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Abstract. A numerical method (pressure-correction method using a staggered grid) is
coupled to a two-phase thermodynamic model for hydrazine. The thermodynamic model
accounts for the compressibility of the liquid and the same state equation is used for liquid
and vapour. This approach is applied to the numerical predictions of liquid hydrazine
venting. During this process the liquid hydrazine undergoes a strong depressurization.
When the pressure reaches the saturation pressure vaporization occurs. This phenomenon
takes place near the outlet and induces variations of temperature which could cause ice
formation and pipe clogging. In order to assess the risk of clogging, numerical simulations
of the venting line have been performed using a quasi one-dimensional approach. The
pressure-correction method is well-suited to the simulation of compressible flows of fluids
with nonconvex equation of state at the low Mach numbers that occur during hydrazine
venting. The numerical results have been validated using experimental data and have given
an estimate of the clogging risk.
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1 INTRODUCTION

The study of tank venting through a discharge line with liquid flashing is of high
interest in many industrial processes. This kind of flow occurs in the automotive and
aeronautical industries (e.g. Zeigerson-Katz and Sher [1]), where insight in this process
is essential for improving the fuel injection process. The same type of flow concerns also
the technological hazards associated with the loss of containment of liquefied gases (e.g.
Curtelin [2], Veneau [3] and Hervieu and Veneau [4]).

The venting of propellant vessels is of major interest for space applications. This
process is encountered in rockets, spacecraft and satellites. The first study found in
the literature devoted to this topic has been published by Neher [5], and concerned the
venting of tank propellant in the parking orbit of the Saturn S-IVB rocket. Since then,
many numerical and experimental investigations have been focused on different aspects of
space venting. Examples are the investigations on the venting of water from the shuttle
conducted by Pike et al. [6] and Kofski et al. [7].

In the framework of the Ariane 5 project, the venting process is of major interest. At
the end of the launch of Ariane 5, the rocket is passivated. The passivation includes the
venting into space of all the propellants stored in tanks. This process is performed to
avoid the explosion risks due to solar heating, micrometeorite impact or reentry heating.
An explosion would cause the undesirable production of stable debris in space. The
present study concerns the passivation of the attitude control system called SCA (French
acronym for ”Système de Contrôle d’Attitude”), which is performed at 1000 km altitude.
The venting of liquid hydrazine into space through a discharge line is required. The
liquid hydrazine is stored in tanks at a pressure between 6 and 25 bar. When the tanks
are vented, the liquid undergoes a large pressure drop (until vacuum pressure). Due to
the pressure decrease along the vent line, the hydrazine begins to boil. Then, changes in
the temperature may produce ice near the exit. The presence of ice could provoke pipe
clogging and therefore a risk of explosion. In order to avoid this risk, the location of
phase changes and temperature distribution along the vent line and especially near the
exit need to be investigated to ensure the success of the venting process.

The present study is focused on the simulation of liquid depressurization. To predict
the liquid behaviour, a quasi one-dimensional approach has been chosen with a two-phase
thermodynamic model for hydrazine. This model has been developed by Giordano and
De Serio [8] in agreement with thermodynamic theory and has been validated using the
experimental data available in the literature. This nonlinear model is able to predict the
thermodynamic behaviour of hydrazine from high pressure until vaporization accounting
for the liquid compressibility. The originality of this work from the numerical point of
view is the simulation of compressible flows at low Mach numbers using this nonlinear
model.

The flow to be simulated has a low velocity and a low Mach number, Ma < 0.03, and
is submitted to a strong pressure drop. Therefore, the numerical method chosen has to
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be able to simulate flows at low Mach numbers and to be stable when flows are computed
using a thermodynamic model for a compressible liquid. In fact the method has to be
able to solve a compressible flow in the limit of Ma → 0. Several alternatives are possible:

- Standard compressible methods cannot be used because severe convergence problems
can occur as Ma → 0. For incompressible flows, density and pressure are independent, so
the pressure cannot be calculated from the density. For this reason density-based methods
fail. But compressible methods can be adapted to fairly low Mach numbers by introducing
preconditioning but time accuracy is lost.

- Asymptotic methods based on expansion of variables in Mach number series. But the
Mach number has to be uniformly low to ensure accuracy.

- Incompressible methods extended to compressible flows, Bijl and Wesseling [9], among
others, have developed this method. This results in a unified method for incompressible
and compressible flows with accuracy and efficiency uniform in the Mach number.

The last method has been selected for this study. The scheme is designed such that
for Ma → 0 the classical incompressible method of Harlow and Welch [10] is recovered.
Perfect gas or nonconvex equations of state can be incorporated without problem. In this
paper this numerical method is applied to the flow simulation using the thermodynamic
model proposed by Giordano and De Serio [8]. The numerical results are validated using
the experimental data obtained by Foucaud [11] and the clogging risk is estimated.

2 GOVERNING EQUATIONS

The equations to be solved are the conservation laws for mass and momentum and
the transport equation for the internal energy. A thermodynamic model has to be used
to close the set of equations. The mass and momentum conservation equations can be
written in the following form, where A is the area of the cross-section, D the pipe diameter,
ρ the density, P the pressure and U the velocity:

∂ρ

∂t
+

1

A

∂

∂x
ρAU = 0 (1)

∂

∂t
ρU +

1

A

∂

∂x

(
ρAU2

)
+
∂P

∂x
+

2Cf

D
ρU2 − ρg = 0 (2)

The gravity term ρg is included, because we will compare computations with a ground
test on a vertical pipe. The value of g is 9.81 m.s−2.

For two-phase flows the friction coefficient is given by:

Cf = Cf.spΦ
2 (3)

Cf.sp is the friction coefficient for a liquid flow computed using the explicit formulae
proposed by Jain [12]. At the area change the same treatment as the one used by Reynier
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et al [13] has been applied. Φ2 is deducted from the correlation of Lockart-Martinelli
modified by Richardson (see Veneau [3]):

Φ2 = (1− α)−1.75 (4)

where α is the void fraction related to the dryness fraction χ by the following relation:

α = χ
ρ

ρs
V

(5)

where ρs
V is the vapour density at saturation.

Due to the pressure correction method it is not possible to solve directly the conser-
vative equation for the total energy. Therefore, the transport equation for the internal
energy e is solved. This equation is given by:

∂e

∂t
+ U

∂e

∂x
+

P

Aρ

∂AU

∂x
− 2Cf

D
U3 = 0 (6)

3 THERMODYNAMIC MODEL

The thermodynamic model used for hydrazine has been developed by Giordano and
De Serio [8]. It accounts for the compressibility of the liquid and liquid-vapour phase
change. The equation of state is compatible for liquid and vapour. This model consists of
an equation of state and an equation for the internal energy. At saturation, the pressure
is a function of temperature. The equation of state is given by:

P =
RT

v − a
− c

T ne(v + b)2
(7)

where T is the temperature and v = 1/ρ the specific volume. At saturation v is equal to
the specific volume of the liquid vs

l or to the specific volume of the vapour vs
v. The value

of ne used for the calculations is 0.7. The constant R is equal to RG/MN2H4 where RG is
the constant for a perfect gas equal to 8.314 J/K and MN2H4 = 32.04510−3kg is the molar
mass of hydrazine. The constants a, b, c are given by the following relations:

a = vc

(
1− 1

4Lc

)
(8)

b = vc

(
3

8Lc − 1

)
(9)

c =
27

64

R2T ne+2
c

Pc

(10)

where Lc = Pcvc/RTc. Pc, vc, Tc are respectively the pressure, the volume and the tem-
perature of hydrazine at the critical point. Their values have been given by Giordano and
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De Serio [8] and are: Pc = 147 bar, vc = 3.7410−3 m3/kg and Tc = 653.15 K.

Another equation is needed for the internal energy. This equation is given by:

e = K2 +
∫

Φ(T )dT − c(ne + 1)

T ne

∑
l,v

χi

(vi + b)
(11)

where K2 = 11RTc. χi is the fraction of liquid and vapour defined as:

v = χlvl + χvvv (12)

with, χv + χl = 1.

The integral
∫
Φ(T ) is approximated by the following series:

∫
Φ(T )dT =

7∑
k=1

Ak

k

(
T

Tc

)k

(13)

where the coefficients Ak are listed in table 1.

A1 3.3083 B1 9.9677 10−3

A2 9.5779 B2 0.2416
A3 -42.7878 B3 -2.9151
A4 1.4352 102 B4 11.3201
A5 -2.0802 102 B5 -18.9928
A6 1.3905 102 B6 11.8671
A7 -35.8884

Table 1: Values of Ak and Bk obtained by fitting of experimental data (see Giordano and De Serio [8])

The saturation pressure is given by the following equation, established by Giordano
and De Serio [8] using interpolation of experimental data:

Psat(T ) = Pc

6∑
k=1

Bk

(
T

Tc

)k−1

(14)

where the coefficients Bk are given in table 1. The relation (14) is valid for the range of
temperature occurring in our application.

The specific volumes for liquid, vs
l , and vapour, vs

v, at saturation are given by the
following relations:

vc

vs
l (T )

=
8∑

k=0

C1
k

(
T

Tc

)k

(15)
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C1
0 -8.1950 101 C2

0 -4.0914 10−2

C1
1 1.2887 103 C2

1 4.0628 10−1

C1
2 -8.2248 103 C2

2 -1.1402
C1

3 2.9272 104 C2
3 -1.0532

C1
4 -6.3648 104 C2

4 1.0012 101

C1
5 8.6622 104 C2

5 -9.8820
C1

6 -7.2123 104 C2
6 -2.1992 101

C1
7 3.3623 104 C2

7 4.8736 101

C1
8 -6.7275 103 C2

8 -2.5375 101

Table 2: Values of C1
k and C2

k given by Giordano and De Serio [8]

vc

vs
v(T )

=
8∑

k=0

C2
k

(
T

Tc

)k

(16)

where the coefficients C1
k and C2

k are listed in table 2.

4 TWO-PHASE MODELLING

For the two-phase modelling of the flow, the hypothesis of a small void fraction has been
done. Therefore, the mechanical effects between the two phases are neglected. According
to Bilicki et al [14], this assumption seems to be justified for bubble flows with a void
fraction, α ≤ 0.05. For higher void fraction, transition from bubbly to churn flow takes
place. According to Minemura et al [15], this transition occurs in the range 0.08 < α <
0.14. In churn flows, mechanical effects become important and cannot be neglected. As
a consequence, a mixture model cannot be applied to the prediction of churn flows. In
the present case, the single-phase calculations indicate that the physical conditions for
vaporization are reached near the exit. Therefore, the hypothesis of a bubbly flow has been
adopted and the two-phase computations have been performed using a mixture model.

One of the most famous mixture model is the homogeneous relaxation model (HRM)
developed by Bilicki et al [16, 14]. The predictions of Veneau [3] showed the superiority
of this model compared to the other mixture models. Since our application is close to
the flashing flow investigated be Veneau [3], the HRM model has been chosen for the
two-phase calculations.

In the HRM model it is assumed that the effects of vaporization and condensation
are significant. The liquid is considered to be superheated while the vapour is in the
state of equilibrium at the saturation temperature. In this model the thermodynamic
non-equilibrium is taken into account through a relaxation time and an equation is solved
for the dryness fraction. The equation for the dryness fraction has the following form:
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1/2 J-1/2J-3/2j+1/23/2 j-1/2

1 j J-12

Figure 1: Staggered grid used for the one-dimensional predictions, here the grid is uniform

∂χ

∂t
+ U

∂χ

∂x
+
χ− χ

θχ

= 0 (17)

The relaxation time, θχ, is an additional function depending on the thermodynamic
state of the system and should be defined by a separate equation. The relaxation corre-
sponds to the transition of the thermodynamic system from nonequilibrium to equilibrium.
During this transition bubble growth occurs. The initial growth of the bubble nucleus de-
pends strongly on the interfacial mechanical interactions like acceleration, pressure forces
and surface tension forces. During this stage, thermal phenomena like heat tranfer and
phase change are negligible. As the nucleus radius increases, the bubble growth becomes
mostly dependent on heat supply that is consumed to vaporize the liquid on the bubble
surface. Therefore, a realistic prediction of flashing flows requires to take into account
the thermodynamic nonequilibrium between the phases. In the present study no exper-
imental data are avalaible for hydrazine to establish the function θχ. Hence, like in the
computations of water depressurization made by Bilicki et al [14], a constant has been
used. This value has been chosen equal to 2.

5 NUMERICAL METHOD

The numerical method is a finite-volume scheme that uses a staggered grid, therefore no
measures have to be taken to avoid spurious pressure oscillations. The scheme is simple,
due to the choice of primitive variables: ρ, m = ρU , χ and e, and the use of a staggered
grid.
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5.1 Discretisation in time and space

The set of equations presented in §2 is discretised on a staggered grid. The compu-
tational domain (0,L) is divided in cells Ωj , j=1..J-1 of possibly non-uniform size ∆xj .
The center of Ωj is denoted by xj and its two end points are denoted by xj±1/2. The
thermodynamic variables, P , ρ, χ and e, are located in xj . The dynamic variables U and
m = ρU are located in xj±1/2. Aj is the cross section area at the point xj and Aj+1/2 is
the cross section area at the point xj+1/2. The mesh is represented in figure 1.

The following notations are used:
δej = en+1

j − en
j ;

δρj = ρn+1
j − ρn

j ;

δPj = P n+1
j − P n

j ;

λj =
∆t
∆xj

, λj+1/2 = 2∆t
∆xj+∆xj+1

.

A non-uniform mesh is used in order to allow mesh refinement near the end of the pipe,
where the change of the cross-section is abrupt. For the discretisation in time, a first order
explicit/implicit Euler method is used. An upwind discretisation has been chosen for the
convective terms in the internal energy, dryness and momentum equations.The scheme is
defined as follows:

ρn+1
j − ρn

j +
λj

Aj
(Amn+1)|j+1/2

j−1/2 = 0 (18)

mn+1
j+1/2 −mn

j+1/2 +
λj+1/2

Aj+1/2

(AmnUn)|j+1
j + λj+1/2P

n+1|j+1
j

+∆t

(
2Cf

Dj+1/2
(Um)nj+1/2 − ρn

j+1/2g

)
= 0

(19)

ρj+1/2 is computed using an interpolation between the two neighbouring points.

For the energy equation the discretisation is fully explicit:

en+1
j − en

j + λjU
n
j e

n|j+1/2
j−1/2 +

λjP
n
j

Ajρn
j

(AUn)|j+1/2
j−1/2 −∆t

2Cf

Dj
(Un

j )
3 = 0 (20)

The velocity at the center of the cells is computed by interpolation of the velocities at the
two neighbouring points.

The dryness fraction is computed at the pressure points. An implicit formulation for
the relaxation term is used:

χn+1
j − χn

j + λjU
n
j χ

n|j+1/2
j−1/2 +∆t

χn+1
j − χn+1

j

θχ
= 0 (21)
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5.2 Boundary Conditions

The following boundary conditions are used for the one-dimensional flow in a pipe. Tleft,
χleft and mleft are given at the inlet. At the outlet, P right is prescribed. For single-phase
computations it is equal to 1 mbar, for two-phase predictions the saturation pressure of
the spray at equilibrium measured at ONERA by Foucault[11] is chosen.

• Dryness fraction
At the inlet: The fluid is supposed to be a liquid,

χ1 = χleft = 0 (22)

At the outlet:

χn+1
J−1 = χn

J−1 − λJ−1U
n
J−1(χ

n
J−1 − χn

J−2)−∆t
χn+1

J−1 − χn+1
J−1

θχ
(23)

• Internal energy
At the inlet:

e1 = e(Tleft, ρleft) (24)

where ρleft is calculated using the state equation:

ρleft ≈ f(Tleft, P1) (25)

where P1 is the pressure obtained at the preceding time step.
At the outlet a boundary condition for the internal energy is not given and not required

by the first order upwind scheme, which takes the following form near the outlet:

en+1
J−1 = en

J−1 − λJ−1U
n
J−1(e

n
J−1 − en

J−2)

−λJ−1P
n
J−1

AJ−1ρ
n
J−1

((AUn)J−1/2 − (AUn)J−3/2) + ∆t
2Cf

DJ−1

(Un
J−1)

3 (26)

• Momentum:
At the inlet:

m1/2 = mleft (27)

At the outlet: As for the internal energy an upwind scheme is used. The finite vol-
ume discretization of the momentum equation takes place by integration over a half cell
(λJ−1/2 = 2λJ−1):

mn+1
J−1/2 = mn

J−1/2 −
λJ−1/2

AJ−1/2

((AmnUn)J−1/2 − (AmnUn)J−3/2)

+λJ−1/2(P right − P n+1
J−1 )−∆t

(
2Cf

DJ−1/2

(mU)nJ−1/2 − ρrightg

) (28)
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where ρright is evaluated as:

ρright = ρn
J−1 (29)

5.3 Pressure-correction method

The system (18)-(21) is solved by an iterative method. The method consists of the
following steps:

(1) Find en+1 from (20) using the first order upwind scheme, assuming U > 0:

en+1
j = en

j − λj−1/2U
n
j (e

n
j − en

j−1)−
λjP

n
j

Ajρn
j

((AUn)j+1/2

−(AUn)j−1/2) + ∆t
2Cf

Dj
(Un

j )
3

(30)

(2) Momentum prediction step. Determine m∗ from (19) using P n instead of P n+1 and
using the first order upwind scheme:

m∗
j+1/2 = mn

j+1/2 −
λj

Aj+1/2

((AmnUn)j+1/2 − (AmnUn)j−1/2)

−λj+1/2(P
n
j+1 − P n

j )−∆t

(
2Cf

Dj+1/2

(mU)nj+1/2 − ρn
j+1/2g

) (31)

(3) Pressure-correction step. Write,

mn+1
j+1/2 = m∗

j+1/2 − λj+1/2δP |j+1
j (32)

At the outlet, P right is imposed and δP right = 0:

mn+1
J−1/2 = m∗

J−1/2 + λJ−1/2δPJ−1 (33)

An equation for δPj and δρj is found by substitution of (32) in the mass conservation
equation.

δρj + ajδPj−1 + bjδPj + cjδPj+1 = RHS(j) (34)

The expressions for aj , bj, cj are:

aj = − λj

Aj
λj−1/2Aj−1/2 (35)

bj =
λj

Aj
(λj−1/2Aj−1/2 + λj+1/2Aj+1/2) (36)

cj = − λj

Aj
λj+1/2Aj+1/2 (37)
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The expression of the right-hand-side term is:

RHS(j) = − λj

Aj

((Am∗)j+1/2 − (Am∗)j−1/2) (38)

At the inlet the equation (34) becomes,

δρ1 − λ1

A1
λ3/2A3/2(δP2 − δP1) = RHS(1) (39)

Hence,
a1 = 0 (40)

b1 =
λ1

A1
λ3/2A3/2 (41)

c1 = − λ1

A1
λ3/2A3/2 (42)

RHS(1) = − λ1

A1

((Am∗)3/2 − (Am∗)1/2) (43)

The following expressions are obtained at the outlet:

aJ−1 = − λJ−1

AJ−1

λJ−3/2AJ−3/2 (44)

bJ−1 =
λJ−1

Aj−1

(λJ−1/2AJ−1/2 + λJ−3/2AJ−3/2) (45)

cJ−1 = 0 (46)

RHS(J − 1) = − λJ−1

AJ−1

((Am∗)J−1/2 − (Aσnm∗)J−3/2) (47)

Because δP depends nonlinearly on δρ and δe, (34) is a nonlinear system for δP . It is
solved in two substeps, as follows:

- First a rough approximation of δρ is done using the values at the previous time step:

δρ =

(
∂ρ

∂e

)n

P,j

δej +

(
∂ρ

∂P

)n

e,j

δPj (48)

The partial derivatives of ρ with respect to P and e come from the thermodynamic model
(e.g. Reynier et al [13] [17]).
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Figure 2: Geometry of the flow to be computed

- If the rough approximation is not accurate (this is the case at phase changes), the
solution is found using a Gauss-Seidel method. At each iteration the following system is
solved:

δρk+1
j + ajδP

k+1
j−1 + bjδP

k+1
j + cjδP

k
j+1 = RHS(j) (49)

This system is initialised with the results of the first substep. For each point the solu-
tion is calculted using a method of dichotomy on the density.

(4) Find mn+1 from equations (32) and (33).

(5) T n+1, ρn+1 and χn+1 the vapour fraction at equilibrium are computed from the ther-
modynamic model and the dryness equation.

(6) Determine Un+1 from the momentum and the density.

6 PREDICTIONS OF HYDRAZINE VENTING

6.1 Flow configuration

In order to predict the flow behaviour, simulations of the end part of the vent line
have been performed. The configuration to be computed is presented in figure 2. It is
a pipe with a length of 20 cm and an inner diameter equal to half an inch (11.4 mm),
at the ejection there is a an hole of 5.2 mm diameter. The mesh consists of a uniform
coarse mesh of 40 cells over 16 cm, then a stretched zone of 28 cells over 32 mm and
finally an uniform fine mesh of 20 cells over 4 mm. The ratio between the lengths of two
consecutive cells of the stretched part is equal to 0.9. Several meshes have been applied
for the simulations and the use of finer meshes was not found to influence the numerical
results. The area jump is located in between a momentum point and a pressure point.

The inlet temperature is equal to 300 K for single-phase calculations and to 307 K
for two-phase predictions. The mass-flow-rates are those given in table 3. The pressure
imposed at the outlet is equal to 1 mbar for single-phase flows and to 16 mbar for the
two-phase simulations. This value is the saturation pressure of the spray at equilibrium
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Case Velocity (m/s) Mass flow rate (kg/s) Tank pressure (bar)
1 4.11 0.42 6
2 5.58 0.57 12
3 8.23 0.84 25

Table 3: Conditions of the experimental study conducted by Foucaud [11]

Case Calc. pressure (bar) Exp. pressure (bar)
1 4.18 4.33
2 7.71 8.
3 16.82 17.

Table 4: Injection pressures calculated here and measured by Foucaud [11] for the different test cases

measured by Foucault [11] in a test chamber at ONERA.
The results have been obtained after 10000 time steps. They correspond to a steady flow

for single-phase predictions. For two-phase predictions the convergence is not reached due
to the thermodynamic model sensitivity to numerical perturbations. For the computed
case the value of the residus taken as the maximum of |en+1

j − en
j | is equal to 0.0281. The

CFL number (defined by CFL = U∆t/∆x) used for the calculations is equal to 0.95 in
single-phase flows and to 0.6 in two-phase calculations.

6.2 Single-phase flow

The three cases of table 3 have been computed. In order to validate the numerical re-
sults the computed injection pressures have been compared to those measured by Foucaud
[11]. Table 4 shows that the predicted values fit very well with the experimental data.
For each case the differences are very small, less than 0.3 bar. This agreement indicates
that the quasi one-dimensional approach is capable to describe the global pressure drop
along the pipe.

In figure 3 the pressure drop predicted for case 1 is presented. More than 80 % of the
pressure decrease is located at the area change. Upstream of the area change, the pressure
decreases smoothly due to friction. For the temperatures considered, the saturation pres-
sure of hydrazine is around 20 mbar. Comparisons between the calculated pressure and
the saturation pressure show that conditions for vaporization are reached near the exit.
Figure 4 shows a zoom of the pressure distribution near the exit. The pressure reaches
the saturation pressure at 0.3 mm from the outlet. This indicates that the liquid flashing
is located at the exit, therefore the quantity of vapour inside the pipe should be small
and the approach selected for the two-phase modelling valid.

In figure 5 the momentum distribution along the pipe is plotted for a tank pressure of
6 bar. For the two other test cases this quantity has exactly the same behaviour. The
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Figure 3: Pressure distribution (in bar) along the pipe for the case 1 (tank pressure of 6 bar): o o o

calculated pressure; * * * saturation pressure
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Figure 4: Zoom of the pressure distribution near the exit for the case 1: o o o calculated pressure; * * *

saturation pressure
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Figure 5: Momentum distribution along the pipe for case 1 (the momentum is non-dimensionalised by
the inlet momentum, here mo is equal to mleft)

momentum is constant upstream of the area change. In absence of phase change the fluid
density remains nearly constant and as the cross-section area does not change there is no
reason for momentum variations. This correspond to the conservation of the mass-flow-
rate. This shows that the numerical scheme is applicable to the prediction of flows in
geometries characterized by abrupt area changes.

The distribution of the internal energy for the case 3 is plotted in figure 6. There
is a linear evolution upstream of the area change. Then, an increase occurs due to the
singular term for the friction effects at the section change. This term corresponds to the
multi-dimensional friction effects. After the increase of the internal energy the first point
upstream of the area change is isolated. The correction term for the friction effects at
the area change (see Reynier et al [13]) is distributed over the two adjacent pressure cells.
This explains the presence of this point. Downstream of this location, the growth of the
internal energy is linear due to a constant friction in the restricted part of the geometry.

The numerical results put in evidence a quasi constant density along the pipe. For the
three test cases, the density decreases by less than 0.2 %. This result is in agreement
with the thermodynamic which considers the liquid as a nearly incompressible fluid. The
numerical results for the temperature like those for the density do not show large variations
of this quantity. From the inlet to the outlet the variation of the temperature is lower
than 0.2 K therefore the temperature can be considered as quasi constant along the pipe.

6.3 Two-phase flow

The case 1 of table 3 has been calculated with and without thermodynamic equilibrium.
It is for this case that the saturation pressure is reached the farthest from the outlet. The
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Figure 6: Distribution of the internal energy along the pipe for the case 3

calculations at equilibrium did not allow the prediction of a two-phase flow. This seems
to be due to a high sensitivity of the thermodynamic model to numerical perturbations.
Therefore, non-equilibrium calculations have been performed without using the second
step of the pressure correction (this mean the Gauss-Seidel iteratiion coupled with a
dichotomy). This non-equilibrium approach permits the predictions of a two-phase flow
at the end of the pipe.

The axial distribution of the dryness fraction plotted in figure 7 indicates that the
liquid flashing is located at the exit. As a consequence the quantity of vapour predicted
inside the pipe is small. The numerical results indicate a void fraction equal to 0.08 at
the exit. This is the limit of the validity of the mixture model. This result has to be
compared with the experiments performed by Foucaud [11]. They establish the presence
of some bubbles at the outlet but without much vaporization of the liquid. In the present
study it seems that the numerical predictions overestimate the void fraction inside the
pipe. This can be due to the not complete convergence of the calculation. Another way
to improve the reliability of the simulations would be the use of a function for θχ has done
by Downar-Zapolski [18] and Veneau [3].

The axial distribution of the density (see figure 8) shows, like for the single-phase
simulations, a quasi constant density along the main part of pipe. Then, as soon as the
vaporization process begins the density drops very rapidly. At the end of the pipe the
density has decreased by 5 % which is much more than for the single-phase calculations.

Figure 9 represents the distribution of the temperature along the pipe. The results show
a quasi constant temperature increasing slowly in the first part of the geometry. Then,
some variations occurs at the end of the pipe. The behaviour of the temperature for the
two-phase computations is close to the one observed in single-phase flows. This show
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Figure 7: Distribution of the dryness fraction along the pipe for the case 1
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Figure 8: Density distribution along the pipe for the case 1
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Figure 9: Temperature distribution along the pipe for the case 1

that even in presence of vaporization (at least for a low dryness fraction) the variations
of temperature are not important (less than 0.5 K here). This indicates that a freezing
of the liquid inside the pipe is avoided for the tank pressure range considered. Therefore,
with the clogging of the pipe with the used final device should be not possible.

7 Conclusions

The developed method has been successfully applied to the prediction of liquid depres-
surization. The numerical scheme uses a staggered and a pressure correction. This al-
gorithm has been coupled to a nonlinear two-phase thermodynamic model for hydrazine.
This approach has been validated using experimental data and has simulated the be-
haviour of hydrazine during strong depressurization.

The single-phase predictions in the last part of the SCA device shows that conditions
for vaporization are encountered inside the outlet. Two-phase predictions put in evidence
that a small part of hydrazine should be vapourized. This result agrees with experimental
investigations which show the presence of some bubbles at the outlet but without a lot of
liquid vaporization. It seems that the predictions overestimate the void fraction inside the
pipe. This could be due to a high sensitivity of the thermodinamic model to numerical
perturbations or to the use of a constant instead of a function for the relaxation term.
The numerical results do not put in evidence strong variations of temperature at the pipe
exit. Therefore, the risk of clogging during the venting of hydrazine into space is avoided
for the range of tank pressure considered.

The authors are grateful to Drs. Eric Hervieu and Hervé Lemonnier from the Centre
d’Etudes Nucléaires de Grenoble for their valuable discussions and contributions on liquid
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