕu) + rϕ = (kϕ,α),α + q .

This equation occurs in flows in which chemical reactions take place. The
Black-Scholes equation, famous for modeling option prices in mathematical
finance, is also a convection-diffusion-reaction equation:

∂ϕ

∂t
+ (1 − k)

∂ϕ

∂x
+ kϕ =

∂2ϕ

∂x2
.

We will not discuss the convection-diffusion-reaction equation, but only the
convection-diffusion equation.

14 1. The basic equations of fluid dynamics

Note that the momentum equation (1.19) comes close to being a convection-
diffusion equation. Many aspects of numerical approximation in computa-
tional fluid dynamics already show up in the numerical analysis of the rela-
tively simple convection-diffusion equation, which is why we will devote two
special chapters to this equation.

Dimensionless form

We can make the convection-diffusion equation dimensionless in the same way
as the Navier-Stokes equations. The unit for ϕ may be called ϕr. It is left
as an exercise to derive the following dimensionless form for the convection-
diffusion equation (1.26):

∂ρϕ

∂t
+ div(ρϕu) = (Pe−1ϕ,α),α + q , (1.28)

where the Péclet number Pe is defined as

Pe = ρ0UL/k0 .

We see that the Péclet number characterizes the balance between convection
and diffusion. For Pe ≫ 1 we have dominating convection, for Pe ≪ 1 diffu-
sion dominates. If equation (1.28) stands for the heat transfer equation with
ϕ the temperature, then for air we have k ≈ µ/0.73. Therefore, for the same
reasons as put forward in Sect. 1.5 for the Reynolds number, in computa-
tional fluid dynamics Pe ≫ 1 is the rule rather than the exception.

Exercise 1.6.1. Derive equation (1.28).

1.7 Summary of this chapter

We have introduced Cartesian tensor notation, and have recalled some basic
facts from vector analysis. The transport theorem helps to express the con-
servation laws for mass and momentum of a fluid particle in terms of partial
differential equations. This leads to the incompressible Navier-Stokes equa-
tions. Nondimensionalization leads to the identification of the dimensionless
parameter governing incompressible viscous flows, called the Reynolds num-
ber. We have seen that the value of the Reynolds number is usually very high
in flows of industrial and environmental interest. We have briefly touched
upon the phenomenon of turbulence, which occurs if the Reynolds number
is large enough. The convection-diffusion equation, which is the conservation
law for material properties that are transported by convection and diffusion,

15

has been derived. Its dimensionless form gives rise to the dimensionless Péclet
number.

Some self-test questions

Write down the divergence theorem.

What is the total derivative?

Write down the transport theorem.

Write down the governing equations of incompressible viscous flow.

Define the Reynolds number.

Write down the convection-diffusion-reaction equation.

2. The stationary convection-diffusion equation

in one dimension

2.1 Introduction

Although the one-dimensional case is of no practical use, we will devote a
special chapter to it, because important general principles of CFD can be
easily analyzed and explained thoroughly in one dimension. We will pay spe-
cial attention to difficulties caused by a large Péclet number Pe, which is
generally the case in CFD, as noted in Sect. 1.6.

In this chapter we consider the one-dimensional stationary version of the
dimensionless convection-diffusion equation (1.28) with ρ = 1:

duϕ

dx
=

d

dx

(

ε
dϕ

dx

)

+ q(x) , x ∈ Ω ≡ (0, 1) , (2.1)

where the domain has been chosen to be the unit interval, and ε = 1/Pe. For
the physical meaning of this equation, see Sect. 1.6

The purpose of this chapter is:

• To explain that a boundary value problem can be well-posed or ill-posed, and
to identify boundary conditions that give a well-posed problem for Pe ≫ 1;

• To discuss the choice of outflow boundary conditions;

• To explain how the maximum principle can tell us whether the exact solu-
tion is monotone;

• To explain the finite volume discretization method;

• To explain the discrete maximum principle that may be satisfied by the
numerical scheme;

• To study the local truncation error on nonuniform grids;

18 2. The stationary convection-diffusion equation in one dimension

• To show by means of the discrete maximum principle that although the
local truncation error is relatively large at the boundaries and in the interior
of a nonuniform grid, nevertheless the global truncation error can be about
as small as on a uniform grid;

• To show how by means of local grid refinement accuracy and computing
work can be made independent of the Péclet number;

• To illustrate the above points by numerical experiments;

• To give a few hints about programming in MATLAB.

2.2 Analytic aspects

Conservation form

The time-dependent version of (2.1) can be written as

∂ϕ

∂t
= Lϕ+ q , Lϕ ≡ ∂uϕ

∂x
− ∂

∂x

(

ε
∂ϕ

∂x

)

.

Let us integrate over Ω:

d

dt

∫

Ω

ϕdΩ =

∫

Ω

LϕdΩ +

∫

Ω

qdΩ.

Since
∫

Ω

LϕdΩ =

(

uϕ− ε
∂ϕ

∂x

)∣

∣

∣

∣

1

0

, (2.2)

(where we define f(x)|ba ≡ f(b) − f(a)), we see that

d

dt

∫

Ω

ϕdΩ =

(

uϕ− ε
∂ϕ

∂x

)∣

∣

∣

∣

1

0

+

∫

Ω

qdΩ.

Hence, if there is no transport through the boundaries x = 0, 1, and if the
source term q = 0, then

d

dt

∫

Ω

ϕdΩ = 0 .

Therefore
∫

Ω
ϕdΩ is conserved. The total amount of ϕ, i.e.

∫

Ω
ϕdΩ, can

change only in time by transport through the boundaries x = 0, 1, and by
the action of a source term q. Therefore a differential operator such as L,
whose integral over the domain Ω reduces to an integral over the boundary,
is said to be in conservation form.

2.2 Analytic aspects 19

A famous example of a nonlinear convection equation (no diffusion) is the
Burgers equation (named after the TUD professor J.M. Burgers, 1895–1981):

∂ϕ

∂t
+

1

2

∂ϕ2

∂x
= 0 . (2.3)

This equation is in conservation form. But the following version is not in
conservation form:

∂ϕ

∂t
+ ϕ

∂ϕ

∂x
= 0 . (2.4)

An exact solution

Let u ≡ 1, ε = constant and q = 0. Then equation (2.1) becomes

dϕ

dx
= ε

d2ϕ

dx2
, x ∈ Ω ≡ (0, 1) , (2.5)

which can be solved analytically by postulating ϕ = eλx. Substitution in (2.5)
shows this is a solution if

λ− ελ2 = 0 ,

hence λ = 0 or λ = 1/ε. Therefore the general solution is

ϕ(x) = A+Bex/ε , (2.6)

with A and B free constants, that must follow from the boundary conditions,
in order to determine a unique solution. We see that precisely two boundary
conditions are needed.

Boundary conditions

For a second order differential equation, such as (2.1), two boundary con-
ditions are required, to make the solution unique. A differential equation
together with its boundary conditions is called a boundary value problem.
We start with the following two boundary conditions, both at x = 0:

ϕ(0) = a,
dϕ(0)

dx
= b. (2.7)

The first condition, which prescribes a value for ϕ, is called a Dirichlet con-
dition; the second, which prescribes a value for the derivative of ϕ, is called
a Neumann condition. The boundary conditions (2.7) are satisfied if the con-
stants in (2.6) are given by A = a− εb, B = εb, so that the exact solution
is given by

ϕ(x) = a− εb+ εbex/ε . (2.8)

20 2. The stationary convection-diffusion equation in one dimension

Ill-posed and well-posed

We now show there is something wrong with boundary conditions (2.7) if
ε ≪ 1. Suppose b is perturbed by an amount δb. The resulting perturbation
in ϕ(1) is

δϕ(1) = εδbe1/ε .

We see that
|δϕ(1)|
|δb| ≫ 1 if ε≪ 1 .

Hence, a small change in a boundary condition causes a large change in the
solution if ε ≪ 1. We assume indeed ε ≪ 1, for reasons set forth in Sect.
1.6. Problems which have large sensitivity to perturbations of the boundary
data (or other input, such as coefficients and right-hand side) are called ill-
posed. Usually, but not always, ill-posedness of a problem indicates a fault
in the formulation of the mathematical model. The opposite of ill-posed is
well-posed. Since numerical approximations always involve perturbations, ill-
posed problems can in general not be solved numerically with satisfactory
accuracy, especially in more than one dimension (although there are special
numerical methods for solving ill-posed problems with reasonable accuracy;
this is a special field). In the present case ill-posedness is caused by wrong
boundary conditions.

It is left to the reader to show in Exercise 2.2.2 that the following boundary
conditions:

ϕ(0) = a,
dϕ(1)

dx
= b. (2.9)

lead to a well-posed problem. The exact solution is now given by (verify this):

ϕ(x) = a+ εb(e(x−1)/ε − e−1/ε). (2.10)

Note that equation (2.5) corresponds to a velocity u = 1, so that x = 0 is
an inflow boundary. Hence in (2.9) we have a Dirichlet boundary condition
at the inflow boundary and a Neumann boundary condition at the outflow
boundary. If we assume u = −1, so that this is the other way around, then
the problem is ill-posed as ε ≪ 1 with boundary conditions (2.9). This fol-
lows from the result of Exercise 2.2.3. We conclude that it is wrong to give a
Neumann condition at an inflow boundary.

Finally, let a Dirichlet condition is given at both boundaries:

ϕ(0) = a, ϕ(1) = b. (2.11)

The exact solution is

ϕ(x) = a+ (b − a)
ex/ε − 1

e1/ε − 1
(2.12)

2.2 Analytic aspects 21

The result of Exercise 2.2.4 shows that boundary conditions (2.11) give a
well-posed problem.

To summarize: To obtain a well-posed problem, the boundary conditions must
be correct.

Maximum principle

We rewrite equation (2.1) as

duϕ

dx
− d

dx

(

ε
dϕ

dx

)

= q(x) , x ∈ Ω . (2.13)

Let q(x) < 0, ∀x ∈ Ω. In an interior extremum of the solution in a point x0

we have dϕ(x0)/dx = 0, so that

ϕ(x0)
du(x0)

dx
− ε

d2ϕ(x0)

dx2
< 0.

Now suppose that du/dx = 0 (in more dimensions it suffices that divu = 0,
which is satisfied in incompressible flows). Then d2ϕ(x0)/dx

2 > 0, so that
the extremum cannot be a maximum. This result is strengthened to the case
q(x) ≤ 0, ∀x ∈ Ω, i.e. including the equality sign, in Theorem 2.4.1 of
Wesseling (2001). Hence, if

u
dϕ

dx
− ε

d2ϕ

dx2
< 0, ∀x ∈ Ω ,

local maxima can occur only at the boundaries. This is called the maximum
principle. By reversing signs we see that if q(x) ≤ 0, ∀x ∈ Ω there cannot be
an interior minimum. If q(x) ≡ 0 there cannot be an interior extremum, so
that the solution is monotone (in one dimension). The maximum principle
gives us important information about the solution, without having to deter-
mine the solution. Such information is called a priori information.

If the exact solution has no local maximum or minimum, then “wiggles” (os-
cillations) in a numerical solution are nor physical, but must be a numerical
artifact.

This concludes our discussion of analytic aspects (especially for ε≪ 1) of the
convection-diffusion equation. We now turn to numerical solution methods.

Exercise 2.2.1. Show that equation (2.3) is in conservation form, and that
(2.4) is not.

22 2. The stationary convection-diffusion equation in one dimension

Exercise 2.2.2. Show that the solution (2.10) satisfies

|δϕ(x)|
|δa| = 1,

|δϕ(x)|
|δb| < ε(1 + e−1/ε).

Hence, the solution is relatively insensitive to the boundary data a and b for
all ε > 0.

Exercise 2.2.3. Show that with u = −1, ε = constant and q = 0 the
solution of equation (2.1) is given by

ϕ(x) = a+ bεe1/ε(1 − e−x/ε) ,

so that
δϕ(1)

δb
= ε(e1/ε − 1) .

Why does this mean that the problem is ill-posed for ε≪ 1?

Exercise 2.2.4. Show that it follows from the exact solution (2.12) that

|δϕ(x)|
|δa| < 2 ,

|δϕ(x)|
|δb| < 1 .

2

2.3 Finite volume method

We now describe how equation (2.1) is discretized with the finite volume
method. We rewrite (2.1) as

Lϕ ≡ duϕ

dx
− d

dx

(

ε
dϕ

dx

)

= q, x ∈ Ω ≡ (0, 1) . (2.14)

Let x = 0 be an inflow boundary, i.e. u(0) > 0. As seen before, it would be
wrong to prescribe a Neumann condition (if ε≪ 1), so we assume a Dirichlet
condition:

ϕ(0) = a . (2.15)

Let x = 1 be an outflow boundary, i.e. u(1) > 0. We prescribe either a
Neumann condition:

dϕ(1)/dx = b , (2.16)

or a Dirichlet condition:
ϕ(1) = b . (2.17)

The finite volume method works as follows. The domain Ω is subdivided in
segments Ωj , j = 1, · · · , J, as shown in the upper part of Fig. 2.1. The seg-
ments are called cells or finite volumes or control volumes , and the segment

2.3 Finite volume method 23

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

��

1 j J

1 j J

Fig. 2.1. Non-uniform cell-centered grid (above) and vertex-centered grid (below).

length, denoted by hj , is called the mesh size. The coordinates of the cen-
ters of the cells are called xj , the size of Ωj is called hj and the coordinate
of the interface between Ωj and Ωj+1 is called xj+1/2. The cell centers are
frequently called grid points or nodes. This is called a cell-centered grid; the
nodes are in the centers of the cells and there are no nodes on the bound-
aries. In a vertex-centered grid one first distributes the nodes over the domain
and puts nodes on the boundary; the boundaries of the control volumes are
centered between the nodes; see the lower part of Fig. 2.1. We continue with
a cell-centered grid. We integrate equation (2.14) over Ωj and obtain:

∫

Ωj

LϕdΩ = F |j+1/2
j−1/2 =

∫

Ωj

qdΩ ∼= hjqj ,

with F |j+1/2
j−1/2 ≡ Fj+1/2 − Fj−1/2, Fj+1/2 = F (xj+1/2), F (x) ≡ uϕ− εdϕ/dx.

Often, F (x) is called the flux. The following scheme is obtained:

Lhϕj ≡ Fj+1/2 − Fj−1/2 = hjqj , j = 1, · · · , J . (2.18)

We will call uϕ the convective flux and εdϕ/dx the diffusive flux.

Conservative scheme

Summation of equation (2.18) over all cells gives

J
∑

j=1

Lhϕj = FJ+1/2 − F1/2 . (2.19)

We see that only boundary fluxes remain, to that equation (2.19) mimics the
conservation property (2.2) of the differential equation. Therefore the scheme
(2.18) is called conservative. This property is generally beneficial for accuracy
and physical realism.

24 2. The stationary convection-diffusion equation in one dimension

Discretization of the flux

To complete the discretization, the flux Fj+1/2 has to be approximated in
terms of neighboring grid function values; the result is called the numerical
flux. Central discretization of the convection term is done by approximating
the convective flux as follows:

(uϕ)j+1/2
∼= uj+1/2ϕj+1/2, ϕj+1/2 =

1

2
(ϕj + ϕj+1) . (2.20)

Since u(x) is a known coefficient, uj+1/2 is known. One might think that
better accuracy on nonuniform grids is obtained by linear interpolation:

ϕj+1/2 =
hjϕj+1 + hj+1ϕj

hj + hj+1
. (2.21)

Surprisingly, the scheme (2.18) is less accurate with (2.21) than with (2.20),

as we will see. This is one of the important lessons that can be learned from
the present simple one-dimensional example.

Upwind discretization is given by

(uϕ)j+1/2
∼= 1

2
(uj+1/2 + |uj+1/2|)ϕj +

1

2
(uj+1/2 − |uj+1/2|)ϕj+1 . (2.22)

This means that uϕ is biased in upstream direction (to the left for u > 0, to
the right for u < 0), which is why this is called upwind discretization.

The diffusive part of the flux is approximated by

(ε
dϕ

dx
)j+1/2

∼= εj+1/2(ϕj+1 − ϕj)/hj+1/2, hj+1/2 =
1

2
(hj + hj+1) . (2.23)

Boundary conditions

At x = 0 we cannot approximate the diffusive flux by (2.23), since the node
x0 is missing. We use the Dirichlet boundary condition, and write:

(ε
dϕ

dx
)1/2

∼= 2ε1/2(ϕ1 − a)/h1 . (2.24)

This is a one-sided approximation of (εdϕ
dx)1/2, which might impair the accu-

racy of the scheme. We will investigate later whether this is the case or not.
The convective flux becomes simply

(uϕ)1/2
∼= u1/2a . (2.25)

2.3 Finite volume method 25

Next, consider the boundary x = 1 . Assume we have the Neumann condition
(2.16). The diffusive flux is given directly by the Neumann condition:

(ε
dϕ

dx
)J+1/2

∼= εJ+1/2b. (2.26)

Since x = 1 is assumed to be an outflow boundary, we have uJ+1/2 > 0, so
that for the upwind convective flux (2.22) an approximation for ϕJ+1/2 is not
required. For the central convective fluxes (2.20) or (2.21) we approximate
ϕJ+1/2 with extrapolation, using the Neumann condition:

ϕJ+1/2
∼= ϕJ + hJb/2 . (2.27)

The Dirichlet condition (2.17) is handled in the same way as at x = 0.

The numerical scheme

The numerical flux as specified above can be written as

Fj+1/2 = β0
jϕj + β1

j+1ϕj+1, j = 1, · · · , J − 1 ,

F1/2 = β1
1ϕ1 + γ0 , FJ+1/2 = β0

JϕJ + γ1 ,
(2.28)

where γ0,1 are known terms arising from the boundary conditions. For eam-
ple, for the upwind scheme we obtain the results specified in Exercise 2.3.2.

For future reference, we also give the coefficients for the central schemes. For
the central scheme (2.20) we find:

β0
j =

1

2
uj+1/2 + (ε/h)j+1/2, j = 1, · · · , J − 1 ,

β1
j+1 =

1

2
uj+1/2 − (ε/h)j+1/2, j = 1, · · · , J − 1 , β1

1 = −2ε1/2/h1 ,

γ0 = (u1/2 + 2ε1/2/h1)a ,

β0
J = uJ+1/2 , γ1 = uJ+1/2hJb/2 − εJ+1/2b (Neumann),

β0
J = 2εJ+1/2/hJ , γ1 = (uJ+1/2 − 2εJ+1/2/hJ)b (Dirichlet).

(2.29)

For the central scheme (2.21) we find:

β0
j =

hj+1

2hj+1/2
uj+1/2 + (ε/h)j+1/2, j = 1, · · · , J − 1 ,

β1
j+1 =

hj

2hj+1/2
uj+1/2 − (ε/h)j+1/2, j = 1, · · · , J − 1 .

(2.30)

The other coefficients (at the boundaries) are the same as in equation (2.29).
On a uniform grid the central schemes (2.29) and (2.30) are identical.

26 2. The stationary convection-diffusion equation in one dimension

Substitution of equations (2.66)–(2.30) in equation (2.18) gives the following
linear algebraic system:

Lhϕj = α−1
j ϕj−1 + α0

jϕj + α1
jϕj+1 = q̃j , j = 1, · · · , J , (2.31)

with α−1
1 = α1

J = 0. This is called the numerical scheme or the finite volume
scheme. Its coefficients are related to those of the numerical flux (2.66) –(2.30)
by

α−1
j = −β0

j−1 , j = 2, · · · , J ,
α0

j = β0
j − β1

j , j = 1, · · · , J ,
α1

j = β1
j+1 , j = 1, · · · , J − 1 .

(2.32)

The right-hand side is found to be

q̃j = hjqj , j = 2, · · · , J − 1 ,

q̃1 = h1q1 + γ0 , q̃J = hJqJ − γ1 .
(2.33)

Stencil notation

The general form of a linear scheme is

Lhϕj =
∑

k∈K

αk
jϕj+k = q̃j , (2.34)

with K some index set. For example, in the case of (2.34), K = {−1, 0, 1}.
The stencil [Lh] of the operator Lh is a tableau of the coefficients of the
scheme of the following form:

[Lh]j = [α−1
j α0

j α1
j] . (2.35)

We will see later that this is often a convenient way to specify the coefficients.
Equation (2.34) is the stencil notation of the scheme.

The matrix of the scheme

In matrix notation the scheme can be denoted as

Ay = b , y =

ϕ1

...
ϕJ

, b =

q̃1
...
q̃J

, (2.36)

where A is the following tridiagonal matrix:

2.3 Finite volume method 27

A =

α0
1 α1

1 0 · · · 0

α−1
2 α0

2 α1
2

...

0
. . .

. . .
. . . 0

... α−1
J−1 α0

J−1 α1
J−1

0 · · · 0 α−1
J α0

J

. (2.37)

In MATLAB, A is simply constructed as a sparse matrix by (taking note of
equation (2.32)):

A = spdiags([-beta0 beta0-beta1 beta1], -1:1, n, n);

with suitable definition of the algebraic vectors beta0 and beta1. This is used
in the MATLAB code cd1 and several other of the MATLAB codes that go
with this course. These programs are available at the author’s website; see
the Preface to these lecture notes.

Vertex-centered grid

In the interior of a vertex-centered grid the finite volume method works just
as in the cell-centered case, so that further explanation is not necessary. But
at the boundaries the procedure is a little different. If we have a Dirichlet
condition, for example at x = 0, then an equation for ϕ1 is not needed,
because ϕ1 is prescribed (x1 is at the boundary, see Fig. 2.1). Suppose we
have a Neumann condition at x = 1. Finite volume integration over the last
control volume (which has xJ as the right end point, see Fig. 2.1) gives:

LhϕJ ≡ FJ − FJ−1/2 = hJqJ ,

where we approximate FJ as follows, in the case of the central scheme for
convection, for example:

FJ = uJϕJ − εJb ,

where b is given in (2.16).

Symmetry

When the velocity u ≡ 0, the convection-diffusion equation reduces to the
diffusion equation, also called heat equation. According to equations (2.66)—
(2.30) we have in this case β1

j = −β0
j−1, so that (2.32) gives α1

j = α−1
j+1,

which makes the matrix A symmetric. This holds also in the vertex-centered
case. Symmetry can be exploited to save computer memory and to make
solution methods more efficient. Sometimes the equations are scaled to make
the coefficients of size O(1); but this destroys symmetry, unless the same
scaling factor is used for every equation.

28 2. The stationary convection-diffusion equation in one dimension

Two important questions

The two big questions asked in the numerical analysis of differential equations
are:
• How well does the numerical solution approximate the exact solution of
equation (2.14)?
• How accurately and efficiently can we solve the linear algebraic system
(2.36)?
These questions will come up frequently in what follows. In the ideal case
one shows theoretically that the numerical solution converges to the exact
solution as the mesh size hj ↓ 0. In the present simple case, where we have
the exact solution (2.6), we can check convergence by numerical experiment.

Numerical experiments on uniform grid

We take u = 1, ε constant, q = 0 and the grid cell-centered and uniform,
with hj = h = 1/12. We choose Dirichlet boundary conditions (2.11) with
a = 0.2, b = 1. The exact solution is given by (2.12). The numerical results in
this section have been obtained with the MATLAB code cd1 . Fig. 2.2 gives
results for two values of the Péclet number (remember that ε = 1/Pe). We see

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=10, 12 cells

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Pe=40, 12 cells

Fig. 2.2. Exact solution (—) and numerical solution (*).

a marked difference between the cases Pe = 10 and Pe = 40. The numerical
solution for Pe = 40 is completely unacceptable. We will now analyze why
this is so and look for remedies.

2.3 Finite volume method 29

The maximum principle

In Sect. 2.2 we saw that according to the maximum principle, with q = 0
the solution of equation (2.14) cannot have local extrema in the interior.
This is confirmed of course in Fig. 2.2. However, the numerical solution for
Pe = 40 shows local extrema. These undesirable numerical artifacts are often
called “wiggles”. It is desirable that the numerical scheme satisfies a similar
maximum principle as the differential equation, so that artificial wiggles are
excluded. This is the case for positive schemes, defined below. Let the scheme
be written in stencil notation:

Lhϕj =
∑

k∈K

αk
jϕj+k = q̃j , j = 1, · · · , J .

Definition 2.3.1. The operator Lh is of positive type if

∑

k∈K

αk
j = 0, j = 2, · · · , J − 1 (2.38)

and
αk

j < 0, k 6= 0, j = 2, · · · , J − 1 . (2.39)

Note that a condition is put on the coefficients only in the interior. The fol-
lowing theorem says that schemes of positive type satisfy a similar maximum
principle as the differential equation.

Theorem 2.3.1. Discrete maximum principle.
If Lh is of positive type and

Lhϕj ≤ 0, j = 2, · · · , J − 2 ,

then ϕj ≤ max{ϕ1, ϕJ}.
Corollary Let conditions (2.38) and (2.39) also hold for j = J . Then
ϕj ≤ ϕ1.

A formal proof is given in Sect. 4.4 of Wesseling (2001), but it is easy to see
that the theorem is true. Let K = {−1, 0, 1}. We have for every interior
grid point xj :

ϕj ≤ w−1ϕj−1 + w1ϕj+1 , w±1 ≡ −α±1
j /α0

j .

Since w1 + w1 = 1 and w±1 > 0, ϕj is a weighted average of its neighbors
ϕj−1 and ϕj+1. Hence, either ϕj < max{ϕj−1, ϕj+1} or ϕj = ϕj−1 = ϕj+1.

Let us now see whether the scheme used for Fig. 2.2 is of positive type. Its
stencil is given by equation (2.67):

30 2. The stationary convection-diffusion equation in one dimension

[Lh] =

[

−1

2
u− ε

h
2
ε

h

1

2
u− ε

h

]

. (2.40)

We see that this scheme is of positive type if and only if

p < 2 , p ≡ |u|h
ε

. (2.41)

The dimensionless number p is called the mesh Péclet number.

For the left half of Fig. 2.2 we have p = 10/12 < 2, whereas for the right
half p = 40/12 > 2, which explains the wiggles. In general, Pe = UL/ε and
p = Uh/ε, so that p = Peh/L, with L the length of the domain Ω and U
representative of the size of u, for example U = max[u(x) : x ∈ Ω]. and for
p < 2 we must choose h small enough: h/L < 2/Pe. Since in practice Pe is
usually very large, as shown in Sect. 1.6, this is not feasible (certainly not in
more than one dimension), due to computer time and memory limitations.
Therefore a scheme is required that is of positive type for all values of Pe.
Such a scheme is obtained if we approximate the convective flux uϕ such that
a non-positive contribution is made to α±1

j . This is precisely what the upwind
scheme (2.22) is about. For the problem computed in Fig. 2.2 its stencil is,
since u > 0:

[Lh] =
[

−u− ε

h
u+ 2

ε

h
− ε

h

]

. (2.42)

It is easy to see that this scheme is of positive type for all Pe. Results are given
in Fig. 2.3. We see that wiggles are absent, and that the numerical solution

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=10, 12 cells, Upwind scheme

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=40, 12 cells, Upwind scheme

Fig. 2.3. Exact solution (—) and numerical solution (*).

satisfies the maximum principle. But the solution is smeared near the outflow
boundary. It is as if the numerical solution has a smaller Péclet number than
the exact solution. This is because the upwind scheme introduces numerical
diffusion; the viscosity is increased with an artificial viscosity coefficient εa =
uh/2. To see this, just replace ε by ε+ εa in the stencil of the central scheme
(2.40): it becomes identical to the stencil of the upwind scheme (2.42).

2.3 Finite volume method 31

Local grid refinement

The preceding figures show for Pe = 40 a rapid variation of the exact solution
in a narrow zone near the outflow boundary x = 1. This zone is called a
boundary layer. From the exact solution (2.13) it follows that the boundary
layer thickness δ satisfies

δ = O(ε) = O(Pe−1). (2.43)

(Landau’s order symbol O is defined later in this section). We will see later
how to estimate the boundary layer thickness when an exact solution is not
available. It is clear that to have reasonable accuracy in the boundary layer,
the local mesh size must satisfy h < δ, in order to have sufficient resolution
(i.e. enough grid points) in the boundary layer. This is not the case in the
right parts of the preceding figures. To improve the accuracy we refine the
grid locally in the boundary layer. We define δ ≡ 6ε; the factor 6 is somewhat
arbitrary and has been determined by trial and error. We put 6 equal cells
in (0, 1 − δ) and 6 equal cells in (1 − δ, 1). The result is shown in Fig. 2.4.
Although the total number of cells remains the same, the accuracy of the

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=40, 12 cells, Upwind scheme

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=400, 12 cells, Upwind scheme

Fig. 2.4. Exact solution (—) and numerical solution (*) with local grid refinement;
upwind scheme

upwind scheme has improved significantly. Even for Pe = 400, in which case
the boundary layer is very thin, the accuracy is good.

Fig. 2.5 gives results for the central scheme (2.20). Surprisingly, the wiggles
which destroyed the accuracy in Fig. 2.2 have become invisible. In the refine-
ment zone the local mesh Péclet number satisfies p = 1, which is less than 2,
so that according to the maximum principle there can be no wiggles in the
refinement zone (see equation (2.41) and the discussion preceding (2.41)).
However, inspection of the numbers shows that small wiggles remain outside
the refinement zone.

32 2. The stationary convection-diffusion equation in one dimension

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=40, 12 cells, Central scheme (2.20)

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=400, 12 cells, Central scheme (2.20)

Fig. 2.5. Exact solution (—) and numerical solution (*) with local grid refinement;
central scheme (2.20)

Fig. 2.6 gives results for the central scheme (2.21). This scheme might be

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=40, 12 cells, Central scheme (2.21)

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Pe=400, 12 cells, Central scheme (2.21)

Fig. 2.6. Exact solution (—) and numerical solution (*) with local grid refinement;
central scheme (2.21)

expected to be more accurate than central scheme (2.20), because linear
interpolation to approximate ϕj+1/2 is more accurate than averaging on a
nonuniform grid. However, we see that for Pe = 400 the opposite is true!
Clearly, we are in need of theoretical error analysis. This subject will be
touched upon later. A preliminary explanation is as follows. Let the boundary
of the refinement zone be located between the nodes xj and xj+1. Call the
mesh size inside and outside the refinement zone h and H , respectively. The
stencil of the central scheme scheme (2.20) at xj follows from equation (2.29)
as:

[Lh] =

[

−1

2
− ε

H

ε

H
+

2ε

h+H

1

2
− 2ε

h+H

]

. (2.44)

For the central scheme (2.21) we find from equation (2.30):

2.3 Finite volume method 33

[Lh] =

[

−1

2
− ε

H
− 1

2
+

h

h+H
+

ε

H
+

2ε

h+H

H

h+H
− 2ε

h+H

]

.

(2.45)
According to definition 2.3.1, one of the necessary conditions for a positive
scheme scheme is that the third element in the above stencils is non-positive.
For ε ≪ 1 (and consequently h/H ≪ 1) this element is about 1/2 in (2.44)
and 1 in (2.45), which is worse. Furthermore, in (2.45) the central element is
negative. We see that (2.45) deviates more from the conditions for a positive
scheme than (2.44), so that it is more prone to wiggles.

Péclet-uniform accuracy and efficiency

The maximum norm of the error ej ≡ ϕ(xj) − ϕj is defined as

‖e‖∞ ≡ max{|ej|, j = 1, · · · , J},

where ϕ(x) is the exact solution. Table 2.1 gives results. The number of cells
is the same as in the preceding figures. For Pe = 10 a uniform grid is used, for
the other cases the grid is locally refined, as before. We see that our doubts

Scheme Pe=10 Pe=40 Pe=400 Pe=4000
Upwind .0785 .0882 .0882 .0882
Central (2.20) .0607 .0852 .0852 .0852
Central (2.21) .0607 .0852 .0856 .3657

Table 2.1. Maximum error norm; 12 cells.

about the central scheme (2.21) are confirmed. For the other schemes we
see that ‖e‖∞ is almost independent of Pe. This is due to the adaptive (i.e.
Pe-dependent) local grid refinement in the boundary layer. Of course, since
the number of cells J required for a given accuracy does not depend on Pe,
computing work and storage are also independent of Pe. We may conclude
that computing cost and accuracy are uniform in Pe.

This is an important observation. A not uncommon misunderstanding is that
numerical predictions of high Reynolds (or Péclet in the present case) number
flows are inherently untrustworthy, because numerical discretization errors
(‘numerical viscosity’) dominate the small viscous forces. This is not true,
provided appropriate measures are taken, as was just shown. Local grid re-
finement in boundary layers enables us to obtain accuracy independent of
the Reynolds number. Because in practice Re (or its equivalent such as the
Péclet number) is often very large (see Sect. 1.5) it is an important (but not
impossible) challenge to realize this also in more difficult multi-dimensional

34 2. The stationary convection-diffusion equation in one dimension

situations. An analysis of Pe-uniform accuracy for a two-dimensional singular
perturbation problem will be given in Sect. 3.3.

Global and local truncation error

By using Taylor’s formula (see below) it is easy to see that the numerical flux
as specified above (equations(2.20—2.23)) approaches the exact flux as the
grid is refined, i.e. as

∆ ↓ 0, ∆ ≡ max{hj , j = 1, · · · , J} . (2.46)

But does this mean that the difference between the numerical and exact
solution goes to zero? Surprisingly, this is no simple matter, but one of the
deepest questions in numerical analysis. We will present only some basic
considerations. We define

Definition 2.3.2. Global truncation error
The global truncation error is defined as

ej ≡ ϕ(xj) − ϕj , j = 1, · · · , J ,

with ϕ(x) the exact solution.

Truncation errors are errors that are caused by truncation (to truncate means
to shorten by cutting off) of an infinite process. The process we have in mind
here is the limit ∆ ↓ 0; we stop at a finite value of ∆. Rounding errors are the
errors that are caused by the finite precision approximation of real numbers in
computer memories. In the numerical approximation of differential equations
these are usually much smaller than truncation errors. Here we just assume
zero rounding error.

Obviously, the global truncation error is what we are after, but it cannot be
estimated directly, because the exact solution is not available. Therefore a
quantity is introduced that can be estimated, namely

Definition 2.3.3. Local truncation error
The local truncation error of the discrete operator Lh is defined as

τj ≡ Lhej , j = 1, · · · , J . (2.47)

It follows that e = L−1
h τ , with e and τ algebraic vectors with elements ej , τj .

Hence
‖e‖ ≤ ‖L−1

h ‖‖τ‖ .
This suggests that a scheme with smaller ‖τ‖ will have a smaller ‖e‖ than
a scheme with a larger ‖τ‖. But this need not be so, because Lh is differ-
ent for the two schemes, so that ‖L−1

h ‖ is different. To improve our insight
in accuracy, we will now dive into a somewhat complicated but elementary
analysis.

2.3 Finite volume method 35

Estimate of local truncation error in the interior

The purpose of the following elementary but laborious analysis is to eliminate
two common misunderstandings. The first is that grids should be smooth for
accuracy; this is not true in general, at least not for positive schemes (Defi-
nition 2.3.1). The second is that a large local truncation error at a boundary
causes a large global truncation error; this is also not true in general.

We begin with estimating the local truncation error. For simplicity u and
ε are assumed constant. We select the central scheme for convection. The
scheme (2.40) with a Dirichlet condition at x = 0 and a Neumann condition
at x = 1 (cf. equation (2.29)) can be written as

Lhϕ1 ≡
(

u

2
+

ε

h3/2
+

2ε

h1

)

ϕ1 +

(

u

2
− ε

h3/2

)

ϕ2 = h1q1 +

(

u+
2ε

h1

)

a ,

Lhϕj ≡−
(

u

2
+

ε

hj−1/2

)

ϕj−1 + ε

(

1

hj−1/2
+

1

hj+1/2

)

ϕj

+

(

u

2
− ε

hj+1/2

)

ϕj+1 = hjqj , j = 2, · · · , J − 1 ,

LhϕJ ≡−
(

u

2
+

ε

hJ−1/2

)

ϕJ−1 +

(

u

2
+

ε

hJ−1/2

)

ϕJ

=hJqJ −
(u

2
hJ − ε

)

b .

(2.48)

Taylor’s formula

To estimate the local truncation error we need Taylor’s formula:

f(x) = f(x0) +

n−1
∑

k=1

1

k!

dkf(x0)

dxk
(x− x0)

k +
1

n!

dnf(ξ)

dxn
(x− x0)

n (2.49)

for some ξ between x and x0. Of course, f must be sufficiently differentiable.
This gives for the exact solution, writing ϕ(k) for dkϕ(x)/dxk,

ϕ(xj±1) = ϕ(xj) ± hj±1/2ϕ
(1)(xj) +

1

2
h2

j±1/2ϕ
(2)(xj) ±

1

6
h3

j±1/2ϕ
(3)(xj)

+
1

24
h4

j±1/2ϕ
(4)(xj) + O(h5

j±1/2) ,

(2.50)

where O is Landau’s order symbol, defined as follows:

36 2. The stationary convection-diffusion equation in one dimension

Definition 2.3.4. Landau’s order symbol
A function f(h) = O(hp) if there exist a constant M independent of h and a
constant h0 > 0 such that

|f(h)|
hp

< M, ∀h ∈ (0, h0) .

The relation f(h) = O(hp) is pronounced as “f is of order hp”.

Estimate of local truncation error, continued

We will now see that although we do not know the exact solution, we can
nevertheless determine the dependence of τj on hj. We substitute (2.50) in
Lh(ϕ(xj), and obtain, after some tedious work that cannot be avoided, for
j = 2, · · · , J − 1:

Lhϕ(xj) = L̃hϕ(xj) + O(∆4) ,

L̃hϕ(xj) ≡
1

2
qj(hj−1/2 + hj+1/2)

+

(

1

4
uϕ(2) − 1

6
εϕ(3)

)

(h2
j+1/2 − h2

j−1/2)

+

(

1

12
uϕ(3) − 1

24
εϕ(4)

)

(h3
j+1/2 + h3

j−1/2) ,

(2.51)

where ϕ(n) = dnϕ(xj)/dx
n. We have

τj = Lhej = Lh[ϕ(xj) − ϕj] = L̃hϕ(xj) − hjqj + O(∆4) ,

so that we obtain:

τj =
1

2
qj(hj−1/2 − 2hj + hj+1/2)

+

(

1

4
uϕ(2) − 1

6
εϕ(3)

)

(h2
j+1/2 − h2

j−1/2)

+

(

1

12
uϕ(3) − 1

24
εϕ(4)

)

(h3
j+1/2 + h3

j−1/2) + O(∆4) .

(2.52)

The grid is called smooth if the mesh size hj varies slowly, or more precisely,
if

|hj+1/2 − hj−1/2| = O(∆2) and |hj−1/2 − 2hj + hj+1/2| = O(∆3) .

Therefore on smooth grids τj = O(∆3), but on rough grids τj = O(∆).
Therefore it is often thought that one should always work with smooth grids

2.3 Finite volume method 37

for better accuracy, but, surprisingly, this is not necessary in general. We
will show why later. Note that the locally refined grid used in the preceding
numerical experiments is rough, but nevertheless the accuracy was found to
be satisfactory.

Estimate of local truncation error at the boundaries

For simplicity we now assume the grid uniform, with hj ≡ h. Let the scheme
be cell-centered. We start with the Dirichlet boundary x = 0. Proceeding as
before, we find using Taylor’s formula for ϕ(x2) in the first equation of (2.48),

Lhϕ(x1) = L̃hϕ(x1) + O(h2) ,

L̃hϕ(x1) ≡ (u + 2ε/h)ϕ(x1) − εϕ(1) +
1

2
q1h ,

where ϕ(1) = dϕ(x1)/dx, and ϕ(x) is the exact solution. We write

τ1 = Lh[ϕ(x1) − ϕ1] = L̃hϕ(x1) − hq1 − (u+ 2ε/h)a+ O(h2)

= (u+ 2ε/h)[ϕ(x1) − a] − εϕ(1) − 1

2
hq1 + O(h2) .

We use Taylor’s formula for a = ϕ(0):

a = ϕ(0) = ϕ(x1) −
1

2
hϕ(1) +

1

8
h2ϕ(2) + O(h3)

and find

τ1 =
h

4
εϕ(2) + O(h2) . (2.53)

In the interior we have τj = O(h3) on a uniform grid, as seen from equation
(2.52). However, it is not necessary to improve the local accuracy near a
Dirichlet boundary, which is one of the important messages of this section;
we will show this below. But first we will estimate the local truncation error
at the Neumann boundary x = 1. By using Taylor’s formula for ϕ(xJ−1) in
the third equation of (2.48) we get

Lhϕ(xJ) = L̃hϕ(xJ) + O(h3) ,

L̃hϕ(xJ) ≡ εϕ(1) +
1

2
qJh−

(u

4
ϕ(2) − ε

6
ϕ(3)

)

h2 + O(h3) ,

where ϕ(n) = dnϕ(xJ)/dxn. We write

τJ = Lh[ϕ(xJ) − ϕJ] = L̃hϕ(xJ) − hJqJ + (uhJ/2 − ε)b+ O(h3)

= εϕ(1) − qJh/2 − (uϕ(2)/4 − εϕ(3)/6)h2 + (uh/2 − ε)b + O(h3) .

We use Taylor’s formula for b = dϕ(1)/dx:

38 2. The stationary convection-diffusion equation in one dimension

b = ϕ(1) +
1

2
hϕ(2) +

1

8
h2ϕ(3) + O(h3)

and find

τJ =
1

24
εϕ(3)h2 + O(h3) . (2.54)

Error estimation with the maximum principle

The student is not expected to be able to carry out the following error anal-
ysis independently. This analysis is presented merely to make our assertions
about accuracy on rough grids and at boundaries really convincing. We will
use the maximum principle to derive estimates of the global truncation error
from estimates of the local truncation error.

By e < E we mean ej < Ej , j = 1, · · · , J and by |e| we mean the grid
function with values |ej |. We recall that the global and local truncation error
are related by

Lhe = τ . (2.55)

Suppose we have a grid function E, which will be called a barrier function,
such that

LhE ≥ |τ | . (2.56)

We are going to show: |e| ≤ E. From (2.55) and (2.56) it follows that

Lh(±e− E) ≤ 0 .

Let the numerical scheme (2.48) satisfy the conditions of the corollary of
Theorem 2.3.1; this is the case if

|u|hj+1/2

ε
< 2, j = 1, · · · , J − 1 . (2.57)

Then the corollary says

±ej − Ej ≤ ±e1 − E1, j = 2, · · · , J . (2.58)

Next we show that |e1| ≤ E1. From Lh(±e1 − E1) ≤ 0 it follows (with the
use of (2.58) for j = 2) that

a(±e1 − E1) ≤ b(±e2 − E2) ≤ b(±e1 − E1) ,

a = u/2 + 3ε/h1, b = ε/h1 − u/2 ,

where we assume h2 = h1. Note that 0 < b < a. Therefore ±e1 − E1 ≤ 0 ,
hence |e1| ≤ E1. Substitution in (2.58) results in

|ej| ≤ Ej , j = 1, · · · , J . (2.59)

which we wanted to show. It remains to construct a suitable barrier function
E. Finding a suitable E is an art.

2.3 Finite volume method 39

Global error estimate on uniform grid

First, assume the grid is uniform: hj = h. We choose the barrier function as
follows:

Ej = Mψ(xj), ψ(x) ≡ 1 + 3x− x2 , (2.60)

with M a constant still to be chosen. We find (note that u > 0; otherwise
the boundary conditions would be ill-posed for ε≪ 1, as seen in Sect. 2.2):

Lhψ(x1) = u(1 + 3h− 5h2/4) +
ε

h
(2 + 3h2/2) > 2ε/h for h small enough ,

Lhψ(xj) = uh(3 − 2xj) + 2εh > 2εh, j = 2, · · · , J − 1 ,

Lhψ(xJ) = ε(1 + 2h) + uh(1/2 + h) > ε .

According to equations (2.52)–(2.54) there exist constants M1 ,M2 ,M3 such
that for h small enough

τ1 < M1h ,

τj < M2h
3 , j = 2, · · · , J − 1 ,

τJ < M3h
2 .

Hence, with

M =
h2

ε
max{M1/2, M2/2, M3}

condition (2.56) is satisfied, so that

|e| < E = O(h2) .

This shows that the fact that the local truncation errors at the boundaries are
of lower order than in the interior does not have a bad effect on the global
truncation error.

Global error estimate on nonuniform grid

Next, we consider the effect of grid roughness. From equation (2.52) we see
that in the interior

τj = O(∆), ∆ = max{hj, j = 1, · · ·J} .

We will show that nevertheless e = O(∆2), as for a uniform grid. The barrier
function used before does not dominate τ sufficiently. Therefore we use the
following stratagem. Define the following grid functions:

µ1
j ≡ h2

j , µ2
j ≡

j
∑

k=1

h3
k−1/2 , µ3

j ≡
j

∑

k=1

(h2
k + h2

k−1)hk−1/2 ,

40 2. The stationary convection-diffusion equation in one dimension

where h0 ≡ 0. We find with Lh defined by (2.48) and ψk(x), k = 1, 2, 3
smooth functions to be chosen later:

Lh(ψ1(xj)µ
1
j) = εψ1(xj)(−2hj+1 + 4hj − 2hj−1) + (2.61)

+ {εdψ1(xj)

dx
− 1

2
uψ1(xj)}(h2

j−1 − h2
j+1) + O(∆3) ,

Lh(ψ2(xj)µ
2
j) = εψ2(xj)(h

2
j−1/2 − h2

j+1/2) + O(∆3) , (2.62)

Lh(ψ3(xj)µ
3
j) = εψ3(xj)(h

2
j−1 − h2

j+1) + O(∆3) . (2.63)

We choose

ψ1 = −q(x)
8ε

, ψ2 =
1

6
ϕ(3) − u

4ε
ϕ(2) ,

ψ3 = −dψ1

dx
+

u

2ε
ψ1

and define
ek

j ≡ ψk(xj)µ
k
j , k = 1, 2, 3 .

Remembering (2.55), comparison of (2.61)–(2.63) with (2.52) shows that

Lh(ej − e1j − e2j − e3j) = O(∆3) . (2.64)

The right-hand side is of the same order as the local truncation error in the
uniform grid case, and can be dominated by the barrier function (2.60) with
M = C∆2, with C a constant that we will not bother to specify further. For
simplicity we assume that h2 = h1 and hJ−1 = hJ , so that the situation at
the boundaries is the same as in the case of the uniform grid. Hence

|ej − e1j − e2j − e3j | < C∆2(1 + 3xj − x2
j)

Since ek
j = O(∆2) , k = 1, 2, 3 we find

ej = O(∆2) . (2.65)

which is what we wanted to show. Hence, the scheme defined by (2.48) has
second order convergence on arbitrary grids, so that its widespread applica-
tion is justified.

Vertex-centered grid

On a vertex-centered grid we have grid points on the boundary. Therefore
the Dirichlet boundary condition at x = 0 gives zero local truncation error,
which is markedly better than (2.53). Furthermore, because the cell bound-
aries are now midway between the nodes, the cell face approximation (2.20)
is much more accurate. Indeed, the local truncation error is an order smaller

2.3 Finite volume method 41

on rough grids for vertex-centered schemes; we will not show this. Therefore
it is sometimes thought that vertex-centered schemes are more accurate than
cell-centered schemes. But this is not so. In both cases, e = O(∆2). Because
this is most surprising for cell-centered schemes, we have chosen to elaborate
this case. In practice, both types of grid are widely used.

Having come to the end of this chapter, looking again at the list of items that
we wanted to cover given in Sect. 2.1 will help the reader to remind himself
of the main points that we wanted to emphasize.

Exercise 2.3.1. Derive equation (2.21). (Remember that linear interpola-
tion is exact for functions of type f(x) = a+ bx).

Exercise 2.3.2. Assume u > 0. Show that for the upwind scheme the coef-
ficients in the numerical flux are:

β0
j = uj+1/2 + (ε/h)j+1/2, j = 1, · · · , J − 1 ,

β1
j+1 = −(ε/h)j+1/2, j = 1, · · · , J − 1 , β1

1 = −2ε1/2/h1 ,

γ0 = (u1/2 + 2ε1/2/h1)a ,

β0
J = uJ+1/2 , γ1 = −εJ+1/2b (Neumann),

β0
J = uJ+1/2 + 2εJ+1/2/hJ , γ1 = −2εJ+1/2b/hJ (Dirichlet).

(2.66)

Exercise 2.3.3. Show that with ε and u constant on a uniform grid the
stencil for the central scheme with Dirichlet boundary conditions is given by

[Lh]1 =

[

0 3
ε

h
+

1

2
u

1

2
u− ε

h

]

,

[Lh]j =

[

−1

2
u− ε

h
2
ε

h

1

2
u− ε

h

]

, j = 2, · · · , J − 1 ,

[Lh]J =

[

−1

2
u− ε

h
3
ε

h
− 1

2
u 0

]

.

(2.67)

Exercise 2.3.4. Show that in the refinement zone the local mesh Péclet
number satisfies p = 1.

Exercise 2.3.5. Derive equations (2.44) and (2.45).

Exercise 2.3.6. Implement a Neumann boundary condition at x = 1 in the
MATLAB program cd1. Derive and implement the corresponding exact solu-
tion. Study the error by numerical experiments. Implement wrong boundary
conditions: Neumann at inflow, Dirichlet at outflow. See what happens.

42

Exercise 2.3.7. In the program cd1 the size of the refinement zone is
del = 6/pe . Find out how sensitive the results are to changes in the factor
6.

Exercise 2.3.8. Let xj = jh (uniform grid) and denote ϕ(xj) by ϕj . Show:

(ϕj − ϕj−1)/h =
dϕ(xj)

dx
− h

2

d2ϕ(ξ)

dx2
, (2.68)

(ϕj+1 − ϕj−1)/(2h) =
dϕ(xj)

dx
+
h2

6

d3ϕ(ξ)

dx3
, (2.69)

(ϕj−1 − 2ϕj + ϕj+1)/h
2 =

d2ϕ(xj)

dx2
+
h2

12

d4ϕ(ξ)

dx4
, (2.70)

(2.71)

with ξ ∈ [xj−1 , xj+1].

Exercise 2.3.9. Show that

sinx√
x

= O(
√
x).

Some self-test questions

When is the convection-diffusion equation in conservation form?

Write down the Burgers equation.

When do we call a problem ill-posed?

Formulate the maximum principle.

When is a finite volume scheme in conservation form?

What are cell-centered and vertex-centered grids?

What are the conditions for a scheme to be of positive type? Which desirable property do posi-
tive schemes have?

Define the mesh-Péclet number.

Why is it important to have Péclet-uniform accuracy and efficiency?

Derive a finite volume scheme for the convection-diffusion equation.

Derive the condition to be satisfied by the step size h for the central scheme to be of positive
type on a uniform grid.

Define the global and local truncation error.

Derive the exact solution of the convection-diffusion equation.

Write down Taylor’s formula.

3. The stationary convection-diffusion equation

in two dimensions

3.1 Introduction

We will discuss only new aspects that did not come up in the one-dimensional
case. The equation to be studied is the two-dimensional stationary convection-
diffusion equation:

∂uϕ

∂x
+
∂vϕ

∂y
− ∂

∂x

(

ε
∂ϕ

∂x

)

− ∂

∂y

(

ε
∂ϕ

∂y

)

= q(x, y) , (x, y) ∈ Ω ≡ (0, 1)×(0, 1) .

(3.1)
Suitable boundary conditions are:

ϕ = f(x, y) on ∂Ωi (Dirichlet), (3.2)

ϕ = f(x, y) on ∂Ωo (Dirichlet) or (3.3)

∂ϕ

∂n
= g(x, y) on ∂Ωo (Neumann), (3.4)

where n is the outward unit normal on the boundary ∂Ω, ∂Ωi is the inflow
boundary (where u ·n < 0) and ∂Ωo is the remainder of ∂Ω, to be called the
outflow boundary.

We recall that ε = 1/Pe, with the Péclet number Pe ≫ 1. In the same way
as in Sect. 2.2 it can be shown that equation (3.1) is in conservation form.

As in one dimension, we have a maximum principle. We write (3.1) in the
following non-conservative form:

u
∂ϕ

∂x
+ v

∂ϕ

∂y
− ∂

∂x

(

ε
∂ϕ

∂x

)

− ∂

∂y

(

ε
∂ϕ

∂y

)

= q̃ ≡ q − ϕdivu . (3.5)

If q̃ ≤ 0 then local maxima can only occur on the boundary ∂Ω. We will
not show this here; the interested reader may consult Sect. 2.4 of Wesseling
(2001).

44 3. The stationary convection-diffusion equation in two dimensions

Purpose of this chapter

The purpose of this chapter is:

• To explain how singular perturbation theory can be used to predict where
for Pe ≫ 1 thin layers (boundary layers) will occur without knowing the exact
solution;

• To show which boundary conditions are suitable for Pe ≫ 1;

• To introduce the finite volume method in two dimensions;

• To show how by means of local grid refinement accuracy and computing
work can be made independent of the Péclet number;

• To introduce the stencil of the scheme and to show how to generate its
coefficient matrix;

• To explain the discrete maximum principle in two dimensions;

• To illustrate the above points by numerical experiments.

Exercise 3.1.1. Show that equation (3.1) is in conservation form by using
Theorem 1.2.1.

3.2 Singular perturbation theory

Before discussing numerical schemes, we will consider singular perturbation
theory for the stationary convection-diffusion equation in two dimensions. In
view of our experience in the one-dimensional case, we expect when ε≪ 1 the
occurrence of thin layers in which the solution varies rapidly. Such layers are
called boundary layers. As seen in Chapt. 2, local grid refinement is required
in boundary layers for accuracy. Therefore it is necessary to know where
boundary layers occur and the dependence of their thickness on ε. In Chapt.
2 this information was deduced from the exact solution; however, in general
the exact solution is not available, of course. But the required information is
provided by singular perturbation theory, also called boundary layer theory.
The boundary layer concept was first introduced by Ludwig Prandtl in 1904,
but the mathematical foundation was developed in the middle of the last
century.

3.2 Singular perturbation theory 45

Subcharacteristics

When ε ≪ 1 it is natural to approximate (3.1) by putting ε = 0, so that we
obtain, switching to nonconservative form:

u
∂ϕ

∂x
+ v

∂ϕ

∂y
= q̃ , q̃ = q − ϕdivu . (3.6)

This is the convection equation. Let us define curves called characteristics in
Ω space by relations x = x(s) y = y(s), satisfying

dx

ds
= u ,

dy

ds
= v . (3.7)

For the derivative along the curve we have

dϕ

ds
=
∂ϕ

∂x

dx

ds
+
∂ϕ

∂y

dy

ds
= u

∂ϕ

∂x
+ v

∂ϕ

∂y
.

Therefore equation (3.6) reduces to

dϕ

ds
= q̃ . (3.8)

We see that in the homogeneous case q̃ = 0 the solution ϕ is constant along
the characteristics, which is why these curves are important. When ε > 0 we
do not have ϕ constant on the characteristics, but as we will see, these curves
still play an important role when ε≪ 1. To avoid confusion, when ε > 0 the
characteristics are called subcharacteristics.

A paradox

Let the pattern of streamlines (i.e. (sub)characteristics) be qualitatively as in
Fig. 3.1. The characteristic C1 intersects the boundary in points P1 and P2.
Here a boundary condition is given, according to equations (3.2)—(3.4). On
C1 we have ϕ = constant = ϕ(C1). It is clear that in general ϕ(C1) cannot sat-
isfy simultaneously the boundary conditions in P1 and in P2. For example, let
ϕ(P1) 6= ϕ(P2) be prescribed by a Dirichlet condition at y = 0 and at x = 1.
Do we have ϕ(C1) = ϕ(P1) or ϕ(C1) = ϕ(P2) or ϕ(C1) = (ϕ(P1) + ϕ(P2))/2
or something else? What value to take for ϕ(C1)? The difficulty has to do
with the change of type that the partial differential equation (3.1) undergoes
when ε = 0: for ε > 0 it is elliptic, for ε = 0 it is hyperbolic. It is clear
that we cannot get a good approximation to equation (3.1) for ε ↓ 0 by sim-
ply deleting the small diffusion term. This paradoxical situation has baffled
mathematicians in the nineteenth century, who found the drag of a body in
an ideal fluid (zero viscosity) to be zero, whereas in physical experiments
the drag around bluff bodies was found to be appreciable, even at very high

46 3. The stationary convection-diffusion equation in two dimensions

x

y

1

1

C

C1

2

P

P

P

P

3

1

2

4

Fig. 3.1. Streamline pattern.

Reynolds numbers. This was called the paradox of d’Alembert. The problem
remains in the nonhomogeneous case q̃ 6= 0, because the first order equation
(3.6) can satisfy only one boundary condition.

Problems that contain a small parameter are called perturbation problems.
The terms that are multiplied by the small parameter are regarded as per-
tubations. If a good approximation can be obtained by simply neglecting
the perturbations, we speak of a regular perturbation problem. If a good first
approximation cannot be obtained in this way the perturbation problem is
called singular. An example of a regular perturbation problem is the sun-
earth-moon system. If we neglect the attraction of the moon we still get a
good approximation of the orbit and the period of the earth. The above para-
dox shows that the convection-diffusion equation at large Péclet number is a
singular perturbation problem.

Singular perturbation theory

The above paradox is resolved by singular perturbation theory. If we assume
flow is from the right to the left in Fig. 3.1, so that x = 1 is an inflow boundary
and y = 0 is an outflow boundary, then ϕ = ϕ(C1) = ϕ(P2) is a good
approximation for ε ≪ 1 to the solution of (3.1)—(3.4) in 1 ≥ y > δ = O(ε)
(assuming q̃ = 0), whereas (3.6) has to be replaced by a so-called boundary
layer equation to obtain an approximation in δ > y ≥ 0. This can be seen as
follows. First, assume that we indeed have ϕ(C1) = ϕ(P2) in 1 ≥ y > δ with
δ ≪ 1. In δ > y ≥ 0 we expect a rapid change of ϕ from ϕ(P2) to ϕ(P1). For
derivatives of ϕ we expect

3.2 Singular perturbation theory 47

∂mϕ

∂ym
= O(δ−m) , (3.9)

so that perhaps the diffusion term in (3.1) cannot be neglected in the bound-
ary layer; this will depend on the size of δ. Assume

δ = O(εα) , (3.10)

with α to be determined. In order to exhibit the dependence of the magnitude
of derivatives on ε we introduce a stretched coordinate ỹ:

ỹ = yε−α , (3.11)

which is chosen such that ỹ = O(1) in the boundary layer. We take ε constant
for simplicity. It follows from (3.9)—(3.11) that

∂mϕ

∂ỹm
= O(1) (3.12)

in the boundary layer. In the stretched coordinate, equation (3.1) becomes

∂uϕ

∂x
+ ε−α ∂vϕ

∂ỹ
− ε

∂2ϕ

∂x2
− ε1−2α ∂

2ϕ

∂ỹ2
= 0 . (3.13)

Letting ε ↓ 0 and using (3.12), equation (3.13) takes various forms, depending
on α. The correct value of α follows from the requirement, that the solution
of the ε ↓ 0 limit of equation (3.13) satisfies the boundary condition at y = 0,
and the so-called matching principle.

Matching principle

As ỹ increases, the solution of (the ε ↓ 0 limit of) equation (3.13) has to
somehow join up with the solution of (3.6), i.e. approach the value ϕ(C1).
In singular perturbation theory this condition is formulated precisely, and is
known as the matching principle:

lim
ỹ→∞

ϕinner(x, ỹ) = lim
y↓0

ϕouter(x, y) .

Here ϕinner, also called the inner solution, is the solution of the inner equation
or boundary layer equation, which is the limit as ε ↓ 0 of equation (3.13) for
the correct value of α, which we are trying to determine. Furthermore, ϕouter,
also called the outer solution, is the solution of the outer equation, which is
the limit as ε ↓ 0 of the original equation, i.e. equation (3.6). The matching
principle becomes

ϕinner(x,∞) = g(x) ≡ lim
y↓0

ϕouter(x, y) . (3.14)

48 3. The stationary convection-diffusion equation in two dimensions

As already mentioned, the other condition to be satisfied is the boundary
condition at ỹ = 0:

ϕ(x, 0) = f(x) . (3.15)

For α < 0 (corresponding to compression rather than stretching) the limit as
ε ↓ 0 of (3.13) is, taking u constant for simplicity,

u
∂ϕ

∂x
= 0 , (3.16)

so that ϕ = ϕ(ỹ) , which obviously cannot satisfy (3.14), so that the case
α < 0 has to be rejected. With α = 0 equation (3.6) is obtained, which
cannot satisfy both conditions at x = 0 and y = ỹ = 0, as we saw.

For 0 < α < 1 the limit of (3.13) is, taking v constant for simplicity,

v
∂ϕ

∂ỹ
= 0 ,

so that the inner solution is independent of ỹ, hence, in general equations
(3.14) and (3.15) cannot be satisfied simultaneously. This rules out the case
0 < α < 1.

For α = 1 equation (3.13) becomes as ε ↓ 0:

v(x, 0)
∂ϕ

∂ỹ
− ∂2ϕ

∂ỹ2
= 0 , (3.17)

where we have used that v(x, y) = v(x, εỹ) → v(x, 0) as ε ↓ 0. The general
solution of (3.16) is

ϕ = A(x) +B(x)eṽỹ , (3.18)

with ṽ = v(x, 0). We can satisfy both (3.14) and (3.15), remembering that we
had assumed that y = 0 is an outflow boundary, so that ṽ < 0. From (3.14)
and (3.15) we find

A(x) = g(x), B(x) = f(x) − g(x) .

This gives us the inner solution. In terms of the unstretched variable y the
inner solution is given by

ϕ = g(x) + [f(x) − g(x)]eṽy/ε .

We see a rapid exponential variation from g(x) to f(x) in a thin layer of
thickness δ = O(ε), confirming our earlier statement about the behavior of
the solution. Fig. 3.2 gives a sketch of the inner and outer solutions as a
function of y for some given x. An asymptotic approximation for ε ↓ 0 that is
valid everywhere is given by ϕinner +ϕouter− g(x) (not shown in the figure).

3.2 Singular perturbation theory 49

φinner

outerφ

f(x)

y

φ

g(x)

Fig. 3.2. Sketch of inner and outer solutions

The distinguished limit

The limit as ε ↓ 0 of the stretched equation (3.13) for the special value α = 1
for which the solution of the resulting inner equation can satisfy both the
boundary condition and the matching principle is called the distinguished
limit. In order to show that this limit is unique we will also investigate the
remaining values of α that we did not yet consider, namely α > 1. Now
equation (3.13) gives the following inner equation:

∂2ϕ

∂ỹ2
= 0 ,

with the general solution

ϕ = A(x) +B(x)ỹ .

The limit of ϕ as ỹ → ∞ does not exist, so that the matching principle cannot
be satisfied. Hence, α = 1 is the only value that gives a distinguished limit.

The only element of arbitrariness that remains in this analysis is the assump-
tion that we have a boundary layer at y = 0. Why no boundary layer at
x = 1, and ϕ(C1) = ϕ(P1) (cf. Fig. 3.1)?This can be investigated by assum-
ing a boundary layer at x = 1, and determining whether a distinguished limit
exists or not. This is left as an exercise. It turns out that boundary layers
cannot arise at inflow boundaries.

The role of boundary conditions

The occurrence of boundary layers is strongly influenced by the type of
boundary condition. Let (3.15) be replaced by a Neumann condition:

50 3. The stationary convection-diffusion equation in two dimensions

−∂ϕ(x, 0)

∂y
= f(x) . (3.19)

As before, a boundary layer of thickness O(ε) is found at y = 0, and the
boundary layer equation is given by (3.16), with general solution (3.18). Tak-
ing boundary condition (3.19) into account we find

B(x) = −εf(x)/ṽ ,

so that B(x) → 0 as ε ↓ 0. Hence, to first order, there is no boundary layer,
and the outer solution (solution of (3.6)) is uniformly valid in Ω.

Parabolic and ordinary boundary layers

Those familiar with fluid dynamics may wonder at the boundary layer thick-
ness O(ε) = O(1/Pe), since in fluid dynamics laminar boundary layers have
thickness O(1/

√
Re), so that one would have expected δ = O(1/

√
Pe). We

will now see that the convection-diffusion equation gives rise to two types of
boundary layers.

Consider the case that y = 0 is a solid wall, so that v(x, 0) = 0. The shape of
the characteristics of the outer equation (3.6) might be as in Fig. 3.3, where
also y = 1 is assumed to be a solid wall, so that we have a channel flow. Since

x

y

1

1

Fig. 3.3. Characteristics of equation (3.6) in a channel flow.

v(x, 0) = 0, the wall y = 0 is a characteristic of the outer equation (3.6)
according to (3.7), so that the solution along this characteristic is given by

ϕ(x, 0) = f1(0) , (3.20)

assuming x = 0 is a inflow boundary with Dirichlet condition

3.2 Singular perturbation theory 51

ϕ(0, y) = f1(y) . (3.21)

Let there also be a Dirichlet condition at the wall y = 0:

ϕ(x, 0) = f2(x) . (3.22)

This condition cannot in general be satisfied by the outer solution, because
it is constant along the wall, which is a characteristic. Hence, we expect a
boundary layer at y = 0. Obviously, this boundary layer will be of different
type than obtained before, because the boundary layer solution cannot be
given by (3.18), since now we have ṽ = 0. In order to derive the boundary
layer equation, the same procedure is followed as before. Again, we introduce
the stretched coordinate (3.11). Keeping in mind that v = 0, equation (3.1)
goes over in

∂uϕ

∂x
− ε

∂2ϕ

∂x2
− ε1−2α ∂

2ϕ

∂ỹ2
= 0 . (3.23)

The boundary condition is

ϕ(x, 0) = f2(x) , (3.24)

and the matching principle gives

lim
ỹ→∞

ϕ(x, ỹ) = ϕouter(x, 0) . (3.25)

Now we take the limit of (3.23) as ε ↓ 0. For α < 1/2 the outer equation
at y = 0 is recovered with solution (3.20), which cannot satisfy (3.25). For
α = 1/2 the limit of (3.23) is

∂uϕ

∂x
− ∂2ϕ

∂ỹ2
= 0 , (3.26)

This is a parabolic partial differential equation, which in general cannot be
solved explicitly, but for which it is known that boundary conditions at ỹ = 0
and ỹ = ∞ give a well-posed problem. Hence, α = 1/2 gives the distinguished
limit, and (3.26) is the boundary layer equation. The thickness of this type of
boundary layer is O(

√
ε), which is much larger than for the preceding type,

and of the same order as laminar boundary layers in fluid dynamics, for which
δ = O(1/

√
Re).

In order to specify a unique solution for (3.26), in addition a boundary con-
dition has to be specified at x = 0 (assuming u > 0). From (3.21) we obtain
the following boundary condition for the boundary layer solution:

ϕ(0, ỹ) = f1(ỹ
√
ε) ,

which to the present asymptotic order of approximation (we will not go into
higher order boundary layer theory) may be replaced by

52 3. The stationary convection-diffusion equation in two dimensions

ϕ(0, ỹ) = f1(0) .

It is left to the reader to verify that α > 1/2 does not give a distinguished
limit.

The cause of the difference between the two boundary layer equations (3.17)
(an ordinary differential equation) and (3.26) (a partial differential equation)
is the angle which the characteristics of the outer equation (3.6) make with
the boundary layer. In the first case this angle is nonzero (cf. Fig. 3.1),in the
second case the characteristics do not intersect the boundary layer. The first
type is called an ordinary boundary layer (the boundary layer equation is an
ordinary differential equation), whereas the second type is called a parabolic
boundary layer (parabolic boundary layer equation).

Summarizing, in the case of the channel flow depicted in Fig. 3.3, for ε ≪ 1
there are parabolic boundary layers of thickness O(

√
ε) at y = 0 and y = 1,

and an ordinary boundary layer of thickness O(ε) at the outflow boundary,
unless a Neumann boundary condition is prescribed there.

On outflow boundary conditions

It frequently happens that physically no outflow boundary condition is
known, but that this is required mathematically. Singular perturbation theory
helps to resolve this difficulty. If ε = O(1) such a physical model is incom-
plete, but for ε ≪ 1 an artificial (invented) outflow condition may safely
be used to complete the mathematical model, because this does not affect
the solution to any significant extent. Furthermore, an artificial condition of
Neumann type is to be preferred above one of Dirichlet type. This may be
seen by means of singular perturbation theory, as follows.

Consider the following physical situation: an incompressible flow with given
velocity field u through a channel, the walls of which are kept at a known
temperature. We want to know the temperature of the fluid, especially at
the outlet. This leads to the following mathematical model. The governing
equation is (3.1), with ϕ the temperature. Assume ε≪ 1, and u > 0. We have
ϕ prescribed at x = 0 and at y = 0, 1, but at x = 1 we know nothing. Hence,
we cannot proceed with solving (3.1), either analytically or numerically. Now
let us just postulate some temperature profile at x = 1:

ϕ(1, y) = f3(y).

An ordinary boundary layer will occur at x = 1, with solution, derived in the
way discussed earlier (cf. equation 3.18), given by

ϕ(x, y) = ϕouter(1, y) + {f3(y) − ϕouter(1, y)}eũ(x−1)ε , (3.27)

3.3 Finite volume method 53

where ũ ≡ u(1, y). This shows that the invented temperature profile f3(y)
influences the solution only in the thin (artificially generated) boundary layer
at x = 1. This means that the computed temperature outside this boundary
layer will be correct, regardless what we take for f3(y). When ε = O(1) this
is no longer true, and more information from physics is required, in order to
specify f3(y) correctly. In physical reality there will not be a boundary layer
at all at x = 1, of course. Therefore a more satisfactory artificial outflow
boundary condition is

∂ϕ(1, y)

∂x
= 0 ,

since with this Neumann boundary condition there will be no boundary layer
at x = 1 in the mathematical model.

Exercise 3.2.1. Show that there is no boundary layer at x = 1, if this is an
inflow boundary. Hint: choose as stretched coordinate x̃ = (x− 1)/εα.

Exercise 3.2.2. Consider equation (2.5). Show that with Dirichlet boundary
conditions for ε≪ 1 there is a boundary layer of thickness O(ε) at x = 1 and
not at x = 0.

Exercise 3.2.3. Derive equation (3.27).

3.3 Finite volume method

Problem statement

In this section we study the numerical approximation of the two-dimensional
stationary convection-diffusion equation, for convenience written in Cartesian
tensor notation:

Lϕ ≡ (uαϕ),α − (εϕ,α),α = q , α = 1, 2 , (x1, x2) ∈ (0, 1)× (0, 2) . (3.28)

We assume that we have solid walls at x2 = 0, 2, so that u2(x1, 0) = u2(x1, 2)
= 0. Let u1 < 0, so that x1 = 0 is an outflow boundary. In view of what we
learned in Sect. 3.2 we choose a Neumann boundary condition at x1 = 0, and
Dirichlet boundary conditions at the other parts of the boundary:

ϕ,1(0, x2) = g4(x2) , ϕ(x1, 0) = g1(x1) ,
ϕ(x1, 2) = g2(x1) , ϕ(1, x2) = g3(x2) .

This corresponds to the channel flow problem studied before. We assume
symmetry with respect to the centerline of the channel, so that we have to
solve only in half the domain, i.e. in Ω ≡ (0, 1)× (0, 1). At the centerline our

54 3. The stationary convection-diffusion equation in two dimensions

boundary condition is the symmetry condition ϕ,2 = 0, so that the boundary
conditions are:

ϕ,1(0, x2) = g4(x2) , ϕ(x1, 0) = g1(x1) ,
ϕ,2(x1, 1) = 0 , ϕ(1, x2) = g3(x2) .

(3.29)

As discussed before, it is best to choose at the outflow boundary a homo-
geneous Neumann condition, i.e. g4 ≡ 0, but for the purpose of numerical
experimentation we leave the possibility of choosing a nonhomogeneous Neu-
mann condition open. We will not discuss the three-dimensional case, because
this does not provide new insights.

Our purpose in this section is to show, as in Sect. 2.3, but this time in two
dimensions, that (3.28) can be solved numerically such that accuracy and
computing cost are uniform in Pe. Therefore fear that it is impossible to
compute high Péclet (Reynolds) number flow accurately is unfounded, as ar-
gued before. For simplicity we assume horizontal flow: u2 ≡ 0, and we will
simply write u instead of u1.

Choice of grid

In view of what we learned in Sect. 3.2, we expect a parabolic (because
u2 = 0) boundary layer at x2 = 0 with thickness O(

√
ε). If g4 ≡ 0 we have a

homogeneous Neumann condition at the outflow boundary, and there is no
boundary layer at x1 = 0. Just as in Sect. 2.3, in order to make accuracy and
computing work uniform in ε, we choose a grid with local refinement in the
boundary layer, as sketched in Fig. 3.4. We will apply grid refinement near the
outflow boundary later. The region of refinement has thickness σ = O(

√
ε).

The precise choice of σ will be discussed later, and is such that the boundary
layer falls inside the refinement region. The refined part of the grid is called
Gf , the interface between the refined and unrefined parts is called Γ and the
remainder of the grid is called Gc. The mesh sizes in Gf and Gc are uniform,
as indicated in Fig. 3.4. Note that the location of the horizontal grid lines
depends on ε.

Finite volume discretization

We choose a cell-centered scheme. The cell centers are labeled by integer two-
tuples (i, j) in the usual way: Ωij is the cell with center at (xi, yj). Hence, for
example, (i+ 1/2, j) refers to the center of a vertical cell edge. Cell-centered
finite volume discretization is used as described in Sect. 2.3. For completeness
the discretization is summarized below. The finite volume method gives by
integration over Ωij and by using the divergence theorem:

3.3 Finite volume method 55

Γ

G

H

H

2

c

fG

1
h

σ

2

Fig. 3.4. Computational grid

∫

Ωij

LϕdΩ =
[

∫ xi+1/2,j+1/2

xi+1/2,j−1/2
−

∫ xi−1/2,j+1/2

xi−1/2,j−1/2

]

(uϕ− εϕ,1)dx2

+
[

∫ xi+1/2,j+1/2

xi−1/2,j+1/2
−

∫ xi+1/2,j−1/2

xi−1/2,j−1/2

]

(−εϕ,2)dx1

= F 1|i+1/2,j
i−1/2,j + F 2|i,j+1/2

i,j−1/2 .

The approximation of the numerical fluxes F 1,2 is given below. The right-
hand side of equation (3.28) is numerically integrated over Ωij as follows:

∫

Ωij

qdΩ ∼= q̃ij ≡ H1Kjq(xij) , (3.30)

where Kj is the vertical dimension of Ωij : Kj = h2 in Gf and Kj = H2

in Gc. The cells are numbered i = 1, ..., I and j = 1, ..., J in the x1- and
x2-directions, respectively. The following scheme is obtained:

Lhϕij ≡ F 1|i+1/2,j
i−1/2,j + F 2|i,j+1/2

i,j−1/2 = q̃ij . (3.31)

If we sum (3.31) over all cells only boundary fluxes remain, so that the scheme
is conservative (cf. Sect. 2.3).

The numerical flux

How to approximate the numerical fluxes F 1,2 in terms of neighboring grid
function values follows directly from the one-dimensional case discussed in
the preceding chapter. With upwind discretization for the first derivative
(taking into account that u < 0), the numerical fluxes F 1,2 are approximated
as follows:

56 3. The stationary convection-diffusion equation in two dimensions

F 1
i+1/2,j

∼= Kj[ui+1/2,jϕi+1,j − ε(ϕi+1,j − ϕij)/H1] ,

F 2
i,j+1/2

∼= −2H1ε(ϕi,j+1 − ϕij)/(Kj +Kj+1) , (3.32)

With the central scheme for the first derivative F 1 becomes:

F 1
i+1/2,j

∼= Kj[ui+1/2,j(ϕi,j + ϕi+1,j)/2 − ε(ϕi+1,j − ϕij)/H1] . (3.33)

The boundary conditions are implemented as in Sect. 2.3. This gives both
for the upwind and central schemes:

F 1
1/2,j

∼= Kj [u1/2,j(ϕ1j −H1g
4(yj)/2) − εg4(yj)] ,

F 1
I+1/2,j

∼= Kj [uI+1/2,jϕI+1/2,j − 2ε(ϕI+1/2,j − ϕIj)/H1] ,

F 2
i,1/2

∼= −2H1ε(ϕi,1 − ϕi,1/2)/h2 ,

F 2
i,J+1/2 = 0 ,

(3.34)

where ϕI+1/2,j and ϕi,1/2 are given by the boundary conditions (3.29).

The stencil of the scheme

Although this is tedious, we will spell out more details of the scheme, as
preparation for a MATLAB program. The numerical fluxes as specified above
can be written as

F 1
i+1/2,j = β0

ijϕij + β1
i+1,jϕi+1,j , i = 1, · · · , I − 1 , j = 1, · · · , J ,

F 1
1/2,j = β1

1jϕ1,j + γ0
j , j = 1, · · · , J ,

F 1
I+1/2,j = β0

IjϕIj + γ1
j , j = 1, · · · , J ,

F 2
i,j+1/2 = β2

ijϕij + β3
i,j+1ϕi,j+1, i = 1, · · · , I , j = 1, · · · , J − 1 ,

F 2
i,1/2 = β3

i1ϕi,1 + γ2
i , i = 1, · · · , I ,

F 2
i,J+1/2 = 0 , i = 1, · · · , I ,

(3.35)

where γ0, γ1, γ2 are known terms arising from the boundary conditions. The
β and γ coefficients follow easily from (3.34), and will not be written down.
The scheme consists of a linear system of equations of the form

Lhϕij =
1

∑

k=−1

1
∑

l=−1

αkl
ijϕi+k,j+l , (3.36)

where the only nonzero α coefficients are

α−1,0
ij = −β0

i−1,j , α1,0
ij = β1

ij

α0,−1
ij = −β2

i,j−1 , α0,1
ij = β3

ij

α0,0
ij = (β0 − β1 + β2 − β3)ij .

(3.37)

3.3 Finite volume method 57

The scheme has a five-point stencil:

[Lh] =

α0,1

α−1,0 α0,0 α1,0

α0,−1

 .

The maximum principle

Just as in the one-dimensional case, we have a discrete maximum principle.
We generalize Definition 2.3.1 to the two-dimensional case as follows:

Definition 3.3.1. The operator Lh is of positive type if for i = 2, · · · , I − 1
and j = 2, · · · , J − 1

∑

kl

αkl
ij = 0 (3.38)

and
αkl

ij < 0, (k, l) 6= (0, 0) . (3.39)

The following theorem says that schemes of positive type satisfy a similar
maximum principle as the differential equation.

Theorem 3.3.1. Discrete maximum principle.
If Lh is of positive type and

Lhϕij ≤ 0, i = 2, · · · , I − 1, j = 2, · · · , J − 2 ,

then ϕij ≤ maxij{ϕ1j , ϕIj , ϕi1, ϕiJ}.
In other words, local maxima can only occur in cells adjacent to the bound-
aries.

It is left to the reader to show that with the upwind scheme Lh is of positive
type, and with the central scheme this is the case if (taking u constant for
simplicity) the mesh Péclet number satisfies

p < 2 , p ≡ |u|h
ε

,

just as in the one-dimensional case (cf. equation (2.41)).

The matrix of the scheme

In matrix notation the scheme (3.31) can be denoted as

Ay = b .

58 3. The stationary convection-diffusion equation in two dimensions

Let the algebraic vector y contain the unknowns in lexicographic order:

ym = ϕij , m = i+ (j − 1)I . (3.40)

Vice-versa, i and j follow from m as follows:

j = floor[(m− 1)/I], i = m− (j − 1)I , (3.41)

where floor(a/b) is the largest integer ≤ a/b. The right-hand side b contains
q̃ij in lexicographic order. The relation between the grid indices i, j and the
lexicographic index m is illustrated in Fig. 3.5 With lexicographic ordering,

1 2 3 4

5 6 7 8

1,1 2,1 3,1 4,1

1,2 2,2 3,2 4,2

9 10 11 12 1,3 2,3 3,3 4,3

Fig. 3.5. Relation between lexicographic and grid indices

A is an IJ × IJ matrix with the following block-tridiagonal structure:

A =

B1 D1 0 · · · 0

C2 B2 D2

...

0
. . .

. . .
. . . 0

... CJ−1 BJ−1 DJ−1

0 · · · 0 CJ BJ

,

where Bj are I × I tridiagonal matrices, given by

Bj =

α0,0
1j α1,0

1j 0 · · · 0

α−1,0
2j α0,0

2j α1,0
2j

...

0
. . .

. . .
. . . 0

... α−1,0
I−1,j α0,0

I−1,j α1,0
I−1,j

0 · · · 0 α−1,0
I,j α0,0

Ij

,

and Cj and Dj are I × I diagonal matrices, given by

Cj = diag{α0,−1
ij }, Dj = diag{α0,1

ij } .

Remarks on the MATLAB program cd2

The numerical scheme described above has been implemented in the MATLAB
program cd2, available at the author’s website; see the Preface.

3.3 Finite volume method 59

The student is not expected to fully understand this program, because use
is made of somewhat advanced features, such as meshgrid and reshape, in
order to avoid for loops. Avoiding for loops is essential for efficiency in
MATLAB, as can be seen in the code cd2 by comparing computing time
(using tic· · ·toc) for generating the matrices A1 and A3. Generation of A1
is done in a simple way with for loops, and requires 1.22 time units on a
32×72 grid, whereas the more sophisticated program for A3 takes 0.067 time
units; this discrepancy grows rapidly with increasing grid size. The time used
for solving the system Ay = b is 0.32.

In MATLAB, A is generated as a sparse matrix by

d = [-I; -1; 0; 1; I];

A = spdiags([a1 a2 -a1-a2-a4-a5 a4 a5], d, n, n);

with suitable definition of the diagonals a1· · ·a5. Exploiting sparsity is es-
sential for saving memory and computing time. The solution of the system
Ay = b is obtained in MATLAB by

y = A\b;

This means that we solve with a direct method using sparse LU factorization.
For large systems, that occur particularly when partial differential equations
are solved in three-dimensional domains, direct methods frequently demand
intolerable amounts of computer time and memory, even when sparsity is
exploited. Efficient solution methods for solving the algebraic systems arising
from numerical schemes for partial differential equations will be discussed in
Chapt. 6.

Numerical experiments

The purpose of the numerical experiments with the program cd2 that we will
now describe is to demonstrate, as we did in Sect. 2.3 for the one-dimensional
case, that we can achieve Péclet-uniform accuracy and efficiency, and that
accurate results can be obtained on grids with large jumps in mesh size. This
is shown theoretically in Sect. 4.7 of Wesseling (2001), but here we confine
ourselves to numerical illustration.

In order to be able to assess the error, we choose an exact solution. Of course,
this solution has to exhibit the boundary layer behavior occurring in prac-
tice. We choose the following solution of the boundary layer (inner) equation
(3.26):

ϕ =
1√

2 − x

{

exp(− y2

4ε(2 − x)
) + exp(− (2 − y)2

4ε(2 − x)

}

.

60 3. The stationary convection-diffusion equation in two dimensions

The right-hand side and boundary conditions in (3.29) are chosen accord-
ingly. The exact solution is symmetric with respect to y = 1, as assumed
by the boundary conditions (3.29).

Because the solution is extremely smooth in Ωc, it turns out that in Gc the
number of cells in the vertical direction can be fixed at 4; the maximum of
the error is found to always occur in Gf . We take

σ = 8
√
ε . (3.42)

Table 3.1 gives results for the cell-centered upwind case. Exactly the same re-
sults (not shown) are obtained for ε = 10−5 and ε = 10−7, showing ε-uniform
accuracy. Of course, computing time and memory are also independent of ε,
because they depend only on nx and ny. The maximum error is found to oc-
cur in the interior of the boundary layer. Because we use the upwind scheme

nx ny error ∗ 104

8 32 54
32 64 14

128 128 3.6

Table 3.1. Maximum error as function of number of grid-cells for ε = 10−3; cell-
centered upwind discretization. nx: horizontal number of cells; ny : vertical number
of cells in Gf .

in the x-direction and the central scheme in the y-direction, we expect for
the error e = O(H1 + h2

2), so that the error should decrease by a factor 4 at
each refinement in Table 3.1; this expectation is confirmed. Table 3.2 gives
results for central discretization of the convection term. Visual inspection of
graphical output (not shown) shows no visible wiggles. But very small wiggles

nx ny error ∗ 104

8 16 92
16 32 28
32 64 7.8
64 128 2.1

Table 3.2. Cell-centered central discretization; ε = 10−3.

are present. These are the cause that the rate of convergence is somewhat
worse than the hoped for O(H2

1 + h2
2), but here again the same results are

obtained for ε = 10−7, showing uniformity in ε.

We may conclude that in practice work and accuracy can be made to be uni-
form in ε, by suitable local mesh refinement according to Fig. 3.4 and equation

61

(3.42). Hence, in principle, high Reynolds number flows are amenable to com-
putation.

As before, having come to the end of this chapter, looking again at the list
of items that we wanted to cover given in Sect. 3.1 will help the reader to
remind himself of what the main points were that we wanted to emphasize.

Exercise 3.3.1. Derive equations (3.32) and (3.33).

Exercise 3.3.2. Take u1, u2 and ε constant, and the grid uniform. Discretize
the convection-diffusion equation (3.28) with hte finite volume method, using
the central scheme. Show that the resulting stancil is

[Lh] = ε

1
2p2 − h1

h2

− 1
2p1 − h2

h1
2(h1

h2
+ h2

h1
) 1

2p1 − h2

h1

− 1
2p2 − h1

h2

,

where p1 ≡ u1h1/ε and p2 ≡ u2h2/ε are the signed (i.e., they can be positive
or negative) mesh Péclet numbers.

Exercise 3.3.3. Run cd2 with a homogeneous Neumann condition at the
outflow boundary, and compare with the case in which the x-derivative at
the outflow boundary is prescribed in accordance with the exact solution.
This exercise illustrates once again that Pe ≫ 1 it is safe to prescribe a
homogeneous Neumann condition at outflow.

Exercise 3.3.4. Run cd2 with the central scheme for the convection term.
Observe that this does not give better results than the upwind scheme if the
mesh Péclet number is larger than 2. The cause is the occurrence of (very
small) wiggles. How small should dx be to bring the mesh Péclet number p
below 2? Would p < 2 make the computing work nonuniform in ε ?

Some self-test questions

What is your favorite outflow boundary condition? Why?

Define the subcharacteristics of the convection-diffusion equation.

What is the difference between a regular and a singular perturbation problem?
Formulate the matching principle.

What is the essential feature that makes it possible to have accuracy and efficiency Péclet-
uniform? Why do we want this property?

When is a scheme of positive type? Why is this nice?

Under what conditions is the scheme with stencil of Exercise 3.3.2 of positive type?

4. The nonstationary convection-diffusion

equation

4.1 Introduction

In the nonstationary case, time is included. The equation to be studied is the
two-dimensional nonstationary convection-diffusion equation:

∂ϕ

∂t
+
∂uϕ

∂x
+
∂vϕ

∂y
− ∂

∂x

(

ε
∂ϕ

∂x

)

− ∂

∂y

(

ε
∂ϕ

∂y

)

= q(t, x, y) ,

0 < t ≤ T, (x, y) ∈ Ω ≡ (0, 1)× (0, 1) .

(4.1)

The following initial condition is required:

ϕ(0, x, y) = ϕ0(x, y) . (4.2)

Suitable boundary conditions are:

ϕ(t, x, y) = f(t, x, y) on ∂Ωi (Dirichlet), (4.3)

ϕ(t, x, y) = f(t, x, y) on ∂Ωo (Dirichlet) or (4.4)

∂ϕ(t, x, y)

∂n
= g(t, x, y) on ∂Ωo (Neumann), (4.5)

where n is the outward unit normal on the boundary ∂Ω, ∂Ωi is the inflow
boundary (where u ·n < 0) and ∂Ωo is the remainder of ∂Ω, to be called the
outflow boundary.

When ε = 1/Pe ≪ 1, boundary layers may occur at the same location and
with the same thickness as in the stationary case, as may be seen by means of
singular perturbation theory, which is easily extended to the nonstationary
case.

As in the stationary case, we have a maximum principle. The non-conservative
form of (4.1) is:

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
− ∂

∂x

(

ε
∂ϕ

∂x

)

− ∂

∂y

(

ε
∂ϕ

∂y

)

= q̃ ≡ q − ϕdivu . (4.6)

The maximum principle for the nonstationary case says that if q̃ ≤ 0 and if
there is a local maximum in the interior of Ω for t = t∗ > 0, then ϕ = con-
stant, 0 ≤ t ≤ t∗. In effect this says that local maxima can occur only at t = 0

64 4. The nonstationary convection-diffusion equation

and at the boundaries. If q̃ ≥ 0 the same applies to local minima, so that
in the homogeneous case q̃ = 0 there can be no local extrema (in space and
time) in the interior; any numerical wiggles must be regarded as numerical
artifacts. See Sect. 2.4 of Wesseling (2001) for a more precise version of the
maximum principle. We will not prove this maximum principle here. But a
simple physical analogy will convince the reader that it must be true. Think
of a copper plate with a nonuniform temperature distribution at t = 0. The
evolution of the temperature ϕ is governed by the heat equation, i.e. equation
(4.6) with u = v = 0. If no heat sources or sinks are present (i.e. q̃ = 0) then
the temperature distribution evolves to a uniform state, and a local hot spot
must have been hotter at earlier times.

Purpose of this chapter

The purpose of this chapter is:

• To introduce methods for discretization in time;
• To explain the concepts of consistency, stability and convergence;
• To show that numerical schemes must be stable;
• To show how stability conditions can be derived by Fourier analysis.

4.2 A numerical example

Consider the one-dimensional heat equation, which is a special case of equa-
tion (4.1):

∂ϕ

∂t
− ε

∂2ϕ

∂x2
= 0 , 0 < t ≤ T , x ∈ Ω ≡ (0, 1) , (4.7)

with initial condition and homogeneous Neumann boundary conditions given
by

ϕ(0, x) = ϕ0(x) ,
∂ϕ(t, 0)

∂x
=
∂ϕ(t, 1)

∂x
= 0 . (4.8)

This is a mathematical model for the evolution of the temperature ϕ in a
thin insulated bar with initial temperature distribution ϕ0(x). We have

lim
t→∞

ϕ(t, x) = constant =

∫ 1

0

ϕ0(x)dx . (4.9)

4.2 A numerical example 65

Discretization in space

For discretization in space we use the finite volume method on the vertex-
centered grid of Fig. 2.1 with uniform mesh size h. The following details have
been covered in the preceding chapters, but we present them as an exercise.
Integration over the control volumes gives, with ε constant:

h

2

dϕ1

dt
+ F1/2 − F3/2 = 0 ,

h
dϕj

dt
+ Fj−1/2 − Fj+1/2 = 0 , j = 2, · · · , J − 1 ,

h

2

dϕJ

dt
+ FJ−1/2 − FJ+1/2 = 0 ,

(4.10)

where F is an approximation of ε∂ϕ/∂x, naturally chosen as follows:

Fj+1/2 = ε(ϕj+1 − ϕj)/h , j = 1, · · · , J − 1 .

From the boundary conditions it follows that F1/2 = FJ+1/2 = 0.

Discretization in time

Equation (4.10) is rewritten as

dϕj

dt
+ Lhϕj = 0 , j = 1, · · · , J . (4.11)

For discretization in time we choose the forward Euler scheme:

(ϕn+1
j − ϕn

j)/τ + Lhϕ
n
j = 0 , n = 0, · · · , N , N ≡ T/τ , (4.12)

with τ the time step, taken constant; ϕn
j is the numerical approximation

of ϕ(nτ, xj) with ϕ(t, x) the exact solution. From Fig. 2.1 it follows that
xj = (j − 1)h, h = 1/(J − 1). Equation (4.12) is equivalent to

ϕn+1
1 = (1 − 2d)ϕn

1 + 2dϕn
2 ,

ϕn+1
j = dϕn

j−1 + (1 − 2d)ϕn
j + dϕn

j+1 , j = 2, · · · , J − 1 ,

ϕn+1
J = 2dϕn

J−1 + (1 − 2d)ϕn
J ,

(4.13)

where d ≡ ετ/h2 is a dimensionless number, that we will call the diffusion
number.

The matrix of the scheme

If we define ϕ≡ (ϕ1, · · · , ϕJ)T then (4.13) can be rewritten as

66 4. The nonstationary convection-diffusion equation

ϕn+1 = Aϕn ,

with A the following tridiagonal matrix:

A =

1 − 2d 2d 0 · · · 0

d 1 − 2d d
...

0
. . .

. . .
. . . 0

... d 1 − 2d d
0 · · · 0 2d 1 − 2d

. (4.14)

This matrix is easily generated as a sparse matrix in MATLAB by the fol-
lowing statements:

e = ones(J,1);

de = d*e;

A = spdiags([de, e - 2*de, de], -1:1, J, J);

A(1,2) = 2*d;

A(J,J-1) = 2*d;

Numerical results

The following numerical results have been obtained with the MATLAB code
heq . As initial solution we choose

ϕ0(x) = 0 , 0 < x < 0.4 ,

ϕ0(x) = 1 , 0.4 < x < 0.6 ,

ϕ0(x) = 0 , 0.6 < x < 1 .

(4.15)

Numerical results are shown in Fig. 4.1 for two values of the diffusion number
d. The result at the left looks as expected: the temperature distribution is
tending to uniformity, and the maximum principle is satisfied: no new maxima
in space, and the maximum at x = 1/2 was larger at earlier times. But
the result in the right part of the figure is wrong. Clearly, the value of the
diffusion number has a crucial influence, and something strange happens
between d = 0.48 and d = 0.52! This will be investigated in what follows.

Efficiency in MATLAB

But we first use the MATLAB implementation of the initial condition (4.15)
as a nice example to illustrate the impact of vectorization on efficiency. Let vo
be preallocated with vo = zeros(J,1); A non-vectorized implementation of
(4.15) is:

4.2 A numerical example 67

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
d=0.48, 50 cells, T=0.1

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
d=0.52, 50 cells, T=0.1

Fig. 4.1. Numerical solution of heat equation for two values of d.

for j = 1:J

if (x(j) > 0.4) & (x(j) < 0.6), vo(j) = 1; end

end

A more efficient non-vectorized implementation is:

j1 = floor(1 + (J-1)*0.4); j2 = ceil(1 + (J-1)*0.6);

for j = j1:j2

vo(j) = 1;

end

A vectorized implementation is:

j = floor(1 + (J-1)*0.4):ceil(1 + (J-1)*0.6);

vo(j) = 1;

A more efficient vectorized implementation is:

vo(floor(1 + (J-1)*x1):ceil(1 + (J-1)*x2)) = 1;

For these four versions, tic ... toc gives the following timings, respectively,
for J = 100, on my Pentium II processor:

{19.0 3.0 1.5 1.3} ∗ 10−4

The message is:
Avoid for loops. If you cannot avoid them, avoid if statements within for

loops.

Exercise 4.2.1. Prove equation (4.9).

Hints: Show that if ∂ϕ
∂t = 0 the solution is constant. Show that d

dt

∫ 1

0 ϕdx = 0.
(This shows that with these boundary conditions the bar is insulated: the heat
content is conserved).

68 4. The nonstationary convection-diffusion equation

4.3 Convergence, consistency and stability

One-step schemes

Schemes in which only two time levels are involved are called one-step
schemes; the forward Euler method (4.12) is an example. The general form
of linear one-step schemes is:

B1ϕ
n+1 = B0ϕ

n +B2q
n +B3q

n+1 , (4.16)

where B0, · · · , B3 are linear operators, and where q arises from the right-hand
side of the differential equation and the boundary conditions. For simplicity
we restrict ourselves here to one-step schemes.

Local and global truncation error

Let us denote the algebraic vector with elements the exact solution evaluated
at the grid point and at time tn by ϕn

e . Let us define the local truncation
error τn

j , gathered in an algebraic vector τn (not to be confused with the
time step τ) by the following equation:

B1ϕ
n+1
e = B0ϕ

n
e +B2q

n +B3q
n+1 + τn . (4.17)

The global truncation error is defined as

en ≡ ϕn
e − ϕn . (4.18)

By subtracting (4.17) and (4.16) we get the following relation between the
global and the local truncation error:

B1e
n+1 = B0e

n + τn . (4.19)

This is very similar to equation (2.47), so that the above definitions are
consistent with the truncation error definitions for the stationary case given
in Sect. 2.3.

Convergence

Of course, we want ‖en‖ ↓ 0, n = 1, · · · , T/τ as the grid is refined and τ ↓ 0
(while keeping T/τ integer, obviously). This is not the case for our previous
numerical example when d > 1/2. No matter how small h and τ are chosen,
the numerical solution will always look like the right part of Fig. 4.1, since
it depends only on the parameter d, cf. (4.13). Clearly, we have to do some
analysis to find conditions that guarantee that a numerical scheme is good.

4.3 Convergence, consistency and stability 69

Let the number of space dimensions be m and let us have an m-dimensional
spatial grid G with grid points

xj = (x1
j1 , · · · , xm

jm
) .

Hence, now j is a multi-index (j1, · · · , jm). Let the spatial mesh sizes and
the time step be decreasing functions of a parameter h, that belongs to a
sequence that decreases to zero. To emphasize the dependence of G on h we
write Gh. We want at a fixed time T and a fixed location x the error to tend
to 0 as h ↓ 0. This implies that the number of time steps n = T/τ changes,
and the multi-index j changes to keep xj fixed. To emphasize this we write
jh. Of course, we assume that Gh is such that the fixed point xjh

remains a
grid point when the grid is refined. For example, in the preceding numerical
example we could choose

xjh
= 1/2 , h ∈ {1/2, 1/4, 1/6, · · · }.

so that jh ∈ {1, 2, 3, · · · }. We are now ready for the definition of convergence.

Definition 4.3.1. Convergence
A scheme is called convergent if the global truncation error satisfies

lim
h↓0

e
T/τ
jh

= 0, xjh
fixed.

Clearly, scheme (4.13) is not convergent for d > 1/2.

Consistency

It seems likely that for convergence it is necessary that the local truncation
error is small enough. We therefore formulate a condition. Let the scheme
(4.16) in a given grid point xj approximate the differential equation times
τα|∂Ωj |β with |∂Ωj | the volume of some cell around xj (For example, the
scheme (4.13) obviously approximates equation (4.7) times τ , so that in this
case α = 1, β = 0). We define

Definition 4.3.2. Consistency
The scheme (4.16) is called consistent if

lim
h↓0

τn
jh
/(τα|∂Ωjh

|β) = 0, j ∈ Gh, 1 ≤ n ≤ T/τ .

In Exercise 4.3.1 the reader is asked to show that scheme (2.48) is not consis-
tent on rough grids. This seems disturbing, because we are going to show that
consistency is necessary for convergence, but in Sect. 2.3 it was shown that
scheme (2.48) converges on rough grids. This apparent paradox arises from
the fact that Def. 4.3.2 implies that the local truncation error is measured

70 4. The nonstationary convection-diffusion equation

in the maximum norm. On rough grids we have consistency of scheme (2.48)
in a more sophisticated norm, but not in the maximum norm; we will not go
into this further. In this chapter only uniform grids are considered; on these
grids the various appropriate norms are the same.

Stability

As illustrated by the numerical example in the preceding section, consistency
does not imply convergence. In addition, stability is required. This concept
will now be explained. Let δ0 be a hypothetical arbitrary perturbation of
ϕ0. The resulting perturbation of ϕn is called δn. It is left for the reader to
derive from equation (4.16) that

B1δ
n+1 = B0δ

n . (4.20)

Let ‖ · ‖h be some norm for functions Gh → R. Stability means that δn

remains bounded as n→ ∞, for all δ0. Two useful definitions are:

Definition 4.3.3. Zero-stability
A scheme is called zero-stable if there exists a bounded function C(T) and a
function τ0(h) such that for arbitrary δ0

‖δT/τ‖h ≤ C(T)‖δ0‖h (4.21)

for all τ ≤ τ0(h) and all h ≤ h0 for some fixed h0.

The appellation ”zero-stability” refers to the fact that the limit h ↓ 0 is
considered.

Definition 4.3.4. Absolute stability
A scheme is called absolutely stable if there exists a constant C and a function
τ0(h) such that for arbitrary δ0

‖δn‖h ≤ C‖δ0‖h (4.22)

for h fixed, all n > 0 and all τ ≤ τ0(h).

The difference with zero-stability is that here h is fixed.

Lax’s equivalence theorem

Definition 4.3.3 considers the perturbation at a fixed time T as h ↓ 0, which
is the same limit as in the definition of convergence. It can be shown that
convergence implies zero-stability, and zero-stability plus consistency imply
convergence. This is known as Lax’s equivalence theorem. As a consequence,
zero-stability is necessary for convergence. But absolute stability is also good
to have, because it allows n to grow indefinitely, making it possible to continue
time stepping until a steady state is reached. Absolute and zero-stability are
not completely equivalent.

4.4 Fourier stability analysis 71

A remark on stability analysis

The purpose of stability analysis is to find a suitable function τ0(h) such that
(4.21) and (4.22) hold. This is the case if the linear operators in (4.20) satisfy

‖(B−1
1 B0)

n‖h ≤ C .

In the case of absolute stability, h and hence the dimensions of the matrices
B0 and B1 are fixed, and linear algebra can be used to find conditions under
which ‖(B−1

1 B0)
n‖ is bounded as n → ∞. But in the case of zero-stability,

n→ ∞ and h ↓ 0 simultaneously, and we have to study not just the behavior
of the nth power of a matrix, but of a family of matrices of increasing size.
This is not a familiar situation in linear algebra. We will see that Fourier
analysis is well-suited to the study of both kinds of stability, if the boundary
conditions are periodic.

Exercise 4.3.1. Show that for scheme(2.48) we have β = 1. Because this
scheme is for the stationary case, time can be disregarded. Show that, using
(2.52), scheme (2.48) is consistent on smooth grids (as defined below equation
(2.52)), but not on rough grids.

4.4 Fourier stability analysis

Applicability of Fourier analysis

In general it is difficult to derive estimates like (4.21) and (4.22). But if the
coefficients in the scheme are constant, the mesh uniform, the grid a rect-
angular block and the boundary conditions periodic, then Fourier analysis
applies and the required estimates are often not difficult to obtain.

In practice, of course, the coefficients are usually not constant. The scheme
is called locally stable if we have stability for the constant coefficients scheme
that results from taking local values of the coefficients, and to assign these
values to the coefficients in the whole domain (frozen coefficients method).
Local stability in the whole domain is necessary for stability in the variable
coefficients case. We will discuss stability only for constant coefficients.

Stability theory for non-periodic boundary conditions is complicated. But
for explicit time stepping schemes it takes a while before the influence of the
boundary conditions makes itself felt in the interior, so that Fourier stability
theory applies during a certain initial time span. As a consequence, stability
with periodic boundary conditions is desirable, even if the boundary condi-
tions are of different type.

72 4. The nonstationary convection-diffusion equation

Example of frozen coefficients method

Consider the Burgers equation:

∂ϕ

∂t
+

1

2

∂ϕ2

∂x
= 0 .

Discretization with the forward Euler method in time and the upwind scheme
in space gives:

ϕn+1
j − ϕn

j +
τ

2h
[(ϕn

j)2 − (ϕn
j−1)

2] = 0 ,

assuming ϕ > 0 and a uniform grid. For stability analysis we postulate a
perturbation δϕ0 of the initial solution. The perturbed solution satisfies

(ϕ+ δϕ)n+1
j − (ϕ+ δϕ)n

j +
τ

2h
{[(ϕ+ δϕ)n

j]2 − [(ϕ+ δϕ)n
j−1]

2} = 0 .

Subtraction of the preceding two equations and linearization (i.e. deletion of
terms quadratic in δϕ) gives:

δϕn+1
j − δϕn

j +
τ

h
[(ϕδϕ)n

j − (ϕδϕ)n
j−1] = 0 .

Freezing of the coefficients results in

δϕn+1
j − δϕn

j +
cτ

h
(δϕn

j − δϕn
j−1) = 0 ,

where c is the frozen value of ϕ. This scheme allows Fourier stability analysis.
Usually, a stability condition of the type

cτ

h
< C (4.23)

results for some value of C. This condition is to be satisfied for the frozen
coefficient c equal to all values that the variable coefficient ϕn

j takes. We see
from (4.23) that it suffices to take c = max(|ϕn

j |). Frequently an informed
guess for max(|ϕn

j |) can be made by looking at the boundary conditions.

In the remainder of this section we present the basic principles of Fourier
stability analysis.

Fourier series

Let Gh be a uniform grid on the unit interval with nodes

4.4 Fourier stability analysis 73

xj = jh , j = 0, 1, · · · , J − 1 ≡ 1/h .

It can be shown that every grid function δ : Gh → R can be represented by
what is called a Fourier series:

δj =

m+p
∑

−m

cke
ij2πk/J , j = 0, 1, · · · , J − 1 ,

where p = 0, m = (J − 1)/2 for J odd and p = 1, m = (J − 2)/2 for J
even. The proof is elementary, and can be found for instance in Chap. 7 of
Wesseling (1992). It is convenient to rewrite this as

δj =
∑

θ∈Θ

cθe
ijθ , Θ ≡ {θ = 2πk/J , k = −m,−m+ 1, · · · ,m+ p} . (4.24)

We note that eijθ = cos jθ + i sin jθ is complex, so that cθ is also complex,
such that δj is real. We can regard cθ as the amplitude of the harmonic wave
eijθ . In (4.24) θ ranges approximately between −π and π if J ≫ 1. For θ = π
we have the shortest wave that can be resolved on Gh : eijπ = (−1)j, and
for θ = 0 the wavelength is infinite: e0 = 1. Note that δ is periodic: δj = δj+J .
The functions eijθ , θ ∈ Θ are called Fourier modes. The parameter θ is called
the wavenumber. The function f(x) ≡ eijθ has period or wavelength 2π/θ,
since f(x+ 2π/θ) = f(x).

The Fourier series (4.24) is easily extended to more dimensions. We restrict
ourselves to the two-dimensional case. Let Gh be a uniform grid on the unit
square with nodes

xj = (j1h1, j2h2) , jα = 0, · · · , Jα − 1 ≡ 1/hα , α = 1, 2 .

Define the set Θ of wavenumbers as

Θ ≡{θ = (θ1, θ2) : θα = 2πkα/Jα ,

kα = −mα,−mα + 1, · · · ,mα + pα , α = 1, 2} ,

where pα = 0, mα = (nα − 1)/2 for Jα odd and pα = 1, mα = nα/2 − 1 for
Jα even. Define

jθ =

2
∑

α=1

jαθα . (4.25)

It can be shown that every grid function δ : Gh → R can be written as

δj =
∑

θ∈Θ

cθe
ijθ . (4.26)

with the amplitudes cθ given by

74 4. The nonstationary convection-diffusion equation

cθ = N−1
∑

j∈Gh

δje
−ijθ , N = J1J2 .

As a consequence we have

∑

θ∈Θ

cθe
ijθ = 0, ∀j ∈ Gh ⇒ cθ = 0, ∀θ ∈ Θ . (4.27)

Let us define the l2-norm by

‖δ‖ = N− 1
2 {

∑

j∈Gh

(δj)
2}1/2, ‖c‖ = N− 1

2 {
∑

θ∈Θ

|cθ|2}1/2

We will need

Theorem 4.4.1. Parseval.
If δ and c are related by (4.26), then in the l2-norm

‖δ‖ = N1/2‖c‖ .

An example

Consider the example of Sect. 4.2. The perturbation δn in the numerical
solution ϕn satisfies the same equation as ϕn, i.e. equation (4.13) (show
this!). But now we assume periodic boundary conditions (to make Fourier
analysis applicable), so that the boundary conditions are replaced by the
condition δj = δj+J . We have

δn+1
j = dδn

j−1 + (1 − 2d)δn
j + dδn

j+1 .

Substitution of (4.24) gives:

∑

θ∈Θ

eijθ
[

cn+1
θ − cnθ (de−iθ + 1 − 2d+ deiθ)

]

= 0 .

Because ε and h are constant, d is constant; therefore the term between []
does not depend on j; if this were not the case the following step could not be
taken and Fourier analysis falls through. But since the term between [] does
not depend on j, it follows from (4.27) that the term between [] is zero, and
we get rid of the sum in the preceding equation. Using e−iθ + eiθ = 2 cos θ
we get

cn+1
θ = g(θ)cnθ , g(θ) ≡ 1 − 2d(1 − cos θ) , (4.28)

where g(θ) is called the amplification factor: it measures the amplification
(or damping) of the amplitude cθ of the Fourier mode eijθ . Before continuing
with this example, we go to the general case.

4.4 Fourier stability analysis 75

The general case

Whenever Fourier stability analysis is applicable, we get relation (4.28) with
some function g(θ) (that is complex in general). It follows that

cnθ = g(θ)nc0θ ,

so that
‖cn‖ ≤ ḡn‖c0‖ , ḡ = max{|g(θ)| : θ ∈ Θ} , (4.29)

with equality for the θ for which the maximum is attained. According to
Parseval’s theorem (Theorem 4.4.1) we have ‖c‖ = N−1/2‖δ‖, so that the
preceding equation gives

‖δn‖ ≤ ḡn‖δ0‖ . (4.30)

From Definition 4.3.4 it follows that for absolute stability we must have

ḡn < C, ∀n

for some C; hence
ḡ < 1. (4.31)

This is sufficient, but also necessary, because equality can occur in (4.29),
since all Fourier modes can be present, because δ0 is arbitrary (cf. Def. 4.3.4).

A sufficient condition for zero-stability is that there exists a constant C such
that

ḡ(T/τ) ≤ C (4.32)

for 0 ≤ τ ≤ τ0(h). Since

Cτ/T = exp(
τ

T
lnC) = 1 + O(τ) , (4.33)

we may write
ḡ ≤ 1 + O(τ) . (4.34)

This is the von Neumann condition for zero-stability (after John von Neu-
mann, who introduced the Fourier method for stability analysis around 1944
in Los Alamos; not to be confused with the nineteenth century mathematician
Neumann of the boundary condition). The von Neumann condition is also
necessary, because if ḡ ≥ 1 + µ, µ > 0, then there is a θ with |g(θ)| = 1 + µ.
Choosing δ0j = eijθ gives ‖δn‖/‖δ‖ = (1+µ)n, n = T/τ , which is unbounded
as τ ↓ 0. Note that the O(τ) term (4.34) is not allowed to depend on h; this
follows from (4.32)—(4.34).

We will neglect the O(τ) term in (4.34), because this makes hardly any
difference. For simplicity, we will also extend the set of wavenumbers Θ to

Θ = (−π, π] (one dimension), Θ = (−π, π]×(−π, π] (two dimensions).

76 4. The nonstationary convection-diffusion equation

This also makes hardly any difference, since in practice Jα ≫ 1. We end up
with the following condition for absolute and zero-stability:

ḡ ≤ 1 , ḡ ≡ max{|g(θ)| : ∀θ}. (4.35)

(Note that g(θ) is complex in general, so that |g| is the modulus of a complex
number).

An example, continued

In our example g(θ) is given by (4.28), so that g(θ) happens to be real, and
equation (4.35) gives:

−1 ≤ 1 − 2d(1 − cos θ) ≤ 1 , ∀θ .

Th right inequality is always satisfied, since d ≥ 0. The left inequality gives

d(1 − cos θ) ≤ 1 , ∀θ ,

so that we must have
d ≤ 1/2 .

This beautifully explains the numerical results obtained in Fig. 4.1. It follows
that the time step must satisfy

τ ≤ h2

2ε
. (4.36)

Here we encounter an example of the function τ0(h) in the definition of zero-
stability:

τ0(h) =
h2

2ε
.

Condition (4.36) is rather restrictive, because τ must be reduced much more
than h, when h is decreased for better accuracy. It may be inefficient to use
such small time steps. Therefore we will consider another scheme below. But
first we give another example.

Second example

Consider the one-dimensional convection equation:

∂ϕ

∂t
+ u

∂ϕ

∂x
= 0. (4.37)

We discretize in space with the upwind scheme and in time with the forward
Euler scheme, and obtain (assuming u > 0):

4.4 Fourier stability analysis 77

ϕn+1
j = ϕn

j − c(ϕn
j − ϕn

j−1) , c ≡ uτ/h . (4.38)

The dimensionless number c is called the Courant-Friedrichs-Lewy number
or CFL number, after the authors of the 1928 paper in which the impor-
tance of numerical stability was first brought to light; c is also called the
Courant number. The quick way to get the amplification factor is to take just
one Fourier mode, and to substitute ϕn

j = cnθ e
ijθ; the amplification factor is

g(θ) = cn+1
θ /cnθ . This gives

g(θ) = 1 − c(1 − e−iθ) . (4.39)

To study stability we must consider |g(θ)|, which, however, takes a somewhat
unpleasant form, so that we prefer the following more elegant geometrical
approach. We note that the complex number g(θ), when θ varies between−π
and π, traces out a circle with center at 1 − c and radius c. From Fig. 4.4 it
is clear that for |g(θ)| not to leave the unit circle we must have 0 ≤ c ≤ 1,

11-c

Fig. 4.2. Locus of g(θ) in complex plane.

resulting in the following stability condition on the time step:

τ ≤ h/u , (4.40)

which provides another example of the function τ0(h) in Def. 4.3.3.

The ω-scheme

The backward Euler scheme for equation (4.11) is given by

(ϕn+1
j − ϕn

j)/τ + Lhϕ
n+1
j = 0 . (4.41)

Now we have to solve a system of equations for ϕn+1, which is why this
is called an implicit scheme; the forward Euler scheme (4.12) is of explicit

78 4. The nonstationary convection-diffusion equation

type. Therefore a time step with an implicit scheme requires much more
computing work than an explicit scheme, but this may be compensated by
better stability properties, allowing a larger time step. The global truncation
error of the Euler time stepping schemes (4.12) and (4.41) satisfies

e = O(τ + hm) ,

where m depends on the accuracy of the spatial discretization Lh. We can
improve this by taking a linear combination of the forward and backward
Euler schemes, as follows:

(ϕn+1
jk − ϕn

jk)/τ + (1 − ω)Lhϕ
n
jk + ωLhϕ

n+1
jk = ωqn+1

jk + (1 − ω)qn
jk , (4.42)

where we now assume the right-hand side q in (4.1) to be nonzero, and where
we have gone to the two-dimensional case. This is called the ω-scheme. For
ω = 1/2 this is called the Crank-Nicolson scheme, which is second order in
time:

e = O(τ2 + hm) .

With the central scheme for convection, the space discretization of equation
(4.1) is, with u, v, ε constant and uniform mesh sizes h1 and h2 in the x−
and y−directions, respectively,:

Lhϕjk =
u

2h1
(ϕj+1,k − ϕj−1,k) +

v

2h2
(ϕj,k+1 − ϕj,k−1)

+
ε

h2
1

(−ϕj−1,k + 2ϕjk − ϕj+1,k) +
ε

h2
2

(−ϕj,k−1 + 2ϕjk − ϕj,k+1) .

(4.43)

The equation for the perturbation δn
jk is identical to the homogeneous version

(i.e. q = 0) of equation (4.43). For 1/2 < ω < 1 the stability analysis of the
ω-scheme is easy. As said before, the quick way to determine the amplification
factor is to substitute δn

j = cnθ e
ijθ, where now j stands for {j, k}, and where

jθ = jθ1 + kθ2, cf. equation (4.25). Substitution gives

cn+1
θ − cnθ + (1 − ω)τL̂h(θ)cnθ + ωτL̂h(θ)cn+1

θ = 0 ,

where
L̂h(θ) ≡ e−ijθLhe

ijθ .

It follows that

g(θ) =
cn+1
θ

cnθ
=

1 − (1 − ω)τL̂h(θ)

1 + ωτL̂h(θ)
.

Let the real and imaginary part of the complex variable τL̂h be w1 and w2,
respectively: τL̂h = w1 + iw2. Noting that for two complex numbers z1,2 we

have |z1/z2| = |z1|/|z2| and noting that |L̂h|2 = w2
1 + w2

2, we get

4.4 Fourier stability analysis 79

|g(θ)|2 ≡ [1 − (1 − ω)w1]
2 + (1 − ω)2w2

2

(1 + ωw1)2 + ω2w2
2

.

Assume that w1 ≥ 0. Then for 1/2 ≤ ω ≤ 1 the denominator is not smaller
than the numerator, so that |g(θ)| ≤ 1, and we have stability. To check
whether w1 ≥ 0, we have to determine τL̂h. We find that

τL̂h = i(c1 sin θ1 + c2 sin θ2) + 2d1(1 − cos θ1) + 2d2(1 − cos θ2) , (4.44)

where
c1 ≡ uτ

h1
, c2 ≡ vτ

h2
, d1 ≡ ετ

h2
1

, d2 ≡ ετ

h2
2

,

from which it is obvious that w1 = Re(τL̂h) ≥ 0, ∀θ. Similarly, with the
upwind scheme for convection we obtain, assuming u, v ≥ 0,

τL̂h = c1(1−e−iθ1)+c2(1−e−iθ2)+2d1(1−cosθ1)+2d2(1−cos θ2) , (4.45)

We have w1 = (c1 + 2d1)(1 − cos θ1) + (c2 + 2d2)(1 − cos θ2) ≥ 0 , ∀θ, since
c1,2 ≥ 0.

Hence, we have established unconditional stability of the ω-scheme for the
convection-diffusion equation, for 1/2 ≤ ω ≤ 1. The only interesting values
of ω are 0, 1/2+O(τ), 1. The value ω = 0 is of interest because this gives an
explicit scheme, for which a time step is cheap. A value ω = 1/2 +O(τ) is of
interest because this gives O(τ2) accuracy. Finally, ω = 1 is of interest because
this is necessary for the discrete maximum principle in the nonstationary case;
we will not go into this. Therefore we will not give stability conditions for
the ω-scheme for 0 ≤ ω < 1/2, but only for ω = 0. In this case the analysis
becomes a bit complicated, and we will give only the result; for a derivation
see Wesseling (2001) (Theorem 5.8.1). There it is shown that for the central
scheme a necessary and sufficient stability condition is:

2ετ
(1

h2
1

+
1

h2
2

)

≤ 1 and
τ

2ε
(|u|2 + |v|2) ≤ 1 , (4.46)

and for the upwind scheme a sufficient stability condition is:

2ετ
(1

h2
1

+
1

h2
2

+
|u|

2εh1
+

|v|
2εh2

)

≤ 1 and
τ

2ε

(|u|2
1 + |u|h1

+
|v|2

1 + |v|h2

)

≤ 1 .

(4.47)
It is left to the reader to verify that equations (4.36) and (4.40) are included
as special cases in (4.46) and (4.47), respectively.

Exercise 4.4.1. Suppose we have a numerical scheme for the convection
equation

80 4. The nonstationary convection-diffusion equation

∂ϕ

∂t
+ c

∂ϕ

∂x
= 0 , c constant ,

that has a stability condition cτ/h < C. What is the stability condition for
this scheme for the nonlinear case ∂ϕ/∂t+ ∂ϕm/∂x = 0?

Exercise 4.4.2. Derive equations (4.38) and (4.39).

Exercise 4.4.3. Show that scheme (4.38) is unconditionally unstable when
u < 0. (This is one way to see why the downwind scheme is bad).

Exercise 4.4.4. Discretize (4.37) with the central scheme in space and the
forward Euler scheme in time. Show that the scheme is unconditionally un-
stable.

Exercise 4.4.5. This exercise is meant to demonstrate the attractiveness of
the geometric approach illustrated in Fig. 4.4. Determine |g(θ)|, with g(θ)
given by equation (4.39). Use analysis instead of geometry to find conditions
on c such that |g(θ)| ≤ 1, ∀θ.

Exercise 4.4.6. Derive equations (4.43)—(4.45).

Exercise 4.4.7. Write down the upwind version of scheme (4.43).

4.5 Numerical experiments

Problem statement

Some numerical experiments will be presented for the following one-dimensional
test problem:

∂ϕ

∂t
+ u

∂ϕ

∂x
− ε

∂2ϕ

∂x2
= q, 0 < x < 1, 0 < t ≤ T ,

q(t, x) = β2ε cosβ(x − ut) ,

(4.48)

with ε and u > 0 constant, and β a parameter. An exact solution is given by

ϕ(t, x) = cosβ(x− ut) + e−α2εt cosα(x − ut) , (4.49)

with α arbitrary. Spatial discretization is done with the second order central
or with the first order upwind scheme on the vertex-centered grid of Fig. 2.1
with uniform mesh size h. For temporal discretization the ω-scheme is used.
The resulting scheme can be written as

hj

τ
(ϕn+1

j − ϕn
j) + ωLhϕ

n+1
j + (1 − ω)Lhϕ

n
j = hj [ωq

n+1
j (1 − ω)qn

j] , (4.50)

4.5 Numerical experiments 81

where hj is the volume of the cell over which is integrated. We choose a
Neumann condition at x = 1, so that hj = h, j 6= J, hJ = h/2. In the
interior we get for the central scheme:

Lhϕj =Fj+1/2 − Fj−1/2 ,

Fj+1/2 =
1

2
u(ϕj+1 + ϕj) −

ε

h
(ϕj+1 − ϕj) , j = 2, · · · , J − 1 .

(4.51)

At the Neumann boundary we integrate over a half cell, and obtain

FJ+1/2 = uϕJ − εb(t) ,

assuming a Neumann condition ∂ϕ(t, 1)/∂x = b(t).

Choice of time step, mesh size and time scale

The length scale L and time scale T of the exact solution are given by

L = π/max(α, β), T = min{L/u, (εα2)−1} ,

where we take for the length scale of a harmonic function half its wavelength.
We may expect accuracy to be sufficient if τ ≪ T , h ≪ L. For efficiency,
we would like to avoid more stringent restrictions on τ and h, such as might
arise from stability. In the numerical experiments to be described we take
α = 4π, β = 2π, so that L ∼= 1/4. We take mostly h = 1/30, giving h/L ∼=
0.13.

Remarks on the MATLAB program

The numerical experiments described below have been carried out with the
code cdns. The matrix Lh is described in Sect. 2.3 for the cell-centered case
(called A there), and is easily adapted to the vertex-centered case. It is gen-
erated (as in Sect. 2.3) by

L_h = spdiags([-beta0 beta0-beta1 beta1], -1:1, J, J);

The system to be solved for ϕn+1 with the ω-scheme (4.50) can be written
as

Aφn+1 = Bφn + q . (4.52)

The matrices A and B can be generated by

x = linspace(0,1,J); % Grid node positions

hh = h*ones(size(x’));

hh(J,1) = h/2; % Last cell has half size

D = spdiags([hh/tau],0,J,J);

82 4. The nonstationary convection-diffusion equation

A = D + omega*L_h;

B = D - (1 - omega)*L_h;

A(1,1) = 1; A(1,2) = 0; % Correction for Dirichlet

B(1,1) = 0; B(1,2) = 0; % boundary condition

[L,U] = lu(A); % Save LU decomposition

Time stepping is done with

vn = U\(L\(B*vo + rhs)); vo = vn;

Numerical results

We prescribe a Dirichlet condition at x = 0 and a Neumann condition at
x = 1. Initial and boundary conditions are chosen conforming with the exact
solution (4.49). The left half of Fig. 4.3 shows a result. In this case we have

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5
d=1.2 c=1.1 p=1.8 30 cells ω=1 T=1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5
d=1.2 c=1.1 p=1.8 30 cells ω=0.5 T=1

Fig. 4.3. Exact (—) and numerical solution (*) of (4.48). Central scheme; u =
1.1, ε = 0.02, h = τ = 1/30, t = 1, α = 4π, β = 2π. Left: ω = 1, right: ω = 1/2.

T ∼= 0.23, τ ∼= 0.15T . The accuracy with ω = 1 is disappointing. The cause
is that the scheme is only first order accurate in time. With ω = 1/2 the
scheme is second order accurate in time, and the accuracy is much better.
In this case we have d ≡ 2ετ/h2 = 1.2, τu2/(2ε) = 1.0, so that the ex-
plicit (ω = 0) scheme is instable according to the one-dimensional version
(v = 0, h2 = ∞) of the stability conditions (4.46). To get comparable accu-
racy as in the right part of the figure with ω = 0 we find that we need to
decrease (in order to compensate for first order accuracy in time) τ to 1/300
(results not shown). This gives an elapsed time (with tic...toc) of 0.287,
whereas for the right part of the figure we find an elapsed time of 0.027. The
stability of the explicit (ω = 0) scheme constrains the time step much more
than accuracy. This is inefficient, so that it pays of to use a more compli-
cated scheme with more work per time step, but with a less severe stability

83

restriction on the time step.

Exercise 4.5.1. Verify the stability conditions (4.46) by numerical experi-
ments with the MATLAB program used in this section.

Exercise 4.5.2. Make a cell-centered version of the code cdns .

Some self-test questions

Write down the instationary convection-diffusion equation.

Formulate the maximum principle for the instationary convection-diffusion equation.

Write down the one-dimensional heat equation, discretize it with the forward Euler scheme and
write down the matrix of the scheme.

Define the global and local truncation error for the instationary convection-diffusion equation.

Formulate Lax’s equivalence theorem.

Define zero-stability and absolute stability.

Write down the Fourier series for a grid function ∆j in d dimensions.

Write down the ω-scheme.

Which are the interesting values of ω for the ω-scheme? Why?

Show that the ω-scheme is unconditionally stable for ω ≥ 1/2.

5. The incompressible Navier-Stokes equations

5.1 Introduction

In this chapter, the incompressible Navier-Stokes equations in Cartesian co-
ordinates discretized on Cartesian nonuniform grids will be considered, dis-
cussing most of the basic numerical principles in a simple setting. In practical
applications, of course, nonuniform grids and general coordinate systems are
prevalent; these will not be discussed here; see Wesseling (2001).

We can be relatively brief in discussing discretization of the Navier-Stokes
equations, because we prepared the ground in our extensive discussion of the
convection-diffusion equation in Chapters 2—4. Therefore it wil not be nec-
essary to discuss again the various possibilities for discretizing convection, or
stability conditions.

Only the primitive variable formulation will be discussed. This means that
the velocity components and the pressure will be used as unknowns.

Purpose of this chapter

The purpose of this chapter is to present a numerical method for the incom-
pressible Navier-Stokes equations. In particular, we will:

• Present suitable boundary conditions;
• Describe spatial discretization on a staggered grid;
• Describe the ω-scheme, the Adams-Bashforth scheme and the Adams-
Bashforth-ω scheme for discretization in time;
• Show how to linearize with the Picard or Newton method;
• Describe the pressure-correction method;
• Discuss stability conditions;
• Present some numerical experiments with the MATLAB codes ns1 and
ns2;
• Discuss outflow boundary conditions;
• Discuss efficiency.

86 5. The incompressible Navier-Stokes equations

5.2 Equations of motion and boundary conditions

Equations of motion

We restrict ourselves to the two-dimensional case. The equations of motion
have been discussed in Chap. 1. For ease of reference, the equations to be
considered are repeated here. We assume incompressible flow, i.e.Dρ/Dt = 0,
so that (cf. (1.8))

ux + vy = 0 , (5.1)

where we denote partial differentiation by a subscript. The density is taken
constant. The dimensionless incompressible Navier-Stokes equations are given
by equation (1.23):

ut + uux + vuy = −px + Re−1(uxx + uyy) ,

vt + uvx + vvy = −py + Re−1(vxx + vyy) .
(5.2)

By adding u(ux + vy) and v(ux + vy) (both zero according to (5.1)), respec-
tively, this can be put in conservation form:

ut + (uu)x + (vu)y = −px + Re−1(uxx + uyy) ,

vt + (uv)x + (vv)y = −py + Re−1(vxx + vyy) .
(5.3)

The following units are chosen: velocity: U ; length: L; density: ρ0; pressure:
ρ0U

2. Then the Reynolds number is given by

Re = ρ0UL/µ ,

with µ the dynamic viscosity coefficient, which was already assumed to be
constant above.

The deviatoric stress tensor (i.e. the viscous part of the stress tensor) is
denoted by σαβ . From equation (1.15) it follows that

σxx = 2Re−1ux, σxy = σyx = Re−1(uy + vx), σyy = 2Re−1vy . (5.4)

The governing equations (5.1) and (5.2) need to be accompanied by initial
and boundary conditions.

Initial conditions

For the momentum equations (5.2) the following initial conditions are re-
quired:

u(0,x) = u0(x) , v(0,x) = v0(x) ,

with the prescribed initial velocity field u0 satisfying the continuity equation
(5.1). Note that there is no initial condition for the pressure, since pt does
not occur.

5.2 Equations of motion and boundary conditions 87

No-slip condition

Viscous fluids cling to solid surfaces. This is called the no-slip condition. At
a solid surface we have

u(t,x) = v(t,x) , (5.5)

with v(t,x) the local wall velocity. The Dirichlet condition (5.5) holds also
at open parts of the boundary where the velocity is prescribed, which may
be the case at an inflow boundary. But at an inflow boundary one may also
prescribe condition (5.6) given below.

Free surface conditions

At a free surface the tangential stress components are zero. We consider only
the very special case where the free surface is fixed at y = a = constant. For
the general case, see Sect. 6.2 of Wesseling (2001). At a fixed free surface, the
normal velocity and the tangential stress are zero:

v(t, x, a) = 0, uy(t, x, a) = 0 , (5.6)

where we have used

σxy(t, x, a) = Re−1(uy + vx)(t, x, a) = Re−1uy(t, x, a) .

We see that we have a Dirichlet condition for the normal velocity and a Neu-
mann condition for the tangential velocity. A truly free surface moves, its
shape must be determined and follows from the condition that the normal
stress equals the ambient pressure. This case will not be considered. Condi-
tions (5.6) may also arise at a plane of symmetry. In special cases one may
wish to prescribe non-zero tangential stress in (5.6), for example, when one
wishes to take the influence of wind shear on a water surface into account.

Inflow conditions

The momentum equations resemble convection-diffusion equations for u
and v, so that the insights gained in the convection-diffusion equation in
Chapt. 2—4 provide guidelines for numerical approximation. Based on what
we learned about the convection-diffusion equation, we prescribe Dirichlet
conditions at an inflow boundary. If, for example, x = 0 is an inflow bound-
ary, we prescribe

u(t, 0, y) = U(t, y) , v(t, 0, y) = V (t, y) . (5.7)

88 5. The incompressible Navier-Stokes equations

Outflow conditions

At an outflow boundary, often not enough physical information is available
on which to base a sufficient number of boundary conditions. Usually only the
pressure is known. This is not as serious as it may seem, because when Re ≫ 1
‘wrong’ information generated by an artificial boundary condition propagates
upstream only over a distance of O(Re−1). This is plausible because of the
resemblance of (5.2) to the convection-diffusion equation, and may in fact
be shown directly by applying singular perturbation analysis to (5.2) in a
similar manner as in Sect. 3.2. In order to avoid spurious numerical wiggles it
is advisable to choose as artificial outflow condition a homogeneous Neumann
condition for the tangential velocity. For an outflow boundary at x = a this
gives:

p(t, a, y) = p∞, vx(t, a, y) = 0 . (5.8)

Compatibility condition

At every part of the boundary exactly one of the boundary conditions (5.5),
(5.6) or (5.8) needs to be prescribed. If it is the case that along the whole of the
boundary ∂Ω the normal velocity un(t,x) is prescribed, then it follows from
(5.1) and the divergence theorem that the following compatibility condition
must be satisfied:

∫

∂Ω

un(t,x)dS = 0 . (5.9)

It can be shown theoretically (for further information, see Sect. 6.2 of Wes-
seling (2001)) that in order for (5.1), (5.2) to be well-posed, the normal com-
ponent of the prescribed initial velocity field u0(x) and a prescribed normal
velocity component must match at t = 0:

u0(x) · n = un(0,x)

on parts of ∂Ω where the normal velocity is prescribed. But the tangential
components of the initial and boundary velocity fields need not match at t =
0. Therefore, for example, a sliding wall may be set in motion instantaneously
at t = 0 in a fluid originally at rest, but one should not let the speed of an
arbitrarily shaped body or of an inlet flow change discontinuously.

5.3 Spatial discretization on staggered grid

Let the domain be rectangular and be covered with a nonuniform grid consist-
ing of rectangular cells as sketched in Fig. 5.1. The oldest and most straight-
forward approach to discretizing the Navier-Stokes equations in space is the

5.3 Spatial discretization on staggered grid 89

Fig. 5.1. Rectangular nonuniform grid

method proposed in 1965 by Harlow and Welch (see Sect 6.4 of Wesseling
(2001) for references to the literature). On orthogonal grids it remains the
method of choice.

Staggered grid

Grid points for different unknowns are staggered with respect to each other.
The pressure resides in the cell centers, whereas the cell face centers contain
the normal velocity components, cf. Fig. 5.2. The grid nodes are numbered

jk j+1/2,k

j,k+1/2

Fig. 5.2. Staggered placement of unknowns; →, ↑: velocity components; •: pressure.

as follows. The cell with center at xjk is called

Ωjk, j = 1, · · · , J, k = 1, · · · ,K .

The horizontal and vertical sides of Ωjk have length hx
j and hy

k, respectively.
The center of the ‘east’ side of Ωjk is called xj+1/2,k, etc., see Fig. 5.2.
Hence, Ωjk contains the following unknowns: pjk, uj±1/2,k, vj,k±1/2. Note
that with a staggered grid we always have a mixture of vertex-centered and
cell-centered discretization. Unavoidably, at a boundary, some unknowns will
have nodes upon it, whereas other unknowns have no nodes on this boundary,
but half a mesh size removed. Therefore it is fortunate, as seen in Chapt. 2,
that vertex-centered and cell-centered discretization are on equal footing as

90 5. The incompressible Navier-Stokes equations

far as global accuracy and ease of implementation of boundary conditions are
concerned.

Discretization of continuity equation

The continuity equation (5.1) is integrated over Ωjk, resulting in

hy
ku|

j+1/2,k
j−1/2,k + hx

j v|
j,k+1/2
j,k−1/2 = 0 . (5.10)

The advantage of the staggered placement of the unknowns is that no further
approximation is necessary in this equation.

Discretization of momentum equations

Finite volume integration takes place over control volumes surrounding u and
v grid points, with sides through neighboring pressure points. For example,
the control volume for uj+1/2,k consists of the union of half of Ωjk and half
of Ωj+1,k, as illustrated in Fig. 5.3. This control volume is called Ωj+1/2,k.
Finite volume integration gives

Fig. 5.3. Control volume Ωj+1/2,k for uj+1/2,k.

∫

Ωj+1/2,k

[

ut + (uu+ p− Re−1ux)x + (uv − Re−1uy)y

]

dΩ ∼=

hx
j+1/2h

y
k

duj+1/2,k

dt
+ hy

k

(

uu+ p− Re−1ux

)j+1,k

jk

+hx
j+1/2

(

uv − Re−1uy

)j+1/2,k+1/2

j+1/2,k−1/2
= 0 .

(5.11)

Here p occurs only in its own nodal points, and further approximation is not
necessary. But the derivatives and u and v need to be approximated in terms
of surrounding nodes.

5.3 Spatial discretization on staggered grid 91

The derivatives are approximated as follows:

ux|jk
∼= (uj+1/2,k − uj−1/2,k)/hx

j ,

uy|j+1/2,k+1/2
∼= (uj+1/2,k+1 − uj+1/2,k)/hy

k+1/2 .

The central scheme for the inertia term is obtained with the following ap-
proximations:

u2
jk

∼= (u2
j−1/2,k + u2

j+1/2,k)/2 ,

(uv)j+1/2,k+1/2
∼= (uj+1/2,k + uj+1/2,k+1)(vj,k+1/2 + vj+1,k+1/2)/4 .

The resulting stencil for uj+1/2,k is given in Fig. 5.4.

Fig. 5.4. Stencil for uj+1/2,k.

The upwind scheme for the inertia term is obtained as follows. We do not wish
to test on the sign of u and v, because if statements in for loops are very
computer time consuming, cf. Sect. 4.3. We note that upwind approximation
of a term udϕ/dx can be implemented as follows, without an if statement:

uϕ(xj+1/2) ∼=
1

2

[

(u+ |u|)ϕj + (u − |u|)ϕj−1

]

.

By using this idea we obtain the following upwind approximation of the
inertia terms:

u2
jk

∼= 1

4

[

(u+ |u|)2j−1/2,k + (u− |u|)2j+1/2,k

]

,

(uv)j+1/2,k+1/2
∼= 1

2

[

(v + |v|)j+1/2,k+1/2uj+1/2,k (5.12)

+(v − |v|)j+1/2,k+1/2uj+1/2,k+1

]

,

where
vj+1/2,k+1/2 ≡ (vj,k+1/2 + vj+1,k+1/2)/2 .

The momentum equation for v is discretized similarly. This completes finite
volume discretization in the interior. We continue with the boundary condi-
tions. On the staggered grid the implementation of the boundary conditions
(5.5)—(5.8) is just as simple and done in the same way as for the convection-
diffusion equation in Chapters 2 and 3.

92 5. The incompressible Navier-Stokes equations

The no-slip condition

Let y = 0 be a wall moving horizontally with velocity U(t). Then the lower
side of Ωj,1 is at the boundary. We have vj,1/2 = 0, so that no discretization
for vj,1/2 is required. In the finite volume scheme for uj+1/2,1 we need, ac-
cording to the stencil presented in Fig. 5.4, uj+1/2,0, which is not available,
because xj+1/2,0 is outside the domain. Values outside the domain are called
virtual values.We write uj+1/2,0 + uj+1/2,1 = 2U(t), so that

uj+1/2,0 = 2U(t) − uj+1/2,1 , (5.13)

which is used to eliminate the virtual value uj+1/2,0.

Free surface conditions

Let y = a be a free surface boundary or a symmetry boundary, so that we
have conditions (5.6). Let Ωjk be at the boundary. We have vj,K+1/2 = 0, so
that no discrete equation is required for vj,K+1/2. In the stencil for uj+1/2,K

we have uj+1/2,K+1, according to Fig. 5.4, which is outside the domain and
has to be eliminated. We put 0 = uy

∼= (uj+1/2,K+1 − uj+1/2,K)/hy
K , so that

uj+1/2,K+1 = uj+1/2,K . (5.14)

Inflow conditions

Let x = 0 be an inflow boundary, so that Ω1k is at the boundary. According
to (5.7) we have Dirichlet conditions for u and v, so that the situation is
almost the same as for the no-slip condition. We put

u1/2,k = U(t, yk) , v0,k+1/2 = 2V (t, yk+1/2) − v1,k+1/2 . (5.15)

Outflow conditions

Let ΩJk be at an outflow boundary x = a. We need discrete equations for
uJ+1/2,k and vJ,k+1/2. The control volume for uJ+1/2,k consists of half of ΩJk,
as illustrated in Fig. 5.5. Finite volume integration gives, similar to (5.11),

∫

ΩJ+1/2,k

[

ut +(uu+ p− Re−1ux)x + (uv − Re−1uy)y

]

dΩ ∼=

1
2h

x
Jh

y
kduJ+1/2,k/dt+ hy

k

(

uu+ p− Re−1ux

)J+1/2,k

Jk

+ 1
2h

x
J

(

uv − Re−1uy

)J+1/2,k+1/2

J+1/2,k−1/2
= 0 .

5.3 Spatial discretization on staggered grid 93

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

���� ����

���� ����

Fig. 5.5. Control volumes for uJ+1/2,k and vJ,k+1/2 at outflow boundary.

Compared to the interior case, we have to change only terms at or near
the outflow boundary. We put the normal stress at xJ+1/2,k equal to the
prescribed pressure (cf. (5.8)):

(p− Re−1ux)J+1/2,k = p∞ .

Furthermore,
(uv)J+1/2,k+1/2 = vJ,k+1/2uJ+1/2,k+1/2 ,

where uJ+1/2,k+1/2 is approximated with the upwind scheme or the central
scheme. Finally,

Re−1(uy)J+1/2,k+1/2
∼= (uJ+1/2,k+1 − uJ+1/2,k)/hy

J+1/2,k+1/2 .

The scheme for vJ,k+1/2 brings nothing new. A virtual value vJ+1,k+1/2 oc-
curs as may be seen form the stencil of the v-momentum equation, which is
obtained from Fig. 5.4 by rotation over 90o. This virtual value is eliminated
by using vx = 0 (cf. (5.8)), which results in

vJ+1,k+1/2 = vJ,k+1/2

(cf. (5.14)).

Summary of equations

We put all unknown velocity components in some order in an algebraic vector
u and all pressure unknowns in an algebraic vector p, and we divide by the
coefficients of the time derivatives. Then the scheme can be written as a
differential-algebraic system of the following structure:

du

dt
+N(u) +Gp = f(t) , Du = g(t) . (5.16)

Here N is a nonlinear algebraic operator arising from the discretization of
the inertia and viscous terms, G is a linear algebraic operator representing
the discretization of the pressure gradient, D is a linear algebraic operator

94 5. The incompressible Navier-Stokes equations

representing the discretization of divergence operator in the continuity equa-
tion, and f and g are known source terms, arising from the boundary con-
ditions. This is called a differential-algebraic system because it is a mixture
of a system of ordinary differential equations (the first member of (5.16)),
and algebraic equations (the second member of (5.16)). This completes our
description of spatial discretization on the staggered grid.

5.4 Temporal discretization on staggered grid

We now discretize also in time. Equation (5.16) is our point of departure.
With the forward Euler scheme we obtain:

1

τ
(un − un−1) +N(un−1) +Gpn−1/2 = f(tn−1) , Dun = g(tn) . (5.17)

Note that we have to take the pressure term at the new time tn, or for better
accuracy in time, at tn−1/2, in order to have degrees of freedom to satisfy the
algebraic solenoidality constraint (second equation of (5.17)). In other words,
the pressure always has to be taken implicitly; this is a consequence of the
differential-algebraic nature of (5.16). In incompressible flows, the pressure
acts as a Lagrange multiplier, that makes it possible to satisfy the continuity
equation.

With the ω-scheme we obtain:

1

τ
(un − un−1)+ωN(un) + (1 − ω)N(un−1) +Gpn−1/2

=ωf(tn) + (1 − ω)f(tn−1) , Dun = g(tn) .
(5.18)

Linearization

Equation (5.18) is a nonlinear system, because the nonlinear inertia term
makes the operator N nonlinear. To make the system more easily solvable
we linearize the operator N . Newton linearization works as follows, writing
δu = un − un−1:

N(un) = N(un−1 + δu) ∼= N(un−1) + C(un−1)δu ,

where C(u) is the Jacobian of N evaluated at u. We clarify this by taking as
an example one term of the inertia term (cf. (5.11)):

(un+1
jk)2 = (un

jk + δujk)2 ∼= (un
jk)2 + 2un

jkδujk .

We eliminate δu and obtain:

(un+1
jk)2 ∼= 2un

jku
n+1
jk − (un

jk)2 ,

5.4 Temporal discretization on staggered grid 95

which is linear in the unknown un+1
jk . Picard linearization works as follows:

(un+1
jk)2 ∼= un

jku
n+1
jk .

This is simpler, but temporal accuracy decreases to O(τ). A second order
accurate approximation is obtained if one replaces un by an extrapolation to
tn+1:

(un+1
jk)2 ∼= (2un

jk − un−1
jk)un+1

jk . (5.19)

We will call this extrapolated Picard linearization.

After linearization, the matrix C that one obtains changes every time step,
because C depends on un−1. Matrix generation is computer time consuming.
Therefore a time step will be cheaper if the inertia term is discretized explic-
itly. This gives us a so-called IMEX (implicit-explicit) scheme. The resulting
scheme is cheaper, because the implicit operator is now linear and indepen-
dent of time, so that the corresponding matrix has to be generated only once,
and other ingredients necessary for solving, such as an LU factorization, need
also to be prepared only once. To maintain second order accuracy in time, it
is attractive to use for the explicit part not the forward Euler scheme, but
a second order explicit scheme, such as the Adams-Bashforth scheme. For a
system of ordinary differential equations dw/dt = f(w, t) this scheme is given
by

1

τ
(wn − wn−1) =

3

2
f(wn−1, tn−1) − 1

2
f(wn−2, tn−2) . (5.20)

This is called a two-step method, because two time steps are involved. At the
initial time t = 0 one may define w−1 = w0. Application to the Navier-Stokes
equations takes place as follows. Let N(u) in (5.18) be split in a nonlinear
inertia part C and a linear viscous part B, as follows:

N(u) = C(u) +Bu .

Then the Adams-Bashforth-Crank-Nicolson scheme is obtained by using
(5.18) for Bu and (5.20) for C(u), so that we obtain:

1

τ
(un − un−1)+ 3

2C(un−1) − 1
2C(un−2) + 1

2B(un + un−1) +Gpn−1/2

= f(tn+1/2) , Dun = g(tn) .

General formulation on staggered grid

As seen from these examples, time stepping methods applied to equation
(5.11) can generally be written as

A(un) + τGpn−1/2 = rn ,

Dun = g(tn) ,
(5.21)

96 5. The incompressible Navier-Stokes equations

where rn is known from previous time steps and the boundary conditions. For
explicit methods, A is the identity I. The system (5.21) is a coupled system
for un and pn−1/2. Computing time is reduced if pn−1/2 and un can be solved
for separately. To this end the following method has been devised, which is
the method of choice for nonstationary problems.

Pressure-correction method

Equation (5.21) is not solved as it stands, but first a prediction u∗ of un is
made that does not satisfy the continuity equation. Then a correction is com-
puted involving the pressure, such that the continuity equation is satisfied.
The method is given by:

A(u∗) + τGpn−3/2 = rn , (5.22)

un − u∗ + τG(pn−1/2 − pn−3/2) = 0 , (5.23)

Dun = g(tn) . (5.24)

Equation (5.22) more or less amounts to solving discretized convection-
diffusion equations for the predicted velocity components. We use the best
available guess for the pressure, namely pn−3/2. Equation (5.23) is motivated
by the fact, that if in the explicit case, where A is the identity, we eliminate
u∗ from (5.22) and (5.23), then the original system (5.21) is recovered. The
pressure can be computed by applying the operator D to (5.23) and using
(5.24), resulting in

DGδp =
1

τ
{Du∗ − g(tn)}, pn−1/2 = pn−3/2 + δp . (5.25)

After pn−1/2 has been computed, un follows from (5.23).

Equation (5.23) can be regarded as a correction of u∗ for the change in
pressure. Therefore (5.22)–(5.25) is called the pressure-correction method. It
is an example of a fractional step method, in which a time step is split up
in sub-steps, and different physical effects are accounted for separately in
the sub-steps. Here pressure forces are accounted for in the second sub-step,
and inertia and friction in the first sub-step. Confusingly, the term pressure-
correction method is often also applied to various iterative methods to solve
the stationary Navier-Stokes equations, in which velocity and pressure up-
dates are carried out not simultaneously but successively. Such methods will
be encountered in Chap. 6, where they will be called distributive iteration
methods. These should not be confused with the pressure-correction method
used in time accurate schemes as formulated above. This method may also
be called a projection method, because in (5.23) the new velocity un is the
projection of the intermediate velocity field u∗ on the space of velocity fields
with discretized divergence equal to zero.

5.4 Temporal discretization on staggered grid 97

Remembering that divgrad equals the Laplacian, we see that (5.25) looks
very much like a discrete Poisson equation; it is frequently called the pres-
sure Poisson equation. Note that no boundary condition needs to be invoked
for δp (fortunately, for no such condition is given with the original equations,
at least not on the complete boundary), because the boundary conditions
have already been taken into account in the construction of D, G and g;
the operator DG works exclusively on pressure values at grid points in the
interior of the domain.

Even if the method is explicit (A is a diagonal matrix), we still have to
solve an implicit system for δp. This is an unavoidable consequence of the
differential-algebraic nature of (5.16).

As we remarked before, by elimination of u∗ it is easily seen that in the
explicit case the pressure-correction method (5.22)–(5.25) is equivalent to
(5.21), and that this remains true if pn−3/2 is neglected in (5.22) and (5.23).
But in the implicit case this does not hold, and inclusion of a sufficiently
accurate first guess, such as pn−3/2, for the pressure in (5.22) seems to be
necessary to obtain full, i.e. O(τ2), temporal accuracy. This may make it
necessary to compute the initial pressure field at the starting step (n = 1),
to be used instead of p−1/2. This may be done as follows. Application of D
to (5.16) at t = 0 gives

dg(0)/dt+DN(u(0)) +DGp(0) = Df(0) . (5.26)

After solving p(0) from (5.26), we put p−1/2 = p(0).

Discrete compatibility condition

In case the pressure is not involved in any of the boundary conditions, it
follows from the incompressible Navier-Stokes equations that the pressure is
determined up to a constant. The system (5.25) for δp is singular in this case,
and (5.25) has a solution only if the right-hand side satisfies a compatibility
condition. The boundary conditions discussed in Sect. 5.2 are such that if
the pressure is not involved in any of the boundary conditions, then the
normal velocity component is prescribed all along the boundary, and the
compatibility condition (5.9) is satisfied. Summing the discrete continuity
equation (5.10) over all cells reduces, due to cancellation in the interior, to
the following sum over boundary points:

K
∑

k=1

hy
ku

∣

∣

∣

(J+1/2,k)

(1/2,k)
+

J
∑

j=1

hx
j v

∣

∣

∣

(j,K+1/2)

(j,1/2)
= 0 , (5.27)

where u and v are the prescibed velocity components at the boundary. If
(5.27) is not satisfied exactly one should adjust u and v at the boundaries,

98 5. The incompressible Navier-Stokes equations

which should not be difficult, because of the compatibility condition (5.9). If
(5.27) holds, then it turns out that the elements of the right-hand side vector
of (5.25) sum to zero, which is precisely the compatibility condition required
for existence of solutions of (5.25). If one desires to make the solution unique
one can fix δp in some point, but iterative methods usually converge faster if
one lets δp float.

Temporal accuracy

For literature on the accuracy of the pressure-correction method, see Wes-
seling (2001), Sect. 6.6 and references quoted there. Indications are that the
temporal accuracy of un is of the same order as rhe order of accuracy of the
underlying time stepping method (for example, O(τ2) for Adams-Bashforth-
Crank-Nicolson), but that the accuracy of pn−1/2 is only O(τ), irrespective of
the time stepping method used. If one desires, a pressure field with improved
accuracy can be obtained after un has been computed (with the pressure-
correction method) by proceeding in the same way as in the derivation of
(5.26), leading to the following equation for pn−1/2:

dg(tn)/dt+DN(un) +DGpn−1/2 = Df(tn) ,

which very likely results in a pressure field pn−1/2 with the same order of
temporal accuracy as the velocity field.

Stability

For stability of (5.22)—(5.25), it seems necessary that (5.22) is stable. It is
conjectured that this is sufficient for the stability of (5.22)—(5.25); numerical
evidence supports this conjecture. We restrict ourselves to Fourier stability
analysis of (5.22). To this end (5.22) is linearized, the coefficients are taken
constant (‘frozen’), the boundary conditions are assumed to be periodic, and
the known source terms τGpn−3/2 and rn are neglected. Hence, carrying
out Fourier stability analysis for (5.22) implies that the discretization of the
following simplified and linearized version of (5.2) is considered:

ut + Uux + V uy − Re−1(uxx + uyy) = 0 ,

vt + Uvx + V vy − Re−1(vxx + vyy) = 0 ,
(5.28)

Equation (5.28) consists of decoupled and identical convection-diffusion equa-
tions, for which Fourier stability analysis is presented in Chap. 4. The stability
analysis of the Adams-Bashforth-Crank-Nicolson scheme is a bit involved and
is not presented in Chap. 4. In Sect. 6.6 of Wesseling (2001) stability condi-
tions for the Adams-Bashforth-Crank-Nicolson scheme are derived. With the
central scheme for the inertia terms we have:

5.5 Numerical experiments 99

τ ≤ max[τ1,min{τ2, τ3}] ,

τ1 ≡ 4

3Re

[

U2 + V 2
]−1

,

τ2 ≡ Re

4

[

(hx)−2 + (hy)−2
]−1

,

τ3 ≡
(3

Re

)1/3[
(U2/hx)2/3 + (V 2/hy)2/3

]−1
.

(5.29)

For the upwind scheme:

τ ≤ max[τ1,min{τ2, τ3}] ,

τ1 ≡ 2

3Re

[U2

2 + UhxRe
+

V 2

2 + V hyRe

]−1

,

τ2 ≡ Re

4

[1 + UhxRe/2

(hx)2
+

1 + V hyRe/2

(hy)2

]−1

,

τ3 ≡
(3

Re

)1/3
[(U4

(hx)2 + U(hx)3Re/2

)1/3

+
(V 4

(hy)2 + V (hy)3Re/2

)1/3]−1

.

(5.30)

The computing cost of checking in every grid point whether the stability con-
dition is satisfied is often not negligible, so in practice this is often done only
every 5 or 10 time steps or so, or only once, if one has a reasonable a priori
estimate of U (= 2 max(u)) and V (= 2 max(v)). Here the factor 2 arises
from the nonlinearity of the inertia terms, in the same way as for the Burgers
equation in Sect. 4.4.

Exercise 5.4.1. What is the Newton linearization of uv?

5.5 Numerical experiments

The schemes just described have been implemented in the MATLAB codes
ns1 (ω-scheme) and ns2 (Adams-Bashforth-ω-scheme), on a nonuniform
Cartesian grid of the type shown in Fig. 5.1. For ns1, Picard linearization or
extrapolated Picard linearization is used for the inertia terms. Three types
of boundary conditions have been implemented: inflow, outflow and no-slip.
The boundaries can be divided in segments, on which one can choose differ-
ent boundary conditions and numbers of grid cells. For instance, we can do
the so-called backward-facing step problem, illustrated in Fig. 5.6. Because
the domain is assumed to be rectangular, we cannot handle the narrow in-
flow part at the left, and use the rectangular domain shown at the right. We
choose |AB| = |BC| = 1, |CD| = L, with L to be chosen. It turns out that a
recirculation zone is present attached to BC, with length dependent on the
Reynolds number Re. The length of the domain L must be larger than the

100 5. The incompressible Navier-Stokes equations

A

B

C D

E

Fig. 5.6. The backward-facing step problem.

length of the recirculation zone, in order to have u > 0 at DE, so that the
outflow boundary condition (5.8) is appropriate. Let the Reynolds number be
based on the length of AB and the average inflow velocity. On the segment
AB we prescribe inflow: v = 0, u = f(y), f parabolic, such that the aver-
age inflow velocity is 1. On DE we prescribe outflow, and on the remaining
boundary segments no-slip. The grid is uniform with nx× ny cells.

Wrong outflow conditions

First, we prescribe Dirichlet conditions, namely a parabolic outflow profile:

u = g(y), v = 0 (5.31)

on the outflow boundary DE. This is against the advice given concerning
outflow boundary conditions in Sect. 5.2. Let us see what goes wrong. Fig.
5.7 shows a result, using Picard linearization. Note that the horizontal and
vertical scales are different in the left part of the figure. The relative change

0 2 4 6 8 10 12
0

0.5

1

1.5

2
Streamlines

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

Relative change per time step

Fig. 5.7. Streamlines and convergence history for backward-facing step problem,
code ns1, Dirichlet outflow conditions. Re = 100, τ = 0.2, t = 190, nx = 30, ny =
20, ω = 1, central scheme.

5.5 Numerical experiments 101

per time step is defined as

1

dt
max

[‖ un+1 − un ‖
qn+1

,
‖ vn+1 − vn ‖

qn+1
,

‖ pn+1 − pn ‖
‖ pn ‖ +(qn+1)2/2

]

,

where q = max(‖ u ‖, ‖ v ‖), and the maximum norm is used. In the left part
of the figure, we observe unphysical wiggles near the outflow boundary, and
the convergence history shows that the solution hesitates to become really
stationary. The cause of the wiggles and the remedy have been discussed in
Sect. 5.2. For Re = 200 a stationary solution was not obtained. Furthermore,
it was found that with extrapolated Picard linearization, convergence to a
steady solution did not take place.

Further results on the backward facing step problem

From now on, we use extrapolated Picard linearization. With the correct out-
flow boundary conditions (5.8) the result shown in Fig. 5.8 is obtained. This

0 2 4 6 8 10 12
0

0.5

1

1.5

2
Streamlines

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Relative change per time step

Fig. 5.8. Streamlines and convergence history for backward-facing step problem,
code ns1, outflow conditions(5.8) . Re = 100, τ = 0.6, t = 60, nx = 30, ny = 20, ω =
1, central scheme.

result looks more satisfactory. The length of the recirculation region agrees
with results reported in the literature, and the solution seems to evolve to
steady state. Due to the use of Picard linearization, ns1 it is not uncondi-
tionally stable; we know no guidelines for choosing the time step τ . For linear
problems, the ω-scheme with ω = 1 is unconditionally stable, as seen in Sect.
4.4.

Fig. 5.9 shows what happens when the Reynolds number is increased. The
length of the recirculation region increases; it is thought to be proportional

102 5. The incompressible Navier-Stokes equations

0 2 4 6 8 10 12
0

0.5

1

1.5

2
Streamlines

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

Relative change per time step

Fig. 5.9. Streamlines and convergence history for backward-facing step problem,
code ns1. Re = 200, τ = 0.6, t = 60, nx = 30, ny = 20, ω = 1, central scheme.

to the Reynolds number. This flow we have also computed with the Adams-
Bashforth-ω scheme (code ns2). The flow pattern obtained is the same as in
Fig. 5.9. To determine the time step τ we have used the stability criterion
for the Adams-Bashforth-Crank-Nicolson scheme (hence, ω = 1/2) presented
in Sect. 4.4, taking for safety τ 20% smaller than allowed, giving τ = 0.021.
The convergence history is shown in Fig. 5.10. Although the time required

0 500 1000 1500 2000 2500
10

−3

10
−2

10
−1

10
0

Relative change per time step

Fig. 5.10. Convergence history for backward-facing step problem, code ns2.

to execute a time step with ns1 is seven times larger than for ns2 (why is
it larger, you think?), ns1 is faster because its time step is much larger. The
recirculation length in Fig. 5.9 agrees with reports in the literature. With the
upwind scheme the recirculation length is found to 7, which is too small. This
is because the upwind scheme adds artificial viscosity, and the recirculation
length is known to increase with decreasing viscosity.

5.5 Numerical experiments 103

The case Re = 400, shown in Fig. 5.11 is found to be more difficult. By trial

0 5 10 15 20 25
0

0.5

1

1.5

2
Streamlines

0 100 200 300 400 500
10

−3

10
−2

10
−1

10
0

Relative change per time step

Fig. 5.11. Streamlines and convergence history for backward-facing step problem,
code ns1. Re = 400, τ = 0.3, t = 150, nx = 70, ny = 40, ω = 1, central scheme.

and error we found that several changes have to be made in order to have
the solution converge to steady state:

1) The length L has to be increased to make room for the (larger) separation
zone and the secondary separation zone that appears at the top wall.
2) The vertical number of cells ny has to be increased. But it is found that
for stability of ns1 the mesh size ratio ∆x/∆y should not become too large.
Therefore nx also had to be increased.
3) The time step has to be decreased.
4) The flow takes much longer to settle down to steady state.

As a consequence, Fig. 5.11 takes much more computing time than Fig. 5.9.
Again, the recirculation length agrees with the literature.

Several other flow problems have been implemented in the programs ns1 and
ns2, and the reader is invited to experiment with these codes.

Efficiency

All numerical results in these course notes have been obtained with MAT-
LAB version 5.3 on a Pentium III 550 Mhz processor with 512 MB internal
memory. The computation of Fig. 5.11 is the first time that the wall-clock
time becomes long enough (10 min) to be annoying. So now we start to get
interested in the subject of numerical efficiency. In programming ns1 and ns1

we have followed the MATLAB efficiency guidelines discussed in Sect. 4.2. In
order to see where the computational bottlenecks are, we make an inventory

104 5. The incompressible Navier-Stokes equations

of the time spent in various parts of the program.

In ns1 and ns2 all linear systems (of type Ay = b) are solved by MATLAB’s
direct solver, with the statement

y = A\b

This means that the LU-decomposition of A is computed, and y is found
from

y = U\(L\b)

The pressure-correction matrix does not change during time-stepping, so its
LU-decomposition is computed once and stored. The viscous matrix also does
not change, because the viscosity is constant. This fact is exploited in code
ns2 by means of the IMEX method, in which we have to solve systems with
the viscous matrix; so its LU-decomposition is pre-stored as well in ns2. Of
course, we store the matrices as sparse matrices, so that MATLAB exploits
sparsity in the execution of y = A\b. What consumes most time is the work
that has to be done every time step. This time is dominated by the time for
solving the linear systems for the velocity components tv and the pressure tp,
by the time for matrix generation (inertia_matrix in ns1) tm, and by the
time for right-hand side generation (right_hand_side in ns2) tr. The total
time is called tt. Table 5.1 gives some runtime statistics for the two cases
presented in Figs. 5.9, 5.10 (called case 1 in the table) and 5.11 (case 2).

ns1 ns1 ns2

case 1 case 2 case 1
tm 0.039 0.184 —
tv 0.113 0.896 0.009
tp 0.007 0.060 0.007
tr — — 0.006
tt 19.2 600 60.1

Table 5.1. Runtime statistics (seconds).

Let us analyze these figures a bit. The number of unknowns (u, v or p) in x-
direction is nx +m and in y-direction ny +m with m = −1, 0 or 1, depending
on the type of unknown and the type of boundary conditions; of course, for
estimating computing work, m can be neglected. This gives us matrices of
size n × n, n = nxny, with bandwidth, with lexicographic ordering, equal
to 2nx − 1. It is known that the work to compute the LU-decomposition
WLU and the work to solve a system WS with this type of bandmatrix, using
standard nethods, are given by:

WLU
∼= 2n3

xnyflops, WS
∼= 2n2

xnyflops. (5.32)

5.5 Numerical experiments 105

(A flop is a floating point operation). We therefore expect

tv ∼ n3
xny, tp ∼ n2

xny, tm ∼ nxny .

Between cases 1 and 2 this equation predicts ratios of 25, 11 and 4.7 for tv, tp
and tm, respectively. Obviously, this prediction is much too pessimistic for tv,
but is not far off the mark for tp and tm. The reason MATLAB has a WLU

that in our case is much less than given by (5.32) is, that in execution of the
command y = A\b, if A has been declared to be sparse, the equations are
reorderded in a clever way, before the triangular factors L and U are com-
puted, in order to reduce computing work. That WLU may be diminished by
reordering is obvious from equation (5.32): by a different numbering of the
cells we can interchange the roles of nx and ny (cf. exercise 5.5.2), which in
the present case changes the ratio just predicted for tv from 25 to 19. We see
that MATLAB does an even better job. Much numerical expertise is hidden
behind the \ command in MATLAB.

The table shows that for an increase of n ≡ nxny by a factor 4.7, the time
required by ns1 for a time step increases by a factor 6.8. The total time tt
increases by a factor 31. This is mainly due to the much larger number of
time steps required. We conclude that for high Reynolds number flows, time
stepping is an inefficient way to compute a stationary solution.

Table 5.1 shows that for case 1 the computing time for a time step with ns2

is a factor 7 smaller than with ns1. But because for stability reasons the time
step is much smaller, the total computing time tt is much larger.

In the next chapter we study other methods to compute stationary solutions,
that are hopefully more efficient.

The reader is invited to consult the introduction of this chapter for the topics
that we wanted to discuss.

Exercise 5.5.1. In Sect. 3.3 we saw that a Dirichlet outflow condition gen-
erates an artificial boundary layer at the outflow boundary. How does the
thickness of the boundary layer caused by the wrong outflow condition (5.31)
depend on the Reynolds number Re? In Sect. 2.3 we saw that outflow wiggles
caused by an outflow Dirichlet condition go away when we apply mesh re-
finement near the outflow boundary, such the the mesh Péclet number p < 2.
Try this for the problem of Fig. 5.7. Define and estimate the mesh Reynolds
number, based on the maximum u, which occurs at the inflow boundary. How
small should the local mesh size ∆x be in the refinement zone? Implement
a refinement zone in ns1 by dividing the horizontal domain boundaries in
two segments, similar to what is done in ns1 for the vertical boundaries. See
what happens.

106

Exercise 5.5.2. In the computation of Fig. 5.11, nx > ny. Equation (5.32)
shows that it would be better if this were the other way around. Specify a
vertical backward facing step problem in code ns1, and compare runtimes
with the horizontal version.

Some self-test questions

Write down the free surface conditions.

What are your preferred outflow conditions, and why?

Discretize the x-momentum equation on a uniform Cartesian grid.

Describe the Adams-Bashforth-Crank-Nicolson scheme.

Write down the general formulation of the discretized nonstationary incompressible Navier-
Stokes equations.

Formulate the pressure-correction method.

What is the backward-facing step problem?

Why is the computing time for a time step with the code ns2 smaller than with ns1?

6. Iterative solution methods

6.1 Introduction

As we saw in the preceding chapter, solving the stationary Navier-Stokes
equations by time-stepping with the nonstationary Navier-Stokes equations
may be inefficient, due to the large number of time steps that may be re-
quired. Therefore we take a look in this chapter at numerical methods to
solve the stationary Navier-Stokes equations without using time-stepping.
For this efficient numerical methods to solve linear algebraic systems

Ay = b, A ∈ R
n×n , (6.1)

(which means that A is an n×n matrix) are required. Of course, such meth-
ods are useful for the nonstationary case as well; the methods discussed in
the preceding chapter require solution of the pressure-correction equation and
systems for the velocity prediction.

Efficient solution of equation (6.1) is one of the main topics in numerical
linear algebra. We will not give a balanced coverage, but concentrate on
methods relevant for the numerical solution of the incompressible Navier-
Stokes equations, and restrict ourselves to an elementary introduction. The
reader is supposed to be familiar with the basics of numerical linear alge-
bra, as described for instance in van Kan and Segal (1993) (Chapt. 11),
and, in great detail, in the well-known elementary numerical analysis text-
book Burden and Faires (2001). A more advanced good standard textbook
on numerical linear algebra is Golub and Van Loan (1989). A good ad-
vanced textbook on iterative methods is Hackbusch (1994). Chapt. 7 of
Wesseling (2001) contains a more complete introduction to iterative meth-
ods for the incompressible Navier-Stokes equations than given here. Multi-
grid methods are discussed in Wesseling (1992), freely available on Internet,
at www.mgnet.org/mgnet-books-wesseling.html, and more extensively in
Trottenberg, Oosterlee, and Schüller (2001) (students will not be examined
about material for which we refer to the literature).

Much high quality standard software to solve equation (6.1) is available on
the Internet. Try for instance math.nist.gov or www.netlib.org

108 6. Iterative solution methods

In many institutes the following FORTRAN software libraries are available:
LAPACK, NAG, IMSL, ITPACK.

Some basics

For ease of reference we list a few basic facts and definitions, with which the
reader is assumed to be familiar; more background can be found in the books
cited above. Since we are now discussing linear algebra, by a vector we will
mean not a physical vector but an algebraic vector:

y ∈ R
n ⇐⇒ y =

y1
...
yn

, yi ∈ R ,

where R
n is the vector space of real n-vectors. This is a column vector. By

yT we mean the corresponding row vector, so that xT y is the inner product
∑

k xkyk. By AT we mean the transpose of A: if B = AT , then bij = aji.
This means that we interchange rows and columns.

Examples of vector norms are the p-norms:

‖y‖p ≡ (|y1|p + · · · + |yn|p)1/p, ‖y‖∞ ≡ max{|y1|, · · · , |yn|} .

When we write ‖y‖, we leave the choice of norm open. As matrix norm we
always use the norm induced by the vector norm:

‖A‖ ≡ sup
y 6=0

‖Ay‖
‖y‖ ,

so that
‖Ay‖ ≤ ‖A‖ ‖y‖ .

We say that the real or complex number λ is an eigenvalue and y an eigen-
vector of A if Ay = λy. The spectral radius ρ(A) of A is defined by

ρ(A) ≡ max{|λ(A)|} .

We have1

lim
m→∞

‖Am‖1/m = ρ(A) . (6.2)

The condition number of a matrix A is defined by

cond(A) ≡ max |λ(A)|
min |λ(A)| .

1 See Theorem 2.9.8 in Hackbusch (1994)

6.1 Introduction 109

Extraction of the main diagonal is denoted by diag(A); this gives a diagonal
matrix with elements aii.

A matrix A ∈ R
n×n is called diagonally dominant if

|aii| ≥
n

∑

j=1
j 6=i

|aij |, i = 1 · · ·n .

A matrix is called positive definite if xTAx > 0 for all nonzero x ∈ R
n.

We say that A has upper bandwidth q if aij = 0 when j > i + q and lower
bandwidth p if aij = 0 when i > j + p; the bandwidth is p + q − 1. If most
elements of A are zero, A is called sparse. If aij = 0 for all j > i,∀i, A is
called lower triangular; if aij = 0 for all i > j,∀j, A is called upper triangular.

By A > 0 we mean aij > 0, ∀i, j.

A matrix is called an M-matrix if A is nonsingular, A−1 ≥ 0 and aij ≤ 0, i 6=
j, i, j = 1, · · · , n.

A matrix A is called a K-matrix if

aii > 0, i = 1, ..., n ,

aij ≤ 0, i, j = 1, ..., n, j 6= i ,

and
∑

j

aij ≥ 0, i = 1, ..., n ,

with strict inequality for at least one i. A matrix is called irreducible if the
corresponding system does not consist of subsystems that are independent of
each other. An irreducible K-matrix is an M-matrix2, but not all M-matrices
are K-matrices. Note that it is easy to check by inspection whether a matrix
is a K-matrix, but the M-matrix property is more difficult to verify directly,
because the elements of the inverse are not easily available, so that the con-
dition A−1 ≥ 0 is hard to check.

The above concepts will be used in what follows.

Purpose of this chapter

The purpose of this chapter is to discuss numerical methods for large sparse
linear systems. We will study:

2 See Theorem 7.2.5 in Wesseling (2001)

110 6. Iterative solution methods

• Direct methods, and why we need iterative methods;

• Basic iterative methods: convergence, regular splittings;

• The Jacobi, Gauss-Seidel and ILU methods;

• Slow convergence of basic iterative methods for algebraic systems arising
from elliptic partial differential equations;

• Iterative methods for the Navier-Stokes equations: SIMPLE, distributive
iteration.

6.2 Direct methods for sparse systems

Gaussian elimination

Direct methods give the exact answer in a finite number of operations (in the
hypothetical situation that no rounding errors are made). The prototype of
a direct method is the elimination method of Gauss. In its modern version a
lower and upper triangular matrix L and U are computed, such that

LU = A . (6.3)

For L and U to exist, and/or to control rounding errors, it may be necessary
to reorder the rows of A, i.e. to change the order of equations (this is often
called pivoting). It is known3 that pivoting is not necessary if A is diagonally
dominant or positive definite. K-matrices are diagonally dominant. When L
and U are available, the solution is easily obtained by solving by means of
back-substitution, i.e. by solving

Lỹ = b, Uy = ỹ . (6.4)

Efficiency of direct methods for sparse systems

In the context of computational fluid dynamics, A is invariably very sparse.
The matrices ocurring in the methods described in the preceding chapter have
only at most five nonzero elements per row, namely ai,i−nx, ai,i−1, aii, ai,i+1

and ai,i+nx. We see that the lower and upper bandwidth is nx. It turns out
that L and U inherit the lower and upper bandwidth p and q, respectively,
of A. If p ≪ n, q ≪ n, construction of L and U takes about 2npq flops
if no reordering is applied; solution of Ly = b takes about 2np flops and

3 See sections 3.4.10 and 4.2 of Golub and Van Loan (1989).

6.2 Direct methods for sparse systems 111

solution of Uy = b takes about 2nq flops.4 Let us take as an example the
620 × 620 velocity matrix for the computation of Fig. 5.9 The MATLAB
command spy gives the nonzero pattern shown in the left part of Fig. 6.1,
and reports that only 2920 elements are nonzero, that is only 7.6% of the

0 200 400 600

0

100

200

300

400

500

600

nz = 2920
0 200 400 600

0

100

200

300

400

500

600

nz = 17769

Fig. 6.1. Nonzero pattern of velocity matrix (left) and its L factor (right).

total number of elements. The number of nonzeros is slightly smaller than
the 5×620 = 3100 which we just predicted, because the boundary conditions
introduce a small number of extra zeros. The factors L and U may be obtained
in MATLAB by the statement [L,U] = lu(A) The nonzero pattern of L is
shown in the right part of Fig. 6.1, and has 17769 nonzeros, much more than
the original A, and the same is true for U . The zeros inside the band have
almost all disappeared. This is called fill-in. Fill-in may be diminished by
clever reordering of the equations. A simple example was given in Sect. 5.5:
equation (5.32) shows that when nx > ny it pays off to interchange the x-
and y- axes, so that nx := ny, ny := nx. MATLAB uses even more efficient
reorderings in execution of y=A\b when A is sparse, but nevertheless, fill-in
remains substantial. This leads to a waste of memory, which is intolerable in
large applications, especially in three dimensions. Furthermore, computing
time grows rapidly with the number of unknowns n. Taking nx = ny =

√
n

for simplicity, with n the number of unknowns, the number of flops WLU for
computing L and U , and the number of flops WS for solving LUy = b is
approximately, using the formulas above,

WLU = 2n2, WS = 4n3/2 . (6.5)

So both memory and work are superlinear in n. Since we have only n un-
knowns and A has only 5n nonzeros, an algorithm that requires only O(n)
memory and work seems not to be impossible. Iterative methods indeed re-
quire only O(n) memory, whereas the work is O(nα), with α depending on the

4 See sections 4.3.1 and 4.3.2 of Golub and Van Loan (1989).

112 6. Iterative solution methods

method. Multigrid methods achieve the ideal value α = 1. For these efficiency
reasons, direct methods are seldom used in practical CFD. The remainder of
this chapter is devoted to iterative methods. But first we will investigate what
can be done with direct solution of the stationary Navier-Stokes equations.

Direct solution of the stationary Navier-Stokes equations

In the stationary case, the discretized form of the Navier–Stokes equations
follows from equation (5.16) as

N(w) +Gp = f, Dw = g ,

where the algebraic vector that contains all velocity unknowns is now called
w. In order to apply a direct method for linear algebraic systems, we have
to linearize N(w) around an approximation wk−1 known from a preceding
iteration. Let us use Picard linearization, as described in Sect. 5.4, and again
in Sect. 6.4. This results in

N(w) ∼= Ck−1w ,

where Ck−1 is a matrix that depends on wk−1. The following iterative method
is obtained (Picard iteration):

Step 1. k = 0; choose wk.

Step 2. Generate Ck and solve the following linear system:

[

Ck G
D 0

] [

wk+1

pk+1

]

=

[

f
g

]

. (6.6)

Step 3. k = k + 1; go back to step 2; repeat until convergence criterion is
satisfied.

Although we use (Picard) iteration, we will call this a direct method, because
equation 6.6 is solved by a direct method. The method has been implemented
in the MATLAB code ns3. In this code the algebraic vector w is partioned
as

w =

[

u
v

]

,

where u and v contain the horizontal and vertical velocity components. The
partitioned system to be solved in step 2 now takes the following form:

Ck
u 0 Gu

0 Ck
v Gv

Du Dv 0

uk+1

vk+1

pk+1

 =

fu

fv

g

 . (6.7)

6.2 Direct methods for sparse systems 113

This system is easily solved directly in MATLAB by the statement y=A\b,
with appropriate definition of A, b and y.

Driven cavity flow

We now apply the above direct method to the flow in a driven cavity. The
domain is the unit square surrounded by solid walls. The top wall is sliding to
the right with a velocity of magnitude 1. Fig. 6.2 shows the sparsity pattern

0 100 200 300

0

50

100

150

200

250

300

nz = 1664

Fig. 6.2. Sparsity pattern of matrix in equation (6.7), 10 × 10 grid.

of the matrix in equation (6.6). The 3 × 3 block partioning of the matrix in
equation (6.7) is clearly visible. Fig. 6.3 shows a result. The computational

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Streamlines

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Relative change per iteration

Fig. 6.3. Streamlines and convergence history for driven cavity problem, code ns3.
Re = 5000, nx = ny = 64, nonuniform grid, central scheme.

114 6. Iterative solution methods

grid is Cartesian and has nx × ny cells. The grid is nonuniform for better
resolution in the corners. Along the x-axis the unit interval is divided in seg-
ments of length 0.2, 0.6 and 0.2, which are subdivided in 21, 22 and 21 cells,
respectively; and similarly in the y-direction. So nx = ny = 64. The size of
the internal memory of my PC (512MB) did not allow larger values of nx
and ny without swapping to harddisk. We will see later whether iterative
methods are less greedy for memory. Fig. 6.4 shows a similar but coarser grid

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 6.4. A nonuniform Cartesian grid.

for illustration.

We discretize on this nonuniform grid in the way described in Sect. 2.3, using
the central scheme (2.20, 2.29). It was shown in Sect. 2.3 that although this
scheme has a large local truncation error at grid discontinuities, nevertheless
the global truncation error remains small. This is confirmed by the result of
Fig. 6.3: the streamline pattern does not show any trace of the grid disconti-
nuities. Furthermore, on a uniform grid with the same number of cells almost
the same result is obtained, but with less resolution in the corners.

Results of benchmark quality for this driven cavity flow are given in Ghia,
Ghia, and Shin (1982), using a uniform 257 × 257 grid. The streamline pat-
tern of Fig. 6.3 closely resembles that of Ghia, Ghia, and Shin (1982), but
our minimum streamfunction value (−0.1138) is not as low as the benchmark
value −0.118966; this is because our grid is not fine enough.

Fig. 6.5 shows the dependence of the time measured to solve equation (6.6)
on the number of unknowns n = nx × ny, with nx = ny. The dashed line
has slope 2. So computing time seems proportional to n2; we will not try to
show this by analysis. Note that formula (6.5) applies .approximately.

The total computing time for the flow of Fig. 6.3 was 2107 sec. Would the
time-stepping methods of the preceding chapter be faster? We leave this to

6.3 Basic iterative methods 115

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

n

t

Fig. 6.5. Sparse direct solver time versus number of unknowns, driven cavity prob-
lem (solid curve).

the reader to find out.

Exercise 6.2.1. What is the bandwidth of the matrix in equation (6.7)?
Why does formula (6.5) not apply?

Exercise 6.2.2. Compute the minimum streamfunction value for the driven
cavity flow problem using uniform grids with 16 × 16, 32 × 32 and 64 × 64
cells, with central differencing and Re = 2000. How does the difference with
the “exact” (benchmark) value for the streamfunction minimum depend on
the mesh size h = 1/nx = 1/ny? Try to determine α such that hα gives a
good fit. Why would one expect α = 2? How is the result influenced by the
termination criterion (i.e. the relative change per iteration)?

Exercise 6.2.3. Compute the flow of Fig. 6.3 with the upwind scheme. Com-
pare accuracy.

6.3 Basic iterative methods

A good source (in Dutch) for more background on iterative methods for large
linear systems is: C. Vuik: Voortgezette numerieke lineaire algebra, course
notes for WI4 010: Numerieke methoden voor grote lineaire stelsels.

An iterative method generates successive approximations y1, y2, · · · . If

lim
k→∞

yk = y ,

the method is said to converge. Although in general it takes an infinite num-
ber of iterations to obtain the solution y, this does not necessarily imply that

116 6. Iterative solution methods

iterative methods are less efficient than direct methods, because only a suffi-
ciently accurate approximation to y is required. This is because y itself is an
approximation, which differs by the global truncation error from the exact
solution of the partial differential equation, of which the system to be solved
Ay = b is a discrete approximation. Hence, a finite number of iterations suf-
fices.

Let us consider only stationary iterative methods; that is, methods in which
the same algorithm is applied in every iteration. Let, furthermore, the com-
putation of the new iterand yk involve only matrix multiplication and vector
addition:

yk = Byk−1 + c , (6.8)

where the matrix B and the vector c remain to be chosen. For {yk} to con-
verge to the solution y = A−1b it is obviously necessary that y is a stationary
point of the iteration process (6.8), i.e. y = By + c, hence we must have
c = (I −B)A−1b, so that (6.8) can be rewritten as

Myk = Nyk−1 + b, M −N = A . (6.9)

(We have M −N = A because M = A(I −B)−1, N = MB). Equation (6.9)
can be rewritten in the following equally useful form:

Mδy = b−Ayk−1, yk = yk−1 + δy. (6.10)

Application of underrelaxation or overrelaxation with relaxation parameter α
means that (6.10) is replaced by

Mδy = α(b −Ayk−1), yk = yk−1 + δy. (6.11)

We will call methods of type (6.9) or (6.10) or (6.11) basic iterative methods,
or BIMs for brevity.

Instead ofB one usually specifiesM . One can think ofM as an approximation
of A; if M = A and α = 1 we have convergence in one iteration. We have
(the reader should check this)

B = I −M−1A .

The error ek ≡ y − yk satisfies ek = Bek−1, so that convergence is governed
by B, which is called the iteration matrix. Since ek = Bke0 (where of course
the superscript k on B is not an index but an exponent),

‖ek‖ ≤ ‖Bk‖ ‖e0‖ . (6.12)

From equation (6.2) it follows that we have convergence (‖ek‖ → 0) if and
only if

ρ(B) < 1 . (6.13)

6.3 Basic iterative methods 117

When to stop?

For efficiency, which is what iterative methods are all about, it is necessary
to stop iterating as soon as sufficient precision has been obtained. Hence,
we need a good termination criterion. The difference between two successive
iterates usually does not give a good indication of the precision achieved. This
can be seen as follows. Let B have a single dominating real eigenvalue λ =
ρ(B), with corresponding eigenvector x. Then we have after many iterations
ek ∼= αλkx, with α some constant. It follows that

yk+1 − yk ∼= αλk(λ − 1)x = (λ − 1)ek ,

so that

ek ∼= yk+1 − yk

λ− 1
.

We see that if λ = 1−ǫ, 0 < ǫ≪ 1, as frequently happens (slow convergence),
then the error is much larger than the difference between two successive
iterates. Therefore it is better to derive a termination criterion from the
residual rk ≡ b−Ayk. After k iterations we have solved exactly the following
approximate problem:

Ayk = b− rk .

Frequently, perturbation of the right-hand side has a physical interpretation,
or b is known to have an error with a known bound, which enables one to
decide what size of ‖rk‖ is tolerable.

Why it is nice if A is a K-matrix

In sections 2.3 and 3.3 we saw that if the scheme Lh is of positive type, then
it satisfies a maximum principle, so that unphysical oscillations (wiggles) are
excluded. It is easy to see that if Lh is of positive type, then the corresponding
matrix is a K-matrix. The second reason why it is nice if A is a K-matrix is,
that it is easy to devise convergent BIMs. This is shown below.

Regular splittings

We just saw that a BIM is defined by a specification of an approximation M
of A. How to choose M? Obviously, M must be such that equation (6.9) can
be solved efficiently. Furthermore, the method must be convergent: ρ(B) =
ρ(I −M−1N) < 1. Finally, the BIM must converge rapidly. We will now see
that it is easy to devise convergent BIMs if A is an M-matrix, for example a
K-matrix. The speed of convergence will be examined later.

Definition 6.3.1. The splitting A = M − N is called regular if M−1 ≥ 0
and N ≥ 0. The splitting is called convergent if (6.9) converges.

118 6. Iterative solution methods

We have the following nice theorem:

Theorem 6.3.1. A regular splitting of an M -matrix is convergent.

Proof. See Theorem 3.13 in Varga (1962). 2

Hence, we aim for regular splittings. The following theorem shows that regular
splittings are easy to obtain for M-matrices:

Theorem 6.3.2. Let A be an M -matrix. If M is obtained by replacing some
elements aij , j 6= i by bij satisfying aij ≤ bij ≤ 0, then A = M − N is a
regular splitting.

Proof. See Theorem 7.2.6 in Wesseling (2001). 2

This means, for example, that if A is a K-matrix, and if we make M by
replacing arbitrary off-diagonal elements aij , i 6= j by 0, then we have a
regular splitting (note that for if A is a K-matrix, then aij ≤ 0, i 6= j, so
that M will be a K-matrix, and N ≥ 0). This gives us great freedom in
designing regular splittings.

Examples

Jacobi

The Jacobi method is obtained by taking M = D ≡ diag(A). This gives the
following BIM:

Dyk = (D −A)yk−1 + b .

Gauss-Seidel

The Gauss-Seidel method is obtained as follows. Write A = D − E − F ,
with D = diag(A), E strictly lower triangular (i.e. Eij = 0, j ≥ i) and F
strictly upper triangular (E is simply the strictly lower triangular part of
−A, and F the upper part of −A). We take M = D − E (forward Gauss-
Seidel) or M = D − F (backward Gauss-Seidel). With this M it is also easy
to solve for yk, because M is lower or upper triangular; yk is obtained by
back-substitution. For example, forward Gauss-Seidel can be written as

yk
i =

bi −
i−1
∑

j=1

aijy
k
j −

n
∑

j=i+1

aijy
k−1
j

 /aii .

ILU

Unlike the preceding two methods, the incomplete LU (ILU) method is not
obtained by replacing elements of A by zero. The idea is to determine lower
and upper tridiagonal matrices L and U such that LU ∼= A, and to choose
M = LU . If LU = A we get N = 0, and we are back at the direct (Gaussian
elimination) method described before. But the difference is that the cause of

6.3 Basic iterative methods 119

the inefficiency is eliminated by forbidding fill-in; hence, LU 6= A, but the
hope is that LU will not be far from A, so that we have rapid convergence.
ILU decomposition works as follows. The elements of L and U are prescribed
to be zero, except if (i, j) ∈ Q, where Q is the set of index pairs where we
allow nonzeros:

Q ⊂ Qn, Qn ≡ {(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ n} .

An example of a suitable set Q will follow. ILU is based on the following
theorem:

Theorem 6.3.3. Let A be an M-matrix. Then for every Q ⊂ Qn there exist
a lower triangular matrix L with lii = 1, an upper triangular matrix U and
a matrix N ≥ 0 such that A = LU −N and

lij = 0 and uij = 0 if (i, j) 6∈ Q ,

nij = 0 if (i, j) ∈ Q .

Furthermore, the iterations LUyk = b+Nyk−1 converge.

Proof. See Meijerink and van der Vorst (1977). 2

Again we see that the M-matrix property is crucial.

We have
(LU)ij = aij , (i, j) ∈ Q ,

but we can have (LU)ij 6= aij , (i, j) 6∈ Q. The so-called first order ILU
decomposition is obtained by choosing Q equal to the nonzero pattern of A.
For instance, if the scheme Lh has the following five point stencil:

[Lh] =

∗
∗ ∗ ∗

∗

 , (6.14)

then the nonzero pattern QA of A is, with lexicographic ordering

QA = {i, j} ∈ Qn, j = i or j = i± 1 or j = i± nx .

It comes as a nice surprise that the nonzero pattern of N = LU − A turns
out to be very small:

QN = {i, j} ∈ Qn, j = i+ nx− 1 or j = i− nx+ 1 .

So N has only two nonzero diagonals. We hope the elements will be small,
because the closer M = LU is to A, the faster convergence will be.

120 6. Iterative solution methods

Incomplete Cholesky decomposition

If a matrix A is symmetric and positive definite, then it has not only an LU
decomposition, but also a Cholesky decomposition:

LLT = A

with now diag(L) 6= I. An advantage is that there is no need to store U .
Similarly to ILU, there exist incomplete Cholesky decompositions (ICs). We
now present an algorithm to compute an IC. Let the matrix A (symmetric,
of course) be a discretization on an n × n or n × n × n grid, so the size of
A is either n2 × n2 or n3 × n3. It is convenient to temporarily write the IC
decomposition as LD−1LT with diag(L) = D. We want to make a first order
IC. This means that lij 6= 0 only if aij 6= 0. We choose lij = aij , i 6= j. In
the two-dimensional case, let A correspond to the stencil (6.14), so that the
nonzero elements are aii, ai,i±1, ai,i±n. If we define

dii = aii − a2
i,i−1/di−1,i−1 − a2

i,i−n/di−n,i−n , (6.15)

where term with an index < 1 are to be deleted, then we have

(LD−1LT)ij = aij , if aij 6= 0 . (6.16)

It is left to the reader to verify this. Similarly, in three dimensions:

dii = aii − a2
i,i−1/di−1,i−1 − a2

i,i−n/di−n,i−n − a2
i,i−n2/di−n2,i−n2 . (6.17)

Finally, we bring the IC in the form LLT by defining

L := LD−1/2 ,

where D−1/2 = diag(d−1/2). Equations (6.15) and (6.17) have been imple-
mented, for the model problem described below, in the MATLAB M-file
my_cholinc, because MATLAB’s cholinc is inefficient.

A model problem

Let us consider the Poisson equation on the unit square with a homogeneous
Dirichlet boundary condition:

−ϕxx − ϕyy = f(x, y), (x, y) ∈ Ω ≡ (0, 1) × (0, 1), ϕ|∂Ω = 0 . (6.18)

We discretize on a homogeneous (n+ 2) × (n+ 2) vertex-centered grid such
as shown in Fig. 6.6. We index only the interior points with i, j = 1, · · · , n,
so n = 2 in Fig. 6.6. Standard finite difference or finite volume discretization
of (6.18) gives

Lhϕij ≡ 4ϕij − ϕi−1,j − ϕi+1,j − ϕi,j−1 − ϕi,j+1 = h2fij , i, j = 1, · · · , n ,
(6.19)

6.3 Basic iterative methods 121

Fig. 6.6. Uniform vertex-centered grid

where h = 1/(n + 1). A term with an index that refers to the boundary
(e.g. i = 0) can be neglected, because of the homogeneity of the Dirichlet
boundary condition. The operator Lh has the five-point stencil defined in
(6.14). We use lexicographic ordering. The smart way to generate the matrix
A associated with the linear system (6.19) in MATLAB (see the program po)
is as follows:

e = ones(n,1);

B = spdiags([-e 2*e -e],[-1 0 1],n,n); I = eye(n);

A = kron(I,B) + kron(B,I);

The kron function evaluates the Kronecker product of two matrices. The
Kronecker product of an n × n matrix A and an m×m matrix B is of size
mn×mn and can be expressed as a block n×n matrix with (i, j) block aijB.

ILU decompositions can be computed in MATLAB with luinc . The state-
ment [L,U,P] = luinc(A,’0’); corresponds to the first order ILU decom-
position . The first order incomplete Cholesky decomposition in obtained
in MATLAB with the statement L = cholinc(A,’0’) The MATLAB com-
mand spy(A) gives a picture of the nonzero pattern of A. Fig. 6.7 shows the
nonzero patterns of A and of the first order ILU factors L and U obtained.
Furthermore, the nonzero pattern of N = LU − A is shown; it does not
quite look like the two-diagonal pattern QN announced above; this is due to
rounding errors. The size of the nonzero elements outside the two diagonals
is negligible. Furthermore, we find that |nij | < 0.3, so that in this case (in-
complete) LU seems to be a pretty good approximation of A. Because in this
example A is symmetric and positive definite, incomplete Cholesky decompo-
sitions exist as well.

The rate of convergence

The rate of convergence depends on the initial vector y0; in the unlikely case
that we start with the exact solution y, we discover after one iteration that
the residual r1 = 0, so we are finished in one iteration. We can only say
something general about the rate of convergence of an iterative method in
the asymptotic case where the number of iterations is very large. Equations

122 6. Iterative solution methods

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 156
0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 96

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 96
0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

nz = 65

Fig. 6.7. Nonzero patterns of A, of ILU factors L and U , and of N ≡ LU −A; first
order ILU decomposition.

(6.2) and (6.12) show that for k ≫ 1 the error ek = y − yk satisfies

‖ek‖ ≤ ρ(B)‖ek−1‖, B = I −M−1A . (6.20)

So the quality measure of a BIM is its spectral radius ρ(B): the smaller ρ(B),
the better (of course, the computing work per iteration should also be taken
into account). However, in general, ρ(B) is not easy to determine. We will
do this for an illustrative example, namely the Poisson problem introduced
above. Analysis is easier in the difference form than in the matrix form. The
Jacobi method applied to the scheme (6.19) gives:

4ϕk+1
ij = ϕk

i−1,j + ϕk
i+1,j + ϕk

i,j−1 + ϕk
i,j+1 + h2fij , i, j = 1, · · · , n . (6.21)

Here and in what follows terms with i or j 6∈ {1, · · · , n} are defined to be
zero. The exact solution ϕij satisfies (6.21). Subtraction gives for the error
ek

ij = ϕij − ϕk
ij :

ek+1 = Bek, Beij ≡ (ei−1,j + ei+1,j + ei,j−1 + ei,j+1)/4 , (6.22)

6.3 Basic iterative methods 123

together with the boundary condition e0,j = en+1,j = ei,0 = ei,n+1 = 0. Our
predecessors have found out that the eigenfunctions of the operator B are:

ψij = sin iphπ sin jqhπ, h = 1/(n+ 1), p, q ∈ {1, · · · , n} , (6.23)

which is easily verified by inspection: substitution of (6.23) in (6.22) gives

Bψ = λψ, λ =
1

2
(cos phπ + cos qhπ) , (6.24)

where one needs the trigonometric identity

sinα+ sinβ = 2 sin
1

2
(α+ β) cos

1

2
(α− β) .

Clearly, we have found n2 independent eigenfunctions (or eigenvectors) ψ,
since each pair {p, q} admitted by (6.23) gives us an eigenfunction. Since B
corresponds to an n2 × n2 matrix, we have found all its eigenvectors; hence,
(6.24) gives us all eigenvalues. The maximum |λ| delivers the spectral radius:

ρ(B) = cosπh . (6.25)

Hence,
ρ(B) ∼= 1 −O(h2) . (6.26)

Equation (6.26) turns out to be true in general for BIMs applied to numeri-
cal schemes for second order elliptic partial differential equations on general
grids with mesh size proportional to h.

How many iterations are required to have an error reduction of 10−d, i.e. to
gain d decimal digits? According to equations (6.12) and (6.2), we must have
ρ(B)k < 10−d, hence k ln ρ(B) < −d ln 10, or

k > −d ln 10/ lnρ(B) .

We have (cf. Exercise 6.3.5)

ln ρ(B) ∼= −1

2
(πh)2 ,

hence the number of iterations required m satisfies

m ∼= 2d ln 10

π2
N .

where N ∼= 1/h2 temporarily stands for the total number of unknowns. From
(6.21) it follows that a Jacobi iteration takes 5N flops, so the total work
WJ = 5Nm satisfies

WJ = O(N2) . (6.27)

124 6. Iterative solution methods

As seen before, direct methods also have W = O(N2), so the Jacobi method
(and other BIMs) do not bring us closer to the ideal W = O(N), although
Gauss-Seidel converges twice as fast than Jacobi, see Exercise 6.3.8 (this is
not surprising, because Gauss-Seidel uses updated variables as soon as they
become available). BIMs only bring a saving in computer memory.

Exercise 6.3.1. Derive equation (6.10) from equation (6.9).

Exercise 6.3.2. Express the iteration matrix B in terms of M and A in the
case that relaxation with parameter α is applied.

Exercise 6.3.3. Verify equation (6.16).

Exercise 6.3.4. Verify equation (6.24).

Exercise 6.3.5. Show that if |ε| ≪ 1

ln cos ε ∼= −1

2
ε2 .

Exercise 6.3.6. Show that if A is an M-matrix, then Jacobi and Gauss-
Seidel correspond to regular splittings. Why is this nice?

Exercise 6.3.7. Write down the Gauss-Seidel variants (forward and back-
ward) of equation (6.21).

Exercise 6.3.8. It is known5 that, for matrices generated by discretizations
on the type of grid considered in these lecture notes, the spectral radii of the
Gauss-Seidel and Jacobi methods are related by

ρ(BGS) = ρ(BJ)2 .

Show that Gauss-Seidel requires half as much computing work as Jacobi.

6.4 Krylov subspace methods

Acceleration of basic iterative methods

So why bother with BIMs? The answer is: BIMs are essential as indispensable
building blocks inside more complicated but very efficient methods.

To begin with, BIMs can be accelerated by Krylov subspace methods. This
means that we take a BIM, corresponding to a splitting A = M − N , and

5 See Corollary 2.3 in Chapt. 5 in Young (1971)

6.4 Krylov subspace methods 125

use M to precondition the problem to be solved Ay = b, which means that
Ay = b is replaced by its preconditioned version:

M−1Ay = M−1b . (6.28)

We call M a good preconditioner if (6.28) lends itself well for efficient solu-
tion by Krylov subspace methods. Therefore an iterative method is frequently
called a preconditioner. One may say that convergence of the BIM is ac-
celerated by a Krylov subspace method, or that convergence of the Krylov
subspace method is accelerated by the BIM.

Secondly, BIMs can be accelerated by multigrid methods. We call a BIM
a good smoother if the BIM makes the error rapidly smooth (although not
rapidly small). Then the error can be made rapidly small with a multigrid
method. In principle this approach leads to the ideal efficiency

Work = O(N)

with N the total number of unknowns.

We have no time in this course to explain the principles of Krylov subspace
and multigrid methods, but will show how Krylov subspace methods that
have been implemented in MATLAB can be used.

Preconditioned conjugate gradients

The conjugate gradients (CG) method is a particular Krylov subspace method
for linear systems Ay = b with a symmetric positive definite matrix A. It is
called in MATLAB by

y = pcg(A,b,tol,maxit)

with maxit the maximum number of iterations allowed, and tol the relative
error in the residual, defined by

‖Ay − b‖
‖b‖ .

For information on Krylov subspace methods for nonsymmetric A that have
been implemented in MATLAB, type: help pcg , and call help for the
functions listed under “See also”.

It is known6 that the number of iterations required by CG is proportional
to

√
cond(A). To make cond(A) smaller, the system is preconditioned, as in

6 This follows from Theorem 10.2.5 in Golub and Van Loan (1989)

126 6. Iterative solution methods

equation (6.28). Because the preconditioned matrix must be symmetric in
order to apply CG, we choose the preconditioned system as follows:

L−1AL−T ỹ = L−1b, y = L−T ỹ , (6.29)

where LLT is an incomplete Cholesky decomposition of A, and L−T =
(LT)−1. If CG is applied with incomplete Cholesky preconditioning, the re-
sulting method is called ICCG (incomplete Cholesky conjugate gradients).

We will now determine the condition number of A for our model problem
(6.19). We have A = 4(I − B), with B given in equation (6.22). If p(x) is a
polynomial, then λ(p(A)) = p(λ(A)). Hence, λ(A) = 4 − 4λ(B), so that

λ(A) = 4
(

sin2 1
2pπh+ sin2 1

2qπh
)

, p, q = 1, · · · , n, h = 1/(n+ 1) ,

hence

min |λ(A)| = 8 sin2 π/2(n+ 1), max |λ(A)| = 8 sin2 nπ/2(n+ 1) ,

For

cond(A) ≡ max |λ(A)|
min |λ(A)|

we find, taking n = 50:

cond(A) = 1.0535e+ 03

We can also estimate cond(A) with MATLAB. By running powith dim = 2 and
n = 50 and typing condest(A) we find:

cond(A) = 1.5315e+ 03 ,

which is not very accurate but gives the right size. By typing

B=inv(L)*A*inv(L’);

cond(B)

we find
cond(L−1AL−T) = 221 .

This reduction in condition number that IC preconditioning brings is what
makes ICCG a great succes; the reduction factor grows with n.

The following MATLAB code is an implementation of ICCG:

L = cholinc(A,’0’); % First order IC decomposition

y = pcg(A,b,1e-2,200,L’,L); % Preconditioned cg method

6.4 Krylov subspace methods 127

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

N

t

10
2

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

10
2

10
4

N

t

Fig. 6.8. ICCG computing time versus number of unknowns. Solid line: ICCG;
- - -: direct solution. Left: two-dimensional case; right: three-dimensional case

Because the MATLAB function cholinc is very slow, we have made our own
version, called my_cholinc, based on equations (6.15) and (6.17). We use
my_cholinc in the program po . Fig. 6.8 (left) gives a plot of the computing
time needed by ICCG and the MATLAB sparse direct solver for the prob-
lem (6.19). As initial guess for the solution, a random guess was supplied to
pcg . The figure was created with the codes po and wp_iccg . We see that
direct solution takes less computing time than ICCG, which is surprising.
Apparently, the efficiency of the implementation of pcg in MATLAB leaves
something to be desired, whereas direct sparse solution y=A\b works very ef-
ficiently, as we have noted before. Also cholinc is implemented inefficiently,
since it takes more time than y=A\b . The slope of the dotted line is propor-
tional to N5/4, with N the number of unknowns. We see that for ICCG we
have

Work = O(N5/4) .

This is not very far from the ideal O(N).

But in three dimensions, where efficiency really counts, we get a different
outcome. The three-dimensional version of our model problem (6.19) is:

Lhϕijk ≡ 6ϕijk − ϕi−1,jk − ϕi+1,jk − ϕi,j−1,k − ϕi,j+1,k

−ϕi,j,k−1 − ϕi,j,k+1 = h2fijk, i, j, k = 1, · · · , n . (6.30)

The smart way to generate the matrix A corresponding to this three-
dimensional discrete Laplace operator in MATLAB is as follows (see the
program po):

A = kron(I,kron(I,B)) + kron(I,kron(B,I)) + kron(B,kron(I,I));

with I and B as in the preceding section. Results for the computing time
(obtained with the same codes as above) are shown in the right part of Fig.
6.8. Again, the time for ICCG is proportional to N5/4. The MATLAB direct

128 6. Iterative solution methods

solver is now much less efficient. This illustrates that in three dimensions
iterative methods are indispensable.

Exercise 6.4.1. Show that the matrix L−1AL−T in equation (6.29) is sym-
metric positive definite if A is symmetric positive definite.

Exercise 6.4.2. Show that if p(x) is a polynomial, then λ(p(A)) = p(λ(A)).

Exercise 6.4.3. Compare the efficiency of unpreconditioned and precondi-
tioned CG by suitably modifying and running the program po

6.5 Distributive iteration

We will now apply basic iterative methods to the stationary Navier-Stokes
equations. The discretized stationary Navier-Stokes equations are obtained
from equation (5.16) in the following form:

N(u) +Gp = f, Du = g , (6.31)

with N a nonlinear algebraic operator. This nonlinear system has to be solved
iteratively. We use Picard iteration, as decribed in Sect. 5.4. This works as
follows. Let superscript k be the iteration counter. Then, for example, terms
like u2

jk and (uv)j+1/2,k+1/2 (with u and v now temporarily denoting the
two velocity components) in the discretized x-momentum equation (5.11) are
replaced by

u2
jk

∼= (uk−1uk)jk, (uv)j+1/2,k+1/2
∼= (ukvk−1)j+1/2,k+1/2 .

As a consequence (using u again to denote the algebraic vector containing
all velocity unknowns), N(u) gets replaced by Ck−1uk, with Ck−1 a matrix
that depends on uk−1. The system (6.31) now can be written as:

[

Ck−1 G
D 0

] [

uk

pk

]

=

[

f
g

]

. (6.32)

Picard iteration works as follows:

Step 1. k = 0. Choose u0, p0.
Step 2. k = k + 1. Generate the matrix Ck−1.
Step 3. Solve equation (6.32).
Step 4. Return to step 2. Repeat until convergence criterion is satisfied.

The block-partioned matrix in (6.32) is not a K-matrix and also not an M-
matrix, because of the zero block on the main diagonal. So we cannot obtain a
regular splitting. In other words, it is not trivial to design a simple convergent
iterative method.

6.5 Distributive iteration 129

The SIMPLE method

In 1972 an iterative method was proposed by Patankar and Spalding, which
they called the SIMPLE method (SIMPLE stands for semi-implicit method
for pressure-linked equations). With SIMPLE we do not solve equation (6.32)
accurately, but perform only one iteration step. SIMPLE consists of the fol-
lowing steps:

Step 1. k = 0. Choose u0, p0.
Step 2. k = k + 1. Generate the matrix Ck−1.
Step 3. Update u by an approximate solve of the first row of (6.32):

Ck−1uk = f −Gpk−1 ,

using a splitting Mu−Nu = Ck−1 of Ck−1, that is regular if C is a K-matrix,
which is the case if the mesh Reynolds number is less than 2 or if we use the
upwind scheme for the inertia terms; see Sect. 2.3 (equation (2.41)). Hence,
if we would execute this step repeatedly it would converge. But we do only
one iteration and then improve the pressure in step 4. We use the BIM in the
form (6.11):

1

αu
Muδu = f − Ck−1uk−1 −Gpk−1, uk = uk−1 + δu ,

where αu is an underrelaxation factor that, unfortunately, must be deter-
mined by trial and error; αu = 0.5 seems to be a suitable value.

Step 4. Update p by an approximate solve of the following equation:

DC̃−1Gδp = Duk , (6.33)

where C̃ ≡ diag(Ck−1). At first sight, the motivation for equation (6.33)
seems unclear; it is inspired by the pressure-correction method, and is further
justified below. It turns out that DC̃−1G is a K-matrix. So we use a splitting
Mp −Np = DC̃−1G. By employing the underrelaxed BIM formulation (6.11)
we obtain :

1

αp
Mpδp = Duk, pk = pk−1 + δp .

where the underrelaxation factor αp must, unfortunately, be determined by
trial and error; αp = 0.8 seems to be a suitable value.

Step 5. Second velocity update:

uk := uk − C̃−1Gδp .

Step 6. k := k + 1, and return to step 2. Repeat until convergence criterion
is satisfied.

130 6. Iterative solution methods

Distributive iteration

It is clear that upon convergence, when we have uk = uk−1 and δp = 0, we
have indeed solved equation (6.28). But does SIMPLE converge? To see this
it is convenient to take a modern point of view, and to regard SIMPLE as
a member of the class of distributive iteration methods. This framework also
makes equation (6.33) more understandable. The idea is as follows.
Suppose we have a linear system Ay = b. The system is postconditioned:

ABŷ = b, y = Bŷ . (6.34)

The postconditioning matrix B is chosen such that (6.34) is easier to solve
iteratively than Ay = b. For example, AB is an M-matrix, while A is not,
as in our Navier-Stokes case above. For the iterative solution of (6.34) the
splitting

AB = M −N (6.35)

is introduced, to which corresponds the following splitting of the original
matrix A:

A = MB−1 −NB−1 .

This leads to the following stationary iterative method for Ay = b:

MB−1yk+1 = NB−1yk + b ,

or
yk+1 = yk +BM−1(b−Ayk) . (6.36)

This can be solved as follows:

Step 1. Solve Mδy = b −Ayk.
Step 2. δy = Bδy.
Step 3. yk+1 = yk + δy.

Note that if the iterative method defined by (6.36) converges (yk+1 = yk),
it solves Ay = b. This means that when designing a distributive iteration
method, B and M in (6.36) need not be precisely the same as in (6.35). For
example, one could use a complicated B to design a good M for (6.35), with
N small, and then changeM a little in (6.36) to make in step 1Mδy = b−Ayk

more easily solvable, and also B may be simplified to make (6.36) easy to
apply.

The method (6.36) is called distributive iteration for the following reason.
Equation (6.36) and step 2 show that the correction M−1(b − Ayk) corre-
sponding to non-distributive (B = I) iteration is distributed, so to speak, by
multiplication with B, over the elements of yk+1, whence the name of the
method.

6.5 Distributive iteration 131

Distributive iteration for Navier-Stokes

A number of well-known iteration methods for the incompressible Navier-
Stokes equations can be interpreted as distributive methods. The distributive
iteration framework permits us to give a unified description.

The system to be solved is (6.32). Define (writing C instead of Ck−1 for
brevity)

A =

[

C G
D 0

]

. (6.37)

A possible choice for B is:

B =

[

I −C̃−1G
0 I

]

, (6.38)

resulting in

AB =

[

C (I − CC̃−1)G

D −DC̃−1G

]

.

Note that the zero block on the main diagonal has disappeared (this is the
purpose of distributive iteration), so that basic iterative methods have a
chance to converge. It remains to specify a suitable approximation M of AB.
Thinking of C̃ as an approximation of C, we hope that I − CC̃−1 will be
small; this is the motivation behind equation (6.33). So we delete the block
(I−CC̃−1)G. Furthermore, we replace C by Mu/αu of step 3 of the SIMPLE
method and DC̃−1G by Mp/αp of step 4. This gives

M =

[

1
αu
Mu 0

D − 1
αp
Mp

]

. (6.39)

Substitution of (6.38) and (6.39) in (6.36) gives the following iterative
method:

Step 1. Determine

[

ru
rp

]

=

[

f
g

]

−
[

C G
D 0

] [

uk

pk

]

. (6.40)

Step 2. Solve
[

1
αu
Mu 0

D − 1
αp
Mp

]

[

δu
δp

]

=

[

ru
rp

]

. (6.41)

Step 3. Carry out the distribution step:

[

δu
δp

]

:= B

[

δu
δp

]

=

[

δu− C̃−1Gδp
δp

]

. (6.42)

132 6. Iterative solution methods

This is completely equivalent to the SIMPLE method described earlier; the
reader should verify this. By changing M and B different variants of the
SIMPLE method that have appeared in the literature such as SIMPLER and
SIMPLEC, and another distributive method called distributive Gauss-Seidel
may be obtained. So distributive iteration is a useful unifying framework.

Roughly speaking, SIMPLE does for Navier-Stokes what Jacobi and Gauss-
Seidel do for the Poisson equation studied earlier. So convergence will be slow
and the work will still be O(N2). But, like BIMs, SIMPLE lends itself well for
acceleration by Krylov subspace methods and multigrid. We will not discuss
this here. The interested reader is referred to Chapt. 7 of Wesseling (2001),
and references given there.

When to stop SIMPLE iterations? The advice is to make the velocity field
sufficiently divergence free, i.e. to make Duk suficiently small, for instance

‖ Duk ‖∞< tolU/L, tol ≪ 1 ,

where U and L are typical magnitudes for the velocity and the size of the
domain. The reason is that if in incompressible flows divu is not sufficiently
small, we have numerical mass sources and sinks, which is usually very detri-
mental for physical realism.

Final remark

As we have seen, basic iterative methods usually are very slow to converge. As
we remarked before, they are very useful if they are accelerated with Krylov
subspace or multigrid methods. Unfortunately, in this course we have no time
to discuss these methods.

Exercise 6.5.1. Verify that the distributive and the original formulation of
the SIMPLE method are equivalent.

Some self-test questions

How many flops does it take to solve a system Ay = b with A a symmetric n × n matrix with
bandwidth 2m − 1, m ≪ n, with a direct method without reordering?

What is fill-in?

Describe the matrix structure of the linearized staggered scheme.

Describe the driven cavity benchmark problem.

What is a basic iterative method?

133

Give a good termination criterion for basic iterative methods.

What is a K-matrix? What is an M-matrix?

What is a regular splitting? What is the nice property of a regular splitting?

Describe the Jacobi, Gauss-Seidel, ILU and IC methods.

Let the iteration matrix of a BIM have spectral radius ρ < 1. How many iterations are equired
to reduce the error by a factor r?

Describe distributive iteration. Why is it useful for Navier-Stokes?

References

Aris, R. (1962). Vectors, Tensors and the Basic Equations of Fluid Me-
chanics. Englewood Cliffs, N.J.: Prentice-Hall, Inc. Reprinted, Dover,
New York, 1989.

Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge,
UK: Cambridge University Press.

Burden, R.L. and J.D. Faires (2001). Numerical analysis. Pacific Grove:
Brooks/Cole.

de Saint-Venant, B. (1843). Mémoire sur la dynamique des fluides. C. R.
Acad. Sci. Paris 17, 1240–1242.

Ghia, U., K.N. Ghia, and C.T. Shin (1982). High-Re solutions for in-
compressible flow using the Navier-Stokes equations and a multigrid
method. J. Comp. Phys. 48, 387–411.

Golub, G.H. and C.F. Van Loan (1989). Matrix Computations (second
edition). Baltimore: The Johns Hopkins University Press.

Hackbusch, W. (1994). Iterative Solution of Large Sparse Systems Equa-
tions. New York: Springer.

Hinze, J.O. (1975). Turbulence. New York: McGraw-Hill.
Hirsch, C. (1988). Numerical Computation of Internal and External Flows.

Vol.1: Fundamentals of Numerical Discretization. Chichester: Wiley.
Lighthill, J. (1986). The recently recognized failure of predictability in

Newtonian dynamics. Proc. R. Soc. London A407, 35–50.
Meijerink, J.A. and H.A. van der Vorst (1977). An iterative solution

method for linear systems of which the coefficient matrix is a sym-
metric M-matrix. Math. Comp. 31, 148–162.

Nakayama, Y. and W.A. Woods (Eds.) (1988). Visualized Flow; Fluid Mo-
tion in Basic and Engineering Situations Revealed by Flow Visualiza-
tion. Oxford: Pergamon.

Navier, C.L.M.H. (1823). Mémoire sur les lois du mouvement des fluides.
Mém. Acad. R. Sci. Paris 6, 389–416.

Poisson, S.D. (1831). Mémoire sur les équations générales de l’équilibre et
du mouvement des corps solides élastiques et des fluides. Journal de
l’Ecole Polytechnique de Paris 13, 139–166.

136 REFERENCES

Stokes, G.G. (1845). On the theories of the internal friction of fluids in
motion, and of the equilibrium and motion of elastic solids. Trans.
Camb. Phil. Soc. 8, 287–305.

Stokes, G.G. (1851). On the effect of the internal friction of fluids on the
motion of pendulums. Trans. Camb. Phil. Soc. 9, Pt. II, 8–106.

Trottenberg, U., C.W. Oosterlee, and A. Schüller (2001). Multigrid. Lon-
don: Academic Press.

Van Dyke, M. (1982). An Album of Fluid Motion. Stanford: The Parabolic
Press.

van Kan, J. and A. Segal (1993). Numerieke methoden voor partiële differ-
entiaalvergelijkingen. Delft: Delftse Uitgevers Maatschappij.

Varga, R.S. (1962). Matrix Iterative Analysis. Englewood Cliffs, N.J.:
Prentice-Hall.

Wesseling, P. (1992). An Introduction to Multigrid Methods. Chich-
ester: Wiley. Available on Internet: www.mgnet.org/mgnet-books-
wesseling.html.

Wesseling, P. (2001). Principles of Computational Fluid Dynamics. Heidel-
berg: Springer.

Young, D.M. (1971). Iterative Solution of Large Linear Systems. New York:
Academic Press.

Index

absolute stability, 70
accuracy
– uniform, 60
Adams-Bashforth scheme, 85, 95
Adams-Bashforth-ω-scheme, 99
Adams-Bashforth-Crank-Nicolson

scheme, 95, 98
Adams-Bashforth-ω scheme, 85
aircraft, 11
amplification factor, 74
artificial viscosity, 30

back-substitution, 110, 118
backward-facing step problem, 99
bandmatrix, 104
bandwidth, 109, 115
– lower, 109, 110
– upper, 109, 110
barrier function, 38, 40
basic iterative method, 110, 116, 128
benchmark, 114, 115
BIM, 116–118, 123, 124, 129, 132
Black-Scholes equation, 13
body force, 7, 9
boundary condition, 19, 20, 24, 49, 85,

91
– Dirichlet, 19, 20, 24
– Neumann, 19, 20, 25
– wrong, 20
boundary layer, 31, 44
– equation, 46, 47, 51, 52
– ordinary, 52
– parabolic, 52, 54
– thickness, 31
boundary value problem, 19
Burgers equation, 19, 72

Cartesian grid, 99
Cartesian tensor notation, 2
cavitation, 7
cd1, 27, 28, 42

cd2, 58, 59
cdns, 81
cell, 22
cell-centered, 23, 28, 37, 41, 89
central discretization, 24
central scheme, 25
CFL number, 77
CG, 125, 128
chaos, 11
characteristics, 45, 50, 52
Cholesky decomposition, 120
– incomplete, 120, 121
cholinc, 120, 121
cholinc, 127
compatibility condition, 88, 97
condition number, 108, 126
conjugate gradients method, 125
conservation
– of mass, 5, 6
– of momentum, 7, 8
conservation form, 18, 19, 43, 86
conservation law, 5
conservative, 23, 55
consistency, 68–70
constitutive relation, 8
continuity equation, 6, 9
continuum hypothesis, 5
control volume, 22
convection-diffusion equation, I, 13, 14,

17, 53
– dimensionless form, 14
convection-diffusion-reaction equation,

13
convergence, 68–70, 110, 115–117, 119,

124, 125, 128, 130, 132
– of discretization, 68
– rate of —, 121
coordinates
– Cartesian, 2
– right-handed, 2

138 Index

Courant number, 77
Courant-Friedrichs-Lewy number, 77
Crank-Nicolson scheme, 78
cruise condition, 11
curl, 4

d’Alembert’s paradox, 46
determinism, 12
deviatoric stress tensor, 86
diagonally dominant, 109, 110
differential-algebraic system, 93, 94, 97
diffusion coefficient, 13
diffusion number, 65
dimensionless
– convection-diffusion equation, 14
– equations, 9
– Navier-Stokes equations, 10, 86
– parameter, 10, 11
– variables, 10
direct method, 110, 112, 116
direct solver, 104
Dirichlet, 52, 53
Dirichlet condition, 19
distinguished limit, 49, 51, 52
distributive iteration, 96, 110, 128, 130,

132
divergence theorem, 2
driven cavity, 113

efficiency, 66, 85, 103, 110, 112, 117,
119, 127, 128

eigenvalue, 108, 123
eigenvector, 108, 117, 123
elliptic, 45
ERCOFTAC, 1
errata, II
Euler scheme
– backward, 77
– forward, 65, 72, 76, 77, 94
explicit, 77, 79
explicit scheme, 71

Fick’s law, 13
fill-in, 111, 119
finite difference, I
finite element, I
finite volume, I, 22, 54, 90
finite volume method, 17, 22, 44
fish, 11
floor, 58
flops, 105, 110, 111, 123
flux, 23, 24
flux vector, 13
Fourier

– analysis, 71
– law, 13
– mode, 73
– series, 72
– stability analysis, 72, 98
fractional step method, 96
free surface conditions, 87, 92
friction, 11
frozen coefficients method, 71, 72

Gauss-Seidel method, 110, 118, 124,
132

– backward, 118, 124
– forward, 118, 124
Gaussian elimination, 110, 118

heat equation, 64
heq, 66
hyperbolic, 45

IC, 120
– first order, 120
ICCG, 126, 127
ill-posed, 17, 20
ILU, 110, 118
ILU decomposition, 119, 121
– first order, 119, 121
IMEX method, 104
IMEX scheme, 95
implicit, 77
incomplete Cholesky decomposition,

120, 121
– first order —, 120
incomplete LU method, 118
incompressibility, 7
incompressible, 6
induced norm, 108
inertia, 8, 11
inertia terms, 9
inflow boundary, 50
inflow conditions, 87, 92
initial condition, 86
inner equation, 47, 49
inner product, 2
inner solution, 47, 48
Internet, 1, 107
irreducible, 109
irrotational, 4
iteration matrix, 116
iterative method, 110, 112, 116, 121
– backward Gauss-Seidel, 118
– basic, 116, 128
– distributive, 128, 130, 132
– forward Gauss-Seidel, 118

Index 139

– Gauss-Seidel, 118, 124, 132
– ILU, 118
– Jacobi, 118, 122, 124, 132
– SIMPLE, 129, 130, 132
– SIMPLEC, 132
– SIMPLER, 132
– stationary, 116, 130

Jacobi method, 110, 118, 122, 124, 132
Jacobian, 94

K-matrix, 109, 110, 117, 118, 128, 129
kron, 121
Kronecker delta, 2, 8
Kronecker product, 121
Krylov subspace method, 124, 125, 132

Lagrange multiplier, 94
laminar, I, 1, 11
Landau’s order symbol, 35
Laplace, 12, 127
Laplace operator, 2, 9
Lax’s equivalence theorem, 70
length scale, 81
Leonardo da Vinci, 11
lexicographic order, 58, 119, 121
linear interpolation, 24
linearization, 94, 112
– extrapolated Picard, 95, 99
– Newton, 85, 94, 99
– Picard, 85, 95, 99
local grid refinement, 33
local mesh refinement, 60
lower triangular, 109
lu, 111
LU-decomposition, 104
luinc, 121

M-matrix, 109, 117–119, 124, 128
matching principle, 47, 49, 51
material
– particle, 5, 6, 13
– property, 5, 13
– volume, 5–7
mathematical finance, 13
MATLAB, 18, 27, 41, 56, 58, 59, 66,

99, 103, 125
MATLAB code, 112
MATLAB software, II
matrix
– diagonally dominant, 109, 110
– irreducible, 109
– K- —, 109, 110, 117, 118, 128, 129
– M- —, 109, 117–119, 124, 128

– positive definite, 109, 110
– sparse, 109, 110
– transpose, 108
– triangular, 109
matrix norm, 108
maximum principle, 17, 21, 29, 43, 57,

63, 117
– discrete —, 17, 44
mesh Péclet number, 30, 57, 105
mesh Reynolds number, 105, 129
mesh size, 23
momentum equation, 8
monotone, 17, 21
multigrid, 107, 112, 125, 132
multiphase flow, 6
my_cholinc, 120, 127

Navier-Stokes equations, I, 9, 85
– dimensionless, 10, 86
– incompressible, 9
– nonstationary, 107
– stationary, 107
Neumann, 52, 53
Neumann condition, 19
Newton, 1, 7, 85, 94, 99
Newtonian
– fluid, 8
– mechanics, 12
– non- —, 8
no-slip, 87, 92
norm
– l2 —, 74
– induced —, 108
– matrix —, 108
– p- —, 108
– vector —, 108
ns1, 85, 99
ns2, 85, 99
ns3, 112
numerical diffusion, 30
numerical efficiency, 103
numerical flux, 24

ω-scheme, 77, 78, 80, 85, 99
one-step scheme, 68
outer equation, 47, 50, 51
outer solution, 47, 48, 50
outflow, 85
outflow boundary, 53, 54
outflow condition, 17, 52, 88, 92
overrelaxation, 116

p-norm, 108
Péclet

140 Index

– mesh — number, 30, 57, 61, 105
– number, 14, 28, 33, 54
– uniform, 33
– uniform accuracy, 54
– uniform computing cost, 54
parabolic, 51
paradox of d’Alembert, 46
Parseval’s theorem, 74
Pentium, 67, 103
physical units, 9
Picard, 85, 95, 99
– iteration, 112, 128
– linearization, 112
pivoting, 110
po, 121, 126, 127
Poisson equation, 97, 120, 122, 132
positive definite, 109, 110
positive scheme, 29
positive type, 29, 57, 117
postconditioning, 130
potential, 4
– flow, 3
preconditioning, 125
predictability of dynamical systems, 12
pressure Poisson equation, 97
pressure-correction method, 85, 96, 98,

129
projection method, 96

random, 12
rate of convergence, 121
rate of strain, 8
rate of strain tensor, 8
regular perturbation, 46
regular splitting, 110, 117, 124, 128, 129
relaxation parameter, 116
reordering, 105, 110, 111
residual, 117
Reynolds
– mesh — number, 105, 129
– number, 1, 10–12, 33, 54, 61, 86
– transport theorem, 5
rotation, 4
rounding error, 34

scheme
– central, 25
– finite volume, 26
– numerical, 26
– upwind, 25
sea-level, 11
ship, 11
SIMPLE, 110, 129, 130, 132

– termination criterion, 132
SIMPLEC, 132
SIMPLER, 132
singular perturbation, 34, 46
singular perturbation theory, 44, 46, 47
smooth grid, 35, 36
software, 107
software libraries, 108
solenoidal, 3, 4, 94
sparse, 27, 104, 109, 110
spdiags, 27, 121
spectral method, I
spectral radius, 108, 123, 124
speed of sound, 7
splitting, 129, 130
– convergent, 117
– regular, 117, 118
spy, 111, 121
stability, 68, 70, 78, 81, 85, 98
– absolute, 70, 75, 76
– analysis, 71, 78
– Fourier analysis, 71, 72, 98
– local, 71
– zero- —, 70, 75, 76
staggered, 88, 89, 91, 94
staggered grid, 85
standard atmosphere, 11
stationary iterative method, 116
stencil, 26, 44, 57, 91, 119, 121
Stokes
– equations, 12
– paradox, 12
stratified flow, 8
streamfunction, 3, 114, 115
streamline, 3, 4, 114
stress tensor, 8
– deviatoric —, 86
stretched coordinate, 47
subcharacteristics, 45
subscript notation, 2
summation convention, 2
surface force, 7
swapping, 114
symmetric positive definite, 125
symmetry, 27

Taylor’s formula, 34, 35
tensor
– rate of strain —, 8
– stress —, 8
termination criterion, 117
time scale, 81
total derivative, 5

Index 141

transport theorem, 5, 6
transpose, 108
truncation error, 34
– global, 18, 34, 68, 114, 116
– local, 17, 34, 35, 68, 69, 114
turbulence, 11
turbulent, I
two-step method, 95

underrelaxation, 116, 129
uniformly valid, 50
upper triangular, 109
upwind discretization, 24
upwind scheme, 25, 72, 76, 115, 129

vector
– analysis, 1
– norm, 108
– notation, 2
– space, 108
vectorization, 66
vertex-centered, 23, 27, 40, 41, 89
virtual value, 92, 93
viscosity
– coefficient, 86
– dynamic, 8
– kinematic, 8, 11
– numerical, 33
von Neumann condition, 75

wall-clock time, 103
wavenumber, 73
website, II, 1
well-posed, 17, 20, 51
wiggles, 21, 29, 60, 61, 64, 88, 117
windtunnel, 11
wing cord, 11
wp_iccg, 127

yacht, 11

zero-stability, 70

