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Abstract. In this paper the discretisation of the 2D Euler equations on unstructured
grids is discussed. A staggered positioning of the variables is used, which means that the
scalar variables are located at the cell centers whereas the normal component of the vector
variables are positioned at the midpoints of the cell faces. Cell face fluxes are obtained
from simple upwind and central approximations. The Euler equations are solved in a
decoupled way. Numerical results for 1D Riemann problems show that our scheme selects
the correct entropy solution. A flow in a channel with a bump is computed to show the
capability of the method to compute 2D subsonic flows.
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1 MOTIVATION TO WORK WITH STAGGERED, UNSTRUCTURED
GRIDS

In industrial applications, flow computations usually have to be performed in domains
of complicated shape. Experience has shown that the generation of unstructured grids is
less man-hour consuming than the generation of structured grids. A second advantage of
the use of unstructured grids is the relative ease of local refinement. Local (or adaptive)
refinement, i.e. refining the grid in the regions where it is necessary, is very difficult on
structured grids. As a consequence, at this moment much effort is devoted by industries
and universities to develop computing technology using unstructured grids.

In e.g. aeronautics the main focus lies on the development of methods for computing
compressible flows. As far as we know, all these methods use a colocated placement of the
unknowns in the grid. In many other application fields such as automotive and chemical
industries, flows can be considered as incompressible. Using a colocated discretisation
and a straightforward discretisation, however, leads to odd-even decoupling of the pres-
sure. To remedy this, artificial stabilizing measures have to be taken. The most popular
method that has evolved is the pressure-weighted interpolation of Rhie and Chow [1].
This difficulty does not arise in the compressible case, which is why colocated schemes
are prevalent in this area. By pressure-weighted interpolation artificial pressure diffusion
is introduced in the mass conservation law. Circumventing this problem of spurious os-
cillations is possible by employing a staggered placement of the variables, which is why
staggered schemes are often used for computing incompressible flows.

Staggered schemes only recently have caught on compressible flows, see e.g. [2] and [3]
and references quoted there. This gives a unified method by which both compressible and
incompressible regions are computed accurately and efficiently. However, in these refer-
ences structured grids were used. This present work is a contribution to the development
of unstructured grid methods, where we have decided to use a staggered positioning of
the variables.

Section 2 focuses on the staggered discretisation of the Euler equations on 2D unstruc-
tured grids. Numerical results for both 1D and 2D problems are given in Section 3. The
conclusions are summarized in Section 4.

2 DISCRETISATION OF THE EULER EQUATIONS ON A STAGGERED,
UNSTRUCTURED 2D GRID

In this section the discretisation of the Euler equations on a 2D staggered and un-
structured grid is discussed. First, the 2D Euler equations, in their conservative form, are
summarized in Section 2.1. The solution procedure, together with the time integration
method, is explained in Section 2.2. The staggered positioning of the variables in the grid
is given in Section 2.3. The spatial discretisation of the Euler equations, for which the
finite volume method is employed, is the subject of Sections 2.4 to 2.7.
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2.1 The 2D Euler equations

The 2D Euler equations are given by:

∂ρ

∂t
+∇ · uρ = 0, (1)

∂ρE

∂t
+∇ · u(ρH) = 0, (2)

∂mα

∂t
+ (uβmα),β = −p,α (3)

where (mx, my) = m and (ux, uy) = u are the 2D momentum and velocity vectors. For
the momentum equation (3) the Einstein summation-convention is used, so mα

,α = ∇ ·m.
The other variables have their usual meaning, and the familiar relations

m = ρu, (4)

H = h+
1

2
(u · u), (5)

E = e+
1

2
(u · u), (6)

h = γe. (7)

will be used. The system of equations is closed by the pressure equation (the equation
of state):

p =
γ − 1

γ

[
ρH − 1

2
ρ(u · u)

]
. (8)

2.2 Solution procedure

In contrast with what is customary, we do not make explicit use of the fact that the
Euler equations form a coupled system of equations. Instead, we solve for the primary
variables one after another, i.e. the Euler equations are considered as evolution equations
for these variables. As the primary variables we take m, ρ and ρH . By using first order
upwind or central interpolations for the convection term in each of these equations, a very
simple scheme results. Note that there is no need to determine numerical fluxes at control
volume boundaries by flux-splitting or approximate Riemann solvers. Although such a
decoupled approach is common in the fields of incompressible CFD and shallow-water
equations, it is rarely seen in the field of compressible CFD. The most conspicuous one
is the Jameson-Schmidt-Turkel scheme introduced in [4]. As mentioned before, another
major difference with common practice in compressible CFD is that we use a staggered
positioning of the variables.
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Figure 1: Staggered grid

For the time integration, an explicit or implicit Euler scheme is employed. Supposing
that we have the solution vectors at time-level n at our disposal and that the implicit
Euler scheme is used, the solution at the next time-level is determined by the following
method:

1. mn+1 follows from the discretised momentum equation, where use is made of mn,
un and pn;

2. ρn+1 follows from the discretised continuity equation, where use is made of ρn and
mn+1;

3. (ρH)n+1 follows from the discretised energy equation, where use is made of (ρH)n,
mn+1 and ρn+1;

4. the pressure follows from the equation of state.

Since a time-marching scheme (without preconditioning of the time derivative) is used,
both stationary and non-stationary problems can be considered. This will be illustrated
with the numerical experiments as shown in Section 3. In each of the first three stages,
a linear system has to be solved. This is done by a Krylov subspace iterative method
(GMRES), preconditioned by ILU.

2.3 Staggered placement of unknowns

We consider only 2D grids consisting of triangles. In Figure 1 the employed staggered
placement of variables in the grid is shown. At the cell centroids the scalar variables
are located. The projected momentum m, i.e. the component of the momentum vector
parallel to the normal of the cell face, is stored at the midpoint of each face. This
placement of the variables is similar to the classic staggered scheme on structured grids
with quadrilateral cells as introduced by Harlow and Welch [5] and which is used by our
group in, for example, [2], [6] and [3].

At every face e there are two normalized normal vectors ne, one pointing in the opposite
direction of the other. By some unambiguous procedure we select at each face one of these
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Figure 2: The control volume for the scalar variable in cell i is shaded, and 1, 2 and 3 indicate its faces.
The adjacent cells are labeled j, o and r

which will be called the unique normal vector Ne. Since ne points either in the same or
in the opposite direction of Ne, i.e. (ne · Ne) = ±1, we have

Ne = (ne · Ne)ne; ne = (ne · Ne)Ne. (9)

These identities will be used frequently.

2.4 Continuity equation: discretisation on a 2D unstructured grid

The continuity equation is considered as an evolution equation for the density. Inte-
grating (1) over its control volume Ti, for which we choose triangle i itself, see Figure 2,
is done as follows:

∫
Ti

∂ρ

∂t
dx +

∫
Ti

∇ · uρ dx =
d

dt

∫
Ti

ρ dx +
∮

∂Ti

(u · n)ρ dΓ ≈

≈ Ωi
ρn+1

i − ρn
i

∆t
+

3∑
e=1

ueρel̄e = 0, (10)

with n the outwards normal at the boundary ∂Ti of the control volume. Superscripts n
and n+1 refer to the time level, and ∆t is the time step. The area of the triangle equals
Ωi, the summation over e is over the three faces of cell i, the normal velocity is given by
ue = (ue · Ne) and

l̄e = le(ne · Ne). (11)

with le the length of the face. Notice that the velocity ue appearing in the convection
term is already located at the cell face, hence no interpolation of the velocity is required.
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The velocity ue is computed using the momentum at the new time level and the velocity at
the old time level, i.e. ue = mn+1

e /ρn
e,av, where ρe,av follows from a weighted interpolation.

For example, with the situation as sketched in Figure 2 we get for ρ1,av

ρ1,av =
Ωi

Ωi + Ωj
ρj +

Ωj

Ωi + Ωj
ρi. (12)

Central interpolations give for the convected quantity ρ at face 1

ρ1 =
1

2
(ρi + ρj), (13)

and similar expressions hold for ρ2 and ρ3. Remark that we use a factor 1/2 in (13) and
not, for example, a weighted averaging. By doing this the symmetry of the underlying
operator is preserved, i.e. the convective derivative should be approximated by a skew-
symmetric operator as was demonstrated by Veldman and Rinzema [7]. The first order
upwind approximation for ρ1 is

ρ1 =

{
ρi if (u1 · n1) = u1(n1 · N1) > 0, i.e. a flow from i to j,
ρj if (u1 · n1) = u1(n1 · N1) < 0, i.e. a flow from j to i,

(14)

and similar approximations hold for ρ2 and ρ3.

2.5 Energy equation: discretisation on a 2D unstructured grid

The energy equation is considered as an evolution equation for ρH . A completely
similar derivation, on the same control volume, as given in the previous section leads to
a discretised energy equation of the form

Ωi
(ρE)n+1

i − (ρE)ni
∆t

+
∑
e

ue(ρH)el̄e = 0. (15)

The velocity ue is computed from the momentum and density at the new time level
using the method as described in the previous section. The convected energy term ρH is
treated completely similar as the convected density term in the continuity equation, cf.
equations (13) and (14). In order to be able to solve (15) for primary variable (ρH)n+1

i ,
the relation

(ρE)i =
1

γ
(ρH)i +

γ − 1

2γ
ρi(u · u)i, (16)

which can be derived from (5), (6) and (7), is used. The computation of the term
ρi(u · u)i will be discussed in Section 2.7.
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Figure 3: The control volume for the normal momentum component at face i is shaded. The numbers
denote the cells, while the faces of the stencil are indicated by letters

2.6 Momentum equation: discretisation on a 2D unstructured grid

As said before, at all faces in the grid the momentum component parallel to the normal
vector at this face is stored. This is different from the usual approach, in which at each
gridpoint one stores and solves for both the x- and y-component of the momentum vector.
Another aspect that is different from common practice in compressible CFD, although
more recent schemes like the AUSM scheme [8] and Jameson’s CUSP scheme [9], [10]
utilize it as well, is the splitting of the flux in a separate convection and pressure term.

We choose the control volume Ti for the normal momentum component mi = (mi ·Ni)
at face i to consist of the two triangles adjacent to this face, see Figure 3.

Obtaining an equation for mi is done by projection of (3) on Nα
i and integration over

Ti. With Ne the unique normal at face e, and ne the outwards pointing normal with
respect to Ti, the convection term is handled as follows:

∫
Ti

(uβmαNα
i ),β dx =

∫
Ti

∇ · [u(m · Ni)] dx =
∮

∂Ti

(u · n)(m · Ni) dΓ ≈
≈ ∑

e

(ue · ne)(me · Ni)le =
∑
e

ue(me · Ni)l̄e (17)

where we used the Gauss theorem and relations (9) and (11). The summation is over
the faces e ∈ {k, l, o, j}. This results in the following discretised momentum equation:

Ωi
mn+1

i −mn
i

∆t
+

∑
e

ue(me · Ni)l̄e = −Ωi(∇p · N)i, (18)

with Ωi = (Ω1 + Ω2) the area of the control volume.
Picard linearisation of the convection term is used, which means that ue is computed

using the momentum and velocity at the old time level. For the discretisation of the

7



Ivo Wenneker, Guus Segal and Piet Wesseling

convection term the so-called reconstruction procedure is introduced. With tk the tan-
gential vector at face k, there exists unique solutions with respect to the reconstruction
coefficients ξ for the relations

tk = ξiNi + ξjNj and tk = ξvNv + ξwNw. (19)

The momentum vector at face k can be decomposed as

mk = mkNk + m̃ktk. (20)

where m̃k = (mk · tk) is the tangential momentum component and mk denotes, as
usual, the normal momentum component. Hence we can write

mk · Ni = mk(Nk · Ni) + m̃k(tk · Ni). (21)

The tangential momentum component m̃k can be deduced from a central or first order
upwind interpolation. Considering a first order upwind interpolation and assuming that
the flow is from cell 1 to 3, the tangential momentum follows from

m̃k = mk · tk = mk · (ξiNi + ξjNj) ≈ ξimi + ξjmj (22)

and, if the flow moves in the opposite direction, this term is evaluated from

m̃k ≈ ξvmv + ξwmw. (23)

In the case of central interpolation, the tangential momentum component follows from

m̃k ≈ 1

2
(ξimi + ξjmj + ξvmv + ξwmw). (24)

The contributions from the other faces is computed similarly.
For the numerical evaluation of the projected pressure gradient (∇p · N)i, the path-

integral formulation as discussed in [11] is used. This formulation is based on the idea
that first an approximation of the gradient vector (∇p)i is made, after which the inner
product with Ni is taken. The heart of the path-integral formulation is formed by the
integral identity

pb − pa =
∫ b

a
∇p · dx. (25)
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Discretisation of this expression leads to

pb − pa ≈ (∇p)ab · (xb − xa), (26)

where point ab is assumed to be located somewhere between xa and xb. For linear
pressure fields of the form p = p0 + pxx + pyy the ’≈’-sign can be replaced by a ’=’-sign
for every point in the domain, hence the method will be exact for linear pressure fields.
We will show how to proceed from (26) to arrive at an approximation for (∇p · N)i.

Application of (26) on the path from cell-center 1 to cell-center 2, see Figure 3, gives

p2 − p1 ≈ (∇p)i · (x2 − x1), (27)

where we note that in smooth grids the midpoint of face i is located in the vicinity of
the line between x1 and x2. Equation (27) alone is not sufficient to obtain (∇p)i; for this
one additional relation is required. Using (26) on the path from 5 to 3 leads to

p3 − p5 ≈ (∇p)i · (x3 − x5), (28)

and, similarly,

p4 − p6 ≈ (∇p)i · (x4 − x6). (29)

Combination of these two expressions leads to

p3 − p6 + p4 − p5 ≈ ∇pi · (x3 − x6 + x4 − x5). (30)

Solution of the system (27)–(30) results in a discretisation of (∇p)i. The inner product
with Ni is easily taken, leading to an expression of the form

(∇p · N)i =
6∑

j=1

γjpj. (31)

With xj = (xj , yj), with Ni = (Nx, Ny) and defining

a11 = x2 − x1; a12 = y2 − y1;

a21 = x3 − x6 + x4 − x5; a22 = y3 − y6 + y4 − y5,

the gradient coefficients γj follow from
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γ1 = −γ2 =
a21Ny − a22Nx

a11a22 − a12a21

,

γ3 = γ4 = −γ5 = −γ6 =
a11Ny − a12Nx

a11a22 − a12a21
. (32)

A special situation occurs when vector (x2 − x1) is parallel to Ni. The path-integral
method then reduces to:

(∇p · N)i =
p2 − p1

|x2 − x1| . (33)

When one or more cells in the stencil of Figure 3 are absent, as occurs in the vicinity
of a boundary, the corresponding paths in (28)–(29) have to be modified.

2.7 Pressure equation: discretisation on a 2D unstructured grid

The discretised equation of state reads:

pi =
γ − 1

γ

[
(ρH)i − 1

2
ρi(u · u)i

]
. (34)

The computation of the kinetic energy term is not trivial since the velocity is not
located at cell-center i. Rewriting the kinetic energy in terms of primary variables gives

1

2
ρi(u · u)i = 1

2

(m · m)i
ρi

, (35)

where the difficulty now lies in finding an approximation for (m ·m)i. In order to com-
pute this term, we will restrict ourselves to the use of the normal momentum components
at the three faces of cell i. With mi the momentum vector at cell-center i, we know that
me = (me · Ne) ≈ (mi · Ne) holds for its three faces e. We choose mi such that the least
squares functional

F(mi) =
∑
e

l2e [me − (mi · Ne)]
2 (36)

is minimal.

3 NUMERICAL RESULTS

In this section we will present numerical results obtained with the staggered method as
discussed above. In Section 3.1 we will show that the decoupling of the equations does not
prevent the scheme from converging to the entropy solution for 1D Riemann problems.
In Section 3.2 results for a subsonic 2D problem, namely a channel with bump, will be
discussed.
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Figure 4: Test case of Lax. Comparison of the exact solution with the staggered first order upwind results
for t = 0.140 and λ = 0.12

3.1 Numerical results for 1D Riemann problems

As already mentioned in Section 2.2, it is customary to consider the Euler equations
as a coupled system. Therefore one might wonder whether convergence to the entropy
solution is ensured for a scheme like ours. As for most schemes, no convergence proof is
available, hence we try to validate it by doing numerical experiments. For an important
1D standard test case for compressible codes, namely the Riemann problem, we will
compare the numerical solution obtained using the 1D staggered method with the exact
solution. The Riemann problem consists of solving the 1D Euler equations for a special
kind of initial conditions, namely a constant left state for x < xd and a constant right
state for x > xd.

To this aim we have discretised the 1D Euler equations on a 1D equidistant stag-
gered grid and used an explicit Euler time integration scheme together with the solution
algorithm discussed in Section 2.2.

In the results given here we have put the location of the initial discontinuity at xd = 0.5
and the number of grid cells is set to 50. A first order upwind scheme is used for all three
conservation laws.

Frequently used is the test case of Lax [12], with initial state

Ul = [ul, pl, ρl] = [0.698, 3.528, 0.445] Ur = [ur, pr, ρr] = [0.0, 0.571, 0.5]. (37)

In Figure 4 the results of the staggered scheme are compared with the exact solution
at t = 0.140. The continuous line represents the analytical solution, whereas the small
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Figure 5: Mach 3 test case. Comparison of the exact solution with the staggered first order upwind
results for t = 0.068 and λ = 0.13

circles are the solution computed using the staggered scheme. The main difficulties in
computing the correct solution to this test case are the contact discontinuity and the
strong shock, which are relatively close to each other. We see that our scheme converges
to the correct weak solution. The contact discontinuity is, as is common for first order
upwind methods, smeared due to divergence of the characteristics. Since characteristics
converge into shocks, this produces a steepening effect resulting in a crisp shock resolution.
Due to the use of relatively few grid points and the small distance between the contact
discontinuity and the shock, the density and momentum do not reach the analytical
maximum value. Increasing the number of grid points enhances this (results not shown).
Using the eye-ball norm the (explicit) scheme turns out to be stable for a CFL-number
σ = max(|u|+ a)∆t

∆x
= max(|u|+ a)λ smaller than approximately 0.5.

In the preceding test case, the flow remained subsonic. Supersonic flow may bring
additional numerical difficulties. In the supersonic flow problem posed by Arora and
Roe [13], the Mach number rises to a value of approximately three. This test case is
a notorious one. For this problem the Roe scheme [14] violates the entropy condition.
The sonic entropy fix, introduced by Harten [15], is necessary to cure this problem. The
price one has to pay is the appearance of a sonic glitch. Also the results from the Osher
scheme, the Van Leer scheme and the AUSM scheme show a sonic glitch, although for
these schemes no entropy fix is necessary. The sonic glitches in the Van Leer and AUSM
scheme can be seen at pages 392 – 395 of Laney [16]. The initial left and right state are
defined for the Mach 3 test case as:
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Ul = [ul, pl, ρl] = [0.92, 10.333, 3.857] Ur = [ur, pr, ρr] = [3.55, 1.0, 1.0]. (38)

The exact solution together with the numerical one is shown in Figure 5. One observes
that the flow is dominated by a huge expansion fan followed by a contact discontinuity
and a small shock. We observe that our method converges to the entropy solution and
that no sonic glitch has appeared. Using the eyeball-norm the (explicit) scheme turns out
to be stable for a CFL-number smaller than approximately 0.6.

3.2 Numerical results for a channel with bump

The problem of the flow in a channel with a 10 % circular arc bump was chosen to
evaluate the code for subsonic steady state modeling. The grid used is shown in Figure
6. The boundaries of the channel are divided into 72 × 24 nodal points, leading to a grid
consisting of 3982 cells, 6069 faces and 2088 vertices. At the upper and lower boundaries
of the wall, the solid-wall boundary condition is applied. At the inflow boundary, on the
left side, the Mach number is put to 0.5. An implicit Euler time integration scheme is
used. For all equations the first order upwind scheme is used.

The convergence behaviour of the density residual, in the L2 norm, is shown in Figure
7.

For inviscid and subsonic flow the Mach number contour plot, shown in Figure 8, should
be symmetric. The asymmetry is due to the numerical diffusion introduced by the first
order upwind scheme. A similar asymmetry can be observed in the first order Godunov
method results that Eidelman et al. [17] obtained on a 99 × 33 grid. The Mach number
at the lower surface near the outflow in our results is 0.475, whereas the Mach number is
0.425 at the same location in the results of Eidelman.

The computation is repeated using a 72 × 24 structured grid with the structured grid
method described in [2]. Also in this computation a first order upwind scheme is used.
The Mach number distribution at the upper and lower surface of the channel is compared
for the structured and unstructured method in Figure 9. We clearly observe that the
results obtained on the unstructured grid contain more numerical diffusion than the ones
obtained on a structured grid.
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Figure 6: Grid for the channel with bump
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4 CONCLUSIONS

In this paper, the discretisation of the 2D Euler equations on an unstructured grid is
discussed. For the positioning of the variables, a staggered location is adopted. The scalar
variables are located at the cell centers, whereas the normal momentum components are
positioned at the cell faces. The Euler equations are solved in a decoupled way such that
central or first order upwind interpolations suffice in each of the equations. This results in
a scheme that is much simpler than the prevailing schemes for the Euler equations, since
only central and/or upwind differences are required, thereby avoiding the necessity to
determine numerical fluxes at control volume boundaries by flux-splitting or approximate
Riemann solvers.

A time stepping algorithm is used such that both stationary as instationary problems
can be solved.

Numerical solutions to 1D Riemann problems show that our staggered first order up-
wind scheme selects the correct entropy solution. A flow through a channel with a bump
is computed to show the capability of the method to compute 2D subsonic flows.
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