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Abstract. The method designed for accurate and efficient computation of both compress-
ible and incompressible flows previously published [2] and presented at ECCOMAS 1996 [3]
for steady flows is applied to unsteady flows. Since in our method the transient behaviour
is not falsified, temporal accuracy is obtained in a simple manner, without introducing a
pseudo-time variable and dual time stepping as required in many other methods designed
to tackle the same problem. We will show that with our staggered scheme unsteady fully
compressible flows can be computed as accurately as with colocated compressible schemes.
In addition, the Mach number can be prescribed to be arbitrarily small, including zero.
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1 INTRODUCTION

When the Mach number in a flow is uniformly low, say below 0.2, solution can take
place with equations and numerical methods assuming incompressibility. When the Mach
number is higher, the compressible flow equations need to be employed, and numerical
methods different from those for the incompressible case are used. This leaves us with the
question: what to do when both low and high Mach numbers occur simultaneously in a
flow? What is needed is a method with Mach-uniform accuracy and efficiency, both as the
Mach number M ↓ 0 and when M = O(1). Straightforward use of standard compressible
methods gives severe convergence problems or even breakdown in the presence of regions
with very low Mach number. Therefore efforts have been made to develop special methods
for such flows.
For low speed variable density flows asymptotic methods based on series expansion in

the Mach number have been developed, a.o. in [7]. Such methods can only be used when
the Mach number is small enough (less than 0.3 say). Another approach is to improve the
low Mach number behaviour of compressible methods. Because large investments have
been made in codes for compressible flows, much work has been done in this direction.
Extension to lowMach numbers can be done by preconditioning [11]. This measure usually
falsifies the time dependence, making time-accurate unsteady computations awkward or
inefficient. Also, usually very small Mach numbers (less than 0.05, say) cannot be handled,
or only at increasing expense, and the limit M ↓ 0 is frequently singular.
Alternatively, one may extend an incompressible method to the compressible case.

Obviously, this gives the best prospects for handling the limit M ↓ 0, assuming that in
this limit a well-proven incompressible scheme is recovered. With a nonstaggered scheme
this has been done by Demirdžić et al. [4]. A staggered grid was first used to compute
compressible flows by Harlow and Amsden [5], generalizing the MAC scheme of Harlow
andWelch [6] to the compressible case, in orthogonal coordinates. For incompressible flows
staggered grids are attractive, because no artificial measures need to be taken to avoid
spurious pressure oscillations, and the physical boundary conditions suffice. Furthermore,
as some of the test cases to be described show, accuracy and efficiency of a staggered
scheme turn out to compare quite well with standard schemes in the fully compressible
case.
Here we will generalize the incompressible staggered scheme described by Wesseling

et al. [14] to the instationary compressible case. This results in a computing method
with the following properties: accuracy at low Mach numbers, efficiency at low Mach
numbers, applicability to fully compressible time-dependent flow, and applicability to
time-dependent incompressible flow. Although other workers have realised some of these
issues, we believe combining all of them simultaneously in one method is new.
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2 DIMENSIONLESS EQUATIONS

The Euler equations are considered. Pressure is used as primitive variable instead of
density, in order to handle the limit M ↓ 0. For brevity the equations are presented in
Cartesian tensor notation, although in fact they are solved in general coordinates. The
dimensional governing equations are:(

∂ρ

∂p

)
h

∂p

∂t
+

(
∂ρ

∂h

)
p

∂h

∂t
+ (ρuα),α = 0, (1)

∂ρuα

∂t
+
(
ρuαuβ

)
,β
= −p,α, (2)

∂h
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+ uαh,α = − (γ − 1)h uα

,α, (3)

where uα = uα are the Cartesian velocity components, ρ is the density, p is the pressure,
h is the enthalpy, and γ is the specific heat ratio. The equation of state for an ideal gas
completes the system of equations: ρ = γ

γ−1
p
h
. Although a nonconservative form for the

energy equation is used, the numerical scheme to be used turns out to converge to genuine
weak solutions. The above nonconservative form is merely used for greater efficiency in
the pressure correction time stepping scheme to be described, and could be replaced by
the conservative form.
A special non-dimensionalisation is used such that all dependent variables and coeffi-

cients in the governing equations remain finite for M ≥ 0. This makes the limit M ↓ 0
regular, and avoids problems with rounding errors in discrete schemes. The crucial scaling
is the one for the pressure. Reference values are chosen to be: L, w∞, ρ0, and h0, where L
is a typical length scale of the domain, w∞ is a measure of the inflow velocity and ρ0, h0

are the corresponding stagnation conditions:

h0 =
(
1 + γ−1

2
M2

∞
)
h∗
∞, M∞ = w∗

∞/a∗
∞, (4)

ρ0 =
(
1 + γ−1

2
M2

∞
) 1

γ−1 ρ∗
∞, a∗

∞ =
√
(γ − 1) h∗∞,

where the subscript ∞ refers to the prescribed inflow velocity, and dimensional quantities
are denoted by an asterisk. The dimensionless pressure is

p =
p∗ − p∗out

ρ0w∞2
, (5)

where p∗out is the outlet pressure, which is to be prescribed. The nondimensionalisation
leaves the equations of motion invariant, but the equation of state becomes:
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3



H. Bijl, and P. Wesseling

where pv is defined by: pv =
p∗out−p∗0
p∗∞−p∗0

. Clearly, the limit M∞ ↓ 0 of the scaled equations
is regular. The dimensionless equation of state shows that ρ becomes independent of
p as M∞ ↓ 0, which is precisely what we want, because this eliminates acoustic modes.
Furthermore, in this limit the variation of p remains O(1). This dimensionless formulation
includes the incompressible case, which is obtained by putting M∞ = 0.

3 SOLUTION STRATEGY

The system of dimensionless equations 1-3 is discretised on a staggered grid using
a finite volume technique. The resulting equations are discretised implicitly in time and
solved using the pressure correction method, originally developed for incompressible flows.

3.1 Discretisation on a staggered grid

The compressible Euler equations will be discretised in space in boundary-fitted coor-
dinates using a finite volume scheme on a staggered grid, for the reasons given in Section
1. Figure 1 shows part of the staggered computational grid, the control volumes and the
numbering system. In the case of orthogonal coordinates the scheme is similar to that
of Harlow and Amsden [5], except for the pressure scaling (5); in [5] no special scaling is
used, hence the limit M∞ ↓ 0 is singular. The scheme is designed such that as M∞ ↓ 0
the classical incompressible staggered grid method of Harlow and Welch [6] is recovered
(in the Cartesian case). This may be expected to give Mach-independent accuracy and
efficiency for small and medium Mach numbers. The discretisation in general coordi-
nates introduces mass flux components ρV α, V α =

√
gUα, g = det(gαβ). The invariant

discretisation in general coordinates is described in detail in [14].

1

p,h

 control volume

 control volume

 control volume

Uρ

2Uρ
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1
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Figure 1: Grid in computational domain G

3.2 Pressure correction method for compressible flows

In the incompressible case there is no time-derivative for the pressure. This is also the
case in the present Mach-uniform formulation, as it should be; for M∞ = 0 the factor
∂ρ
∂p
in equation (1) is zero, according to the dimensionless equation of state. The stan-
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dard workhorse to do time-stepping in the incompressible case is the pressure correction
method, already introduced by Harlow and Welch [6]. This method will also be employed
here, for all Mach numbers, in order to achieve Mach-uniform accuracy and efficiency.
The continuity and momentum equation are discretised in time with the first order im-

plicit Euler method. The discretisation of the energy equation is implicit in h, but explicit
in the other unknowns. For the linearisation of the convection term the Picard method
will be used. For the pressure correction equation, first, a prediction for the momentum
field (ρuα)∗ = mα∗ is computed from

(mα)∗ − (mα)n

δt
+
(
(mα)∗ (Uβ)n

)
,β
= − (gαβ pn

)
,β

. (7)

Next, a pressure correction δp = pn+1 − pn is computed. To find the correction equa-
tion, first (7) is subtracted from the momentum equation discretised at time level n+ 1,
neglecting the difference in the convection terms:

(mα)n+1 − (mα)∗

δt
= − (gαβ δp

)
,β

. (8)

It has been shown for the incompressible case that neglecting the difference in the convec-
tion term does not adversely effect the temporal accuracy. Next, the discrete divergence
of the discretised version of (8) is taken, and the resulting expression for (mα

,α)
n+1 is

substituted into the continuity equation, which results in(
∂ρ

∂p

)n

h

δp

δt
− δt

(
gαβ δp

)
,αβ
= −(mα)∗,α −

(
∂ρ

∂h

)n

p

δh

δt
. (9)

This is called the pressure correction equation. For the computation of ∂ρ/∂p and ∂ρ/∂h
the non-dimensional equation of state (6) is used. When δh = hn+1 − hn is known, the
pressure correction δp can be computed from (9), whereafter (mα)n+1 can be found from
(8). The δh can be computed from the semi-implicit discretisation of the energy equation.
In practice the Euler equations are first discretised in space before the pressure correc-
tion method is applied, so that the equations derived in this section are linear algebraic
systems. No boundary conditions for the pressure correction equation are required, since
the physical velocity and pressure boundary conditions have already been incorporated
in the continuity and momentum equations, from which the pressure correction equation
is derived. The resulting systems of equations are solved by a Krylov subspace iterative
method for unsymmetric matrices, GMRES, see [13].

4 RESULTS

From various steady test cases discussed in [2], [3] we conclude that with our method
flows at all speeds can be efficiently and accurately computed. Here, we will discuss
applications with time-dependence. As stated before, one of the advantages of our method
over preconditioning methods for weakly compressible flows is that the transient behaviour
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is not falsified, so that time-accuracy is easily realised. In order to show that for fully
compressible unsteady flows the present staggered method is as accurate as colocated
compressible schemes, results will be compared with results obtained with the Osher
method, described in [9]. This is done for an important test case for compressible flows:
the Riemann problem.

4.1 Sod’s shock tube problem

Sod’s shock tube problem [10] is a Riemann proble with the following left and right
states:

u4 = 0, p4 = 1.0, ρ4 = 1.0, u1 = 0, p1 = 0.1, ρ1 = 0.125. (10)

As can be seen from the Mach number plot the flow remains subsonic. The maximum
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Figure 2: Comparison of first order upwind scheme with exact solution

wave speed in the flow is µm = max(|u| + a) = 2.2. Consequently, with δx = 0.01 the
time step restriction for the explicit Osher method is for this test problem δt < 0.0045.
In the computations of Sod’s shock tube problem we use δt = 0.004.

Our solution at t = 0.15 is compared with the exact solution at this time in Figure 2.
There it can be seen that our scheme converges to the correct weak solution and satisfies
the entropy condition, which states that the entropy of fluid particles does not decrease.
Of course, over the contact discontinuity the entropy decreases, but since fluid particles
do not cross the contact discontinuity, the entropy of the particles does not decrease. Due
to the use of first order upwind spatial discretisation, the contact discontinuity is smeared
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Figure 3: Sod’s shock tube problem; comparison of Osher scheme with exact solution at
t = 0.15

0 0.5 1
0

0.2

0.4

0.6

0.8

1
DENSITY

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1
VELOCITY

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1
PRESSURE

 

Figure 4: Sod’s shock tube problem; comparison of staggered MUSCL scheme with exact
solution at t = 0.15
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Figure 5: Sod’s shock tube problem; comparison of numerical solution with exact solution
at t = 1.
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as can be seen from the enthalpy and entropy plots,and to a lesser extent from the density
plot. But the shock resolution is crisp. The numerical shock is seen to move at the correct
speed, and the approximation of the expansion wave is smooth.
Solution of Sod’s shock tube problem with Osher’s approximate Riemann solver [8, 9]

is shown in Figure 3. Comparison of Fig. 2 with Fig. 3 shows our method to be about as
accurate as the Osher scheme.

The accuracy of the present method can be improved by using a higher order upwind
biased scheme. For this we follow the MUSCL approach, see Van Leer [12]. In Figure 4
the solution obtained with the MUSCL scheme is compared to the exact solution. The
shock and especially the contact discontinuity have become more crisp. A tiny wiggle is
formed in front of the contact discontinuity, which might be due to the non-conservative
discretisation of the energy equation. The quality of the results in Figure (4) is about the
same as for standard colocated approximate Riemann solvers enhanced with the MUSCL
approach (results not shown).
In order to check the computed shock speed a computation over a longer time, i.e.

t = 1, has been carried out. In this computation the domain was larger: [0, 4], with the
separation between the left and right state at x0 = 2. Also in this computation δx = 0.01,
and δx = 0.004. The result is shown in Fig. 5. There it can be seen that even after
computation over a longer time the computed shock position is still right. Although our
method is not fully conservative, due to use of the non-conservation form of the energy
equation, this does not result in a wrong shock speed. Apparently, use of the conservation
form of the continuity and momentum equations is good enough.

4.2 Supersonic flow test case

In the previous two test cases the flow remained subsonic. Supersonic flow may bring
additional difficulties. Therefore, we will also consider the Mach 3 test case of Arora and
Roe [1]. The initial state is specified by

u4 = 0.92, p4 = 10.333, ρ4 = 3.857, u1 = 3.55, p1 = 1, ρ1 = 1. (11)

The flow is characterised by a strong expansion fan. The maximum Mach number is equal
to 3. The maximum wave speed in the flow is µm = max(|u| + a) = 5.0. Consequently,
with δx = 0.01 the time step restriction for the explicit Osher method is for this test
problem δt < 0.002. In the computations of the test case of Lax we use δt = 0.002, which
did not cause problems.

For the space discretisation of the convection terms in the momentum and energy equation
the first order upwind scheme was used. For this test problem the right solution was
obtained even without density biased upwinding. The solution obtained with the present
method at t = 0.088 is compared with the exact solution in Figure 6. There it can be
seen that our scheme converges to the correct weak solution.
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Figure 6: Mach 3 test case; comparison of staggered first-order upwind scheme with exact
solution at t = 0.088
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Figure 7: Mach 3 test case; comparison of Osher scheme with exact solution at t = 0.088
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Figure 8: Mach 3 test case; comparison of staggared MUSCL upwind scheme with exact
solution at t = 0.088s.

Solution of the Mach 3 test case with Osher’s approximate Riemann solver [8, 9] is
shown in Figure 7. There it can be seen that the Osher scheme suffers from a ’sonic
glitch’. That is, near the sonic point the expansion fan shows a discontinuity. But the
entropy condition is not violated, as can be seen from the entropy plot, and is in accordance
with the theoretical results of [9]. As can be seen from Fig. 6 our scheme does not suffer
from this. The contact discontinuity is smeared more with our method.
The accuracy of the numerical solution obtained with the present method is improved

by use of the higher order MUSCL scheme. In Figure 8 the solution obtained with the
MUSCL scheme is compared to the exact solution. The (weak) shock and especially the
contact discontinuity have become more crisp. Again we conclude that the staggered
scheme seems to be as accurate as the nonstaggered Osher scheme. Near the sonic point
our scheme is even better.

5 CONCLUDING REMARKS

Although, as for most methods in current use, a theoretical basis is lacking, on the
basis of the experiments described above we have every reason to believe that our scheme
approximates genuine weak solutions of the Euler equations that satisfy the entropy con-
dition. Furthermore, our method seems less computing-intensive than colocated methods
using approximate Riemann solvers (such as schemes of Osher, Roe and van Leer) or arti-
ficial viscosity (Jameson). This is because we use only central and/or upwind differences,
which is much cheaper than approximate solutions of Riemann problems to determine nu-
merical fluxes at finite volume boundaries, or using solution dependent second and fourth
order artificial dissipation terms.
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