4, Steady Rolling with creepage and spin: asymptotic theories.

In this chapter and the next we will treat the problem of the
transmission of tangential forces during rolling.
Consider two bodies of revolution which are pressed together by

a normal force N, and which roll steadily over each other, see Fig, 6.
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Fig. 6. Two bodies rolling over each other,

Owing to the normal force, a contact area is formed along which the
bodies touch., If the conformity of the bodies is not too strong, and
the changes of curvature are small, the contact area and the normal
pressure transmitted across it are given by the HERTZ theory which

we treated in detail in 3.221. According to this theory, the contact

area is an ellipse with semi-axes a and b,

E = {x,y,2: (x/2)2-(y/v)? < 1, z=0}, (4.1)
while the distribution of normal stress is given by
= 2N 1 Z_ 2
Z Smab /1 (X/a) (y/b) . (].1.,2)

The formulas by means of which the semi-axes & and b can be computed
. + 4+ - - ] ]

from N and from the rafdii of curvature Rx’ Ry’ Rx’ Ry are given in

3.221. When the bodies are rolling steadily, their parallel circles

are almogt parallel, so that according to 3.221 the axes of the
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contact ellipse are very nearly oriented along the rolling direction
and perpendicular to it. So, if we take the axial direction of the
ellipse as x and y axes, as we did throughout this work, the rolling
direction very nearly coincides with one of these, so that we can
assume without loss of generality that it is the positive x-axis,

In addition to the normal load, a tangential force can be
transmitted from one body to the other, owing to friction. When the
tangential load is below its maximal COULOMB velue, that is,
|(Fx,Fy)|<uN, u: coeff. of friction, slip occurs in part of the
contact area called the area of slip Eg, while in the remainder of
the contact ares, the locked area or area of adhesion Eh’ there is

no relative velocity of one body with respect to the other., This is a

consequence of the fact that the elastic deformation of the bodies
modifies the veloeity pattern near the contact area. In the area of
slip Eg, work is done by friction; macroscopically, this results in
& difference of the overall circumferential velocity of the bodies.
This difference 1s determined by means of the quantities called

creepage and spin, which are defined in (4.14).

In the present chapter, we first set up the boundary conditions
both for steady and unsteady rolling (sec. 4.1). In sec. 4.2, we
consider the various symmetries present in the problem, and we
introdice a number of dimensionless parameters. In sec. 4.3 we
generalize the theory of DE PATER [1] and KAIKER [1] on DE PATER's
asymptotic case of infinitesimal creepage and spin, to elliptic
contact areas, This is an application of the load-displacement
equations of ch. 2. In 4.l we present the theory of IUTZ [1,2,3] and
WERNITZ [1,2] on LUTZ's asymptotic case of infinite creepage and

spin, in a slightly generalized form.

4,1, Boundary conditions.,

For the problem of elasticity and the solution of the boundary
value problem, the bodies will be approximated by half-spaces, The
boundary conditions are set up for the finite bodies, but we will
already utilize the coordinate system of the half-spaces,

A cartesian coordinate system (0; x,y,z) is introduced in the

following manner. The plane z=0 is the boundary of the half-spaces,
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z>0 is the lower half-space. The hodies touch each other along an
elliptical contact area E, see 3.221, We take the centre of the
ellipse as origin, and the axes of the ellipse as the coordinate axes

x and ¥y,
E = {x,7,2: (x/a)2+(y/b)? < 1, z=0}. (L.3)
t

The positive x-axis coincides approximately with the rolling
direction, which is always the case when two bodies of revelution
roll steadily over each other, as we pointed out in sec, L.

The material of the bodies flows through this coordinate system.
We take the undeformed state so, that at infinity the deformed and
the undeformed state coincide, in other terms, the elastic displace-
ment Ei = (ut,vtswt) vanishes at infinity. In this undeformed state,
the bodies intersect. This intersection is countered by the elastic
deformation, as a consequence of which the contact area forms.
According to 3,221, only the difference w = wiew™ of the zZ—component
of the displacement is involved in the formation of the contact area.
As we have seen in (2.15c¢c) and (2.10a), this difference is unaffected
by the tangential tractions acting in the contact area, when the
elastic constants of the bodies are the same. That means that contact
area and normal pressure can be calculated as if the tangential
tractions were absent. In the case that the elastic constants are not
the same, we assume that the contact area E and the normal pressure 2
are not significantly altered by the tangential tractions (X,Y), see
sec, 2.1,

Regarding the tangential tractions, we only take the effect of
dry friction into account, This means that the contact area is
divided into a region of slip Eg where the tangential traction
](X,Y)|=uZ, and is directed along the local slip, and a locked region
Eh where the slip vanishes, and |(X,Y)|suZ. We assume that the
coefficient of friction is independent of the slip, in particular,
that the coefficient of friction which prevails in the locked region
is the same as that in the slip region. )

We observe that the slip is of central importance in the
boundary conditions, and we proceed to find an expression for it.

Consider a particle of the bodies which lies at a certain time t in
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the point x = (x,y,z) in the undeformed state. The position in the
deformed state is x + Ei = (x+u®, y+v¥, z+w®), The veloeity of the
particle is found by differentiation with respect to time. In the

undeformed state the wvelocity is

dx
=_:.=(dx &y dz), (4. 4)

Wewmtl®oa @
and in the deformed state,
dx du du
LR L Rt e (.5

Iet the superscript ¥ refer to the lower body, and the superscript ~
to the upper body. We define the slip as the velocity of the upper
bedy with respect to the lower body in the deformed state. It is:

C ey A=)
Vix,y,0)= Vg = Vo = (¥, = V )+ =+

(4.6)
- + - 9 ffam + + -
+ 3({Yy + leerad) (07 - w)+ 3({Y] - W Fagrad) ()

. + - ,
Since lgrad(E +u )|<< 1, we may neglect the last term of the right
hand side of (4.6) with respect to the first term. This gives

ou
V3,00 (Vi-v)- 57 - 1V} evad)y, (5.7)

w=yu -w,
The z-component of Y(x,y,o) vanishes in the half-space approximation;
the (x,y) components of V(x,y,0) depend only on the differences
u;u+-u-, v=v+-v? of the (x,y) components of the elastic displacement
at z=0. We saw in (2.11a,b), and (2.10a) that this difference is
unaffected by the normel pressure Z, when the elastic displacements
of both bodies are the same. We can then calculate the tangential
tractions and the difference of the (x,y) components of the elastic
displacement at the contact area, as if the normal pressure were

ebsent. We will do this throughout this work. If we use the results

50 obtained also in the cese of different elastic constants by using
the combined modulus of rigidity G and POISSON's ratio ¢ of eq.
(2.10), it should be kept in mind that we mske an error. This error
is not necessarily small, see sec. 2.1.

We can regard the velocity of the undeformed bodies in the half-
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space approximation as & velocity at the origin and a rotation about
the z-axis:

+ + +

a&x & ) gt S &y +
at  dt ,o 8. 3% at Io + 0%,
] (4.8)
= S S T S A < A -
T T o~ WY T o + 9

We define the rolling velocity \_/r, with magnitude V as the opposite

of the mean velocity at the origin,

+ - + -
_ a(réx dax d =
Le-illgrwm e [%+E%—]o)’ V=g (k.9)

In the steady rolling of two bodies of revolution over each other,
the rolling velocity makes a small angle § with the positive x-—axis.

We confine ourselves to this case of small 6, Then, we have:
V.o = (Vyev), (k.10)

The creepage v = (ux,uy] is defined as follows:

- + - +
o4 &x  _ax N RO A
el mm ) o "y"v(dt -3 ) o (he11)
We write for the rotations Q';’ and
+ - ’
2, = 1o-0)v, 2, = 1(e+9)V. {h,12)

¢ is called the spin, and the constant ¢ has no special name. lNote
that ¢ and ¢ are not dimensionless, but have the dimension of

(length)'1. The veloeity (4.8) of the undeformed bodies becomes:

+ +
dx
T = - Vo o mE(em0)yV, S = -6V - B +d(0-0)xvs

- - (h‘u13)
ax ay
o= - Vo BVu ~d(0ne)yV, g = -6V + %Vvy+%(d>+¢)xv, :

and
-+ -+

- _gtoralx-x) aly -y ).
N A e LR U uy+¢x), (L.1ka)
Vo y: = -V(o+oy, 26-0x). (4, 14p)

- . e .
(\_/u + \_fu) is multiplied in (L.T) by a term of order grad u. So we
may neglect § with respect to 1 when we insert (4.14b) in (L.7). U=
also assume that the angle between the rolling sxes of the upper and

the lower body and the z-axis is not small, that is, the rolling
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axes are not almost vertical. In that case, the horizontal component |
of rotation Qx is larger or has the same order of magnitude as QZ, or
¢V, But V = O(pr), where p is the characteristic length of the
bodies, see (3.38). Therefore, ®x and &y are at most of the order of
magnitude x/p, y/p. In the contact area we have that x/p and y/p are
0(&/p), with £ the major semi-axis of the contact ellipse, which is
small with respect to unity when the bodies are counterformal. Hence
we may also neglect the terms ¢y and ¢x when we insert (k.14b) into
(4.7)

[ ¥+ 7] ) = (-2V,0) when inserted in (k.7). (4. 1he)

So, (4.7) becomes

V(x,y,0) = V s(x,y,0) = V[sx,sy,o), s: relative slip (4.15a)
_ 13w,
Sy T VW Tt e
. = ron 18y, v unsteady rolling (4.15D)
b's y Va3t  9x?
= du = LA .
By = VU —tyt 5=, S u téxt = 1 steady rolling. (4.15¢)

The boundary conditions can now be formulated.

Stresses and displacements vanish at infinity; (4.16a)
Z=0o0nz =0, outside E;
3y (4.16p)

= — 2 Z = 3 s .
Z=0 f00/1 {x/a)4={y/v)%, f00= Brapg inside E;
X=Y=0onz =0, outside Ej (4.16¢)
(X,¥)= uG fooﬁ-(x/a)z-(y/b)z(wx,wy) in region of slip Eg,

TR : ot - - =/a2rg?
with p: coeff. of friction, L sx/s, wy sy/s, 5 sx+sy , (4.164)
s given in (k.15).
5, =8, = 0, 1(X,Y)|s uZ in region of adhesion E. (ho16e)

4.2, Considerations of symmetry. New dimensionless parsmeters.

Iet us define

27abG 21abG
' v o E185T .
X TR X, Y 3o Y (4.17a)
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(U;,U&,¢’J = zgiﬁG (ux,uy,¢). (4.17b)

Then it follows from HOOKE's law and from the fact that we neglect
the influence of the normal pressure Z on the displecement differ-

ences u and v, that the displacement differences due to (X',Y') are

27856y v, (4.17c)

(wov') = =555

where (u,v) are the displacement differences due to (X,Y). Hence,

1 3u' | du' _ 2uabG
L o d Ve e u_ _
sx Ux ¢ 7 3t + 5 —§Eh 5.5
' = ulegixe - av' _ 2mabG (4.174)
¥ Y V ot 9x 3pN y.
Clearly,
f = 1 =
Ve T Ve Yy T Wy (4. 17e)
If
$.7') = ¢ /1={x/8)2=-(y/0)2 [w' w! R
(x1,Y") (/@) 2=y /012 (wy,v!) in E (4.18)
S;{ = S;;r =0, |(X',Y!)|5 G /1_(x/a)2_(y/b)2 in Eh,

then it is clear that (L4.16a,c,d,e) are satisfied by (X,Y). So we
have only to solve (4.18) to obtain the solution for any coefficient
of friction and normal load. Also, we have only to consider a single
value of G, further we can choose the unit of length arbitrarily, so
that we have to consider only one contact area with the prescribed
ratio of the axes. In accordance with this, we introduce new
dimensionless parsmeters. We consider £, = Fx/uN, f = Fy/uN,

y

m, = Mz/uNc, c = Yab, (see 3.50). Let F;, F&, and M; be the total

force and torsional couple connected with (X',Y'); then

N

1) L]
f =F /uN = ———3uN F_}E = 3Fx .
X X 2mabG  uN  2ge2g
Fl 3FI
= NG 1Y) NV A AN
£, Fy/uN ZrebG < WV~ prezg (4.19)
M! M
m =M /LINC = .—3& X .i. = L2 .
Z Z 2wabG  uNe onedc

We also introduce new dimensionless parameters for creepage and spin:
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1. %(_1_+1_.+1_.+1—), see (3.38);
P R R R R
M - y . (4.20)
v_p v_p
_ X - X =2 = Ve
3 ue s N ue s X n » C ab.

We express £, n and x in u;, u&, and ¢' of (4.,17b). We make use of
(3.51):

pe X 3w op oo 26 2%,
ue 2n§§G e x 1=0)E "x ? =o)L 7y °* (k.21)
=ie.= 2cy L 2s ! H i i—axi - e
x =2 TT:E§E ¢ Y?:EIE $', s: minor semi-axis of E.

We observe tnat c¢' and s¢' are dimensionless.
In the following, we suppose that (X',¥') and (u',v') satisfy
the boundary conditions (4.183). Let

X(2)= =X! . Y(2)= —Y', (’4.228.)
(2)__ ] (2)_ [ (2)_. ] y
Vp = Vg U= vl o "= -, (4.,22p)
From (4.22a) it follows that the corresponding displacement
differences u(z) and v(g) satisfy
M (4.22¢)

so that it follows from (L4.22b) and (L4.22¢c) that

- (2)_ (@) v )
Sg T "8y 5, S -sy::% W = =Wl wy =

hence the boundary conditions are satisfied by (X

=w' (4,22a)

(2) ,(2) (2) (2
W u ))

with the creepage and spin of (4.,22b). The areas of slip and

adhesion are the same es in the solution (X',Y',u',v'), and we have

that

f = fx(—a,-n,-x)= -fx(Emsx).

X
£, = £, (=8,mn,mx)= £ (£,n,%), (L.22e)
m, = m (=Ey=n,=x)= -m_(£,n,x).
Tet
X(3)(x,y)= ~X' (xX5=7) Y(3)(X.Y)= Y (x,-y). (4.23a)

. Then, according to (2.15a,b),

u(B)(x,y)= ~ut (x,-y), v(3)(x,y)é v (Xy=¥) e (4,23b)

T0.



When

”;(;3)= Vg "53)= Vs 0=, | (4.23¢)
it is easy to see that

2 (302 s (ma), 83 )= 52 (), (4.230)
so that

w}(c3)(x,y)= -WX(X,-Y), W§3)(X,y)= w}',(x,—y). (L.23e)

(3) (3) (

3) 3); -
e Y s oV ) satisfy the boundary

We conclude that (X(
conditions (4,18), with areas of adhesion and slip which are the
mirror images with respect to the x-axis of the Eh and Eg correspond-
ing to (X',Y'). Moreover, it-is easily verified from

[Fx,Fy) = jé (X,Y)axdy, M, = J}{ (xY=yX)dxdy (h.2k)
that

fx(E.ﬂ,X)= -fx(-E,ﬂ.x), fy(gano)()': fy(-gpn,)()p mZ(E,nQX)mZ(—Egn’X)-

(L.23f)

Iet
X(h)(xs‘y)= X' (x,5) Y(h)(xs'y)= ~¥' (x,¥), (4.258)
B L (4.250)

It follows from (2,15a,b) that the corresponding surface displacement

differences
WM 3 = u (mr)s v ) = v =y, (4.25¢)
so thet
Sih)(x,Y) = s;(xs“Y)y Séh)(xny) = —S&(X,—Y), (k.254)
= wih)(x,y) = w;(x,-y), wéh)(x,y) = —w&(x,—y), (L.25e)

So the system (X(h),Y(h),u(u),v(h)) satisfies the boundary conditions
(4.18) for the creepage and spin as given in (4.25b), and with
locked area and slip area which are the mirror image with respect to
the x-axis of the E and Eg corresponding to (X',Y',u',v'). Again it
is readily verified from (4.25a) and (4.2k4) that
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£ (&n,x) = £ (£,=n,-x),
fy(E,n,x) = —fy(E,-n,-x). (L.257)
m, (&,n,x) = -m_(E,-n,-x).

As a corrollary of (4.23) we have

£E=0=X"(x,y) = X(3)(X,y) = =X'(x,-y),
Y (x,y) = Y(S)(x,y) = Y'(x,-y),
s)(x,y) = 5(3)(x,y) = =51 (x,=y),
S§(X»Y) = 5(3)(X,Y) = Si(x,—y), S (h.26)
fx(O,n,x) = 0,
Eh and Eg symmetric with respect
to the x-axis.

We see from (4.26) that when £ = 0, traction and slip are mirror
antisymmetric about the x-axis,

As a corrollary of (L.25) we have
n=x = 0=3X"(x,y) = X(h)(x,y)

X'(xs‘y)p

Y' (x,y) = Y(h)(x,y) = -Y'(x,=y),
s;(x,y) = Siu)(ng) = Séh)(x:'y)s
51 (x,7) = s§“)<x.y> - -sf,“%x,—y), > (4.27)

fy(Esoyo) = mZ(E,O,O) = 0,

Eh and Eg symnetric with respect

to the x-axis., )

We see from (4,27) that when n = x = 0, traction and slip are mirror
symmetric about the x-axis.
We sumarize (4.22e), (4.23f), and (L4,.25F):

fx(E,n,x)= —fx(—é,n,x)= fx(gy—n)‘X)= 'fx('gs'"s'X);
£, (&n,x)= £, (=E:n,x)= =L, (Eymny=x)= ~f(=Eymn,-x), (4,28)
mz(gsHQX)= mz(-E,n,x)= -mZ(E,-n,—x)= -mz(-E,-n;=X)-

Finally, it should be observed that the method used here for

symmetries about the x-axis cannot be used for symmetries about the
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y-axis., To see this, one might propose the following relstionship:

X(S)(X,Y) = =X'"(-x,¥), Y(S)(x’y) = Y(s)('xty)'
Then indeed
0 (2,5) = —u' (o), v (x,y) = v (x,),

but
2ul®) (x,3) - ¢ ou'(-x,y) ov'%) (x,5) _ L av'(-x,y)
ax

X ’ ax 3x

]

(5) (5,

so that the signs of (sl(f), s}(rS)) do not match those of (X

4.3, The limiting case of infinitesimal creepage and spin,

When creepage and spin are absent, it follows from (4.15) that

the relative slip (Sx’sy) is given by

_ 1 9u , Ju _ 193v_  3v
S, T~ V¥ T’ Sy- "Vt x (4.29)

so that we can satisfy the adhesion condition 8, =8, = 0 (4.16e)
throughout the contact area by setting u = v = 0, from which it
Pollows that X =Y = 0 ( all in case of elastic symmetry). Therefore,
the adhesion area covers the whole contact area and there is no slip.
As a consequence it is to be expected that when creepage and
spin do not vanish but are very small, the adhesion area covers
nearly the entire contact area. Accordingly it was proposed by
DE PATER in 1957 to treat the case that creepage and spin are so
small that the adhesion area cean be approximated by the entire

contact area. So, the boundary conditions (4.16) become
Stresses and displacements vanish at infinity; (4.30a)

Z=0 on z =0, oubside E,

= _ 2_ 7 =3 .o .
Z=Gf, V1-(x/a)2-(y/p)%, f‘oo 5=pg inside E; (4.30b)
X=Y=0 on z =0, outside E; (%.30¢)
= Jdu  du_

Sy V- T tax - O

(4.304)
s Eu+¢x_l_a_‘1+_a..!.=o.
¥y Yy Vot 9x

Condition (L4.30a) is satisfied if we use the integral representations
(2.7) and (2.13) of BOUSSINESQ-CERRUTTI for the connection between
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surface tractions and displacements. Conditions {(4.30b) define the
HERTZ problem which we treated in 3,221, We will consider only the

case of steady rolling, so that g: _g_%r_ = 0, and (4.30d) becomes

=0, s, z uy+¢x + 2 - 0 inside E. (4.30e)

du
s <% * 3% 5%

X X

We integrate (4.30e) with respect to x, to find u and v:
u= -xux+‘¢xy+f(y), v = —uyx—%¢x2+g(y) in E, (4.31)

where f(y) and g(y) are arbitrary, differemtiable functions of y. In
order to apply the theory of the load-displacement equations, which
is based on the integral representation of BOUSSINESQ-CERRUTTI, so
that (L4.30a) is satisfied, and in which the surface outside the
ellipse E is free of traction (cond. (4.30¢)), we approximate f(y)

and g(y) by polynomials:

n
u=-—uxx+¢xy+z 8, ¥ s
ne0 in E (4.32)
- 142 n
ve=-ux-3¢x2+ ] by,
y oho onm

By increasing M, we can approximate f and g as closely as we like,

The coefficients &, and bon are (2M+2) parameters which are still

free. To (u,v) correspond the tangential tractions (X,Y) of the form
M M-p

1
(X,Y) = {1-(x/a)2=(y/p)2}"2 }J ] |(a ) =Py, (4.33)
p=0 g=0 pa’ Pq
where the dpq_ Pq) are uniquely determined by v %? Uy’ ¢ and the

(oM+2) paremeters a and bon' This means that we can assume (2M+2)
relations between the (d_,e_J.
pa’ pa’ " _

In order to find these relations, we first attempt to bring X
and Y in a form in which there is no singularity at the edge of the
contact aresa:

1 Me2 Hmp=2

(x,Y) = {1-(x/a)2-(y/p)2}** | | (a;

p=0 g=0
and compare the number of coefficients in (4.33) and (4.34)., In
(4.33), there are (M+1)(M+2) coefficients, while (4.34) contains
(M-1)M coefficients. In order that (4.33) can be brought into the

form (L4.34), there must exist (M+1)(M+2)-(M-1)M=LM+2 relations

e’ Pq)xpy R (4.34)

Th,



between the coefficients of (4.33), which is about double the number
of parameters (aon’bon) . So it would seem to be impossible to bring
(4.33) in the form (4.34),

Another argument which points in the same direction is the
following. Iet us suppose that POISSON's ratio o = 0. Then, according

to (2.15a,b),

wlray)= 2 [f Xt y) EEL | v(xy)= L )
E

R = /(x=x")2+(y—y" }2.

It is easy to see that when X is even in x, u will be even in x. For,
] b a/1-(y'/v)? X

= 1

u(-’x,y)—ﬁ | &
-b —a/1=(y" /b))% V(x+x") 2+ (y-y' )2
1 Ib ay" o/1=(y"/0)2_x(-x' " )ax'ay"
L -a/1=(y' /)% /(x=x")Z+(y-y")?

1 X(x',y)ax'dy! _
G‘ITE fé R = u(

(x! 2! )dx'dy'

x.v).

The converse, viz. that to an u which is even in x corresponds an X
vwhich is also aven in x, follows from the (assumed) uniqueness, In
the same way it can be shown that to an u which is odd in x corres-
ponds an X which is odd in x. Now, u = -u X is odd in x, and it is a
polynamial, so it gives rise to an X which is odd in x and which has
a singularity on the edge of the contact area, the strength of which
is an odd function of x. u = f(y) gives rise to an X with a
singularity (if any) which is even in x. So these singularities can
never cancel each other., The same holds for v = -ny and for u = ¢xy.
Finally, the singularities due to u = -U_X and to u = ¢xy cannot
cancel each other, since the former is even in y and the latter is
odd in y. The conclusion is that there will be a singularity in
(X,Y) at the edge of the contact area when ¢ = 0, and hence there is
a strong presumption that the seame happens when o # 0.

The two arguments above point to two things: firstly, that it
1s impossible to have no area of slip whenever there is creepage
and/or spin, and secondly, that if we assume as an approximation
that there is no area of slip, we must accept a solution with an

infinite traction at the edge of the contact area.
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The first conclusion has a simple physical explanation. It is
that there is a rate of dissipation connected with creepage and spin,
of magnitude (qux + Fyuy + MZ¢)V, where (Fx,Fy) is the resultant
tangential force and MZ is the resulting torsional couple about the
z-axis, transmitted at the contact area. Since the elastic field is
conservative, and the absence of an area of slip means that there is
no dissipation by friction, the hypothesis that there is no area of
slip leads to a contradiction.

As to the second conclusion we observe that there is also a rate
of dissipation connected with the solution in which there is a stress
singularity at the edge, and no slip in the contact area, This
constitutes a paradox. It was pointed out by JOHNSON [3], pge 797,
that a comparable paradox occurs in aerofoil theory.

So we have found that the surface traction goes to infinity at
the edge of the contact area. On the other hand, we still have the
(2M+2) parameters &0n and bon’ and the only boundary condition which
we did not use is COULQMB's friction law. The conclusion is that the
parameters &n and bon must be determined by an application of the
friction law, interpreted to fit our problem.

The friction law states in the first place that the tangential
traction |(X,Y)| may not exceed a finite multiple of the normal
pressure Z: |(X,Y)|< u Z. This part of the friction law is violated
near the edge of the contact area, if the traction goes to infinity
there. So it is plausible to suppose that an infinite traction at a
point should be interpreted as an indication that it belongs to the
area of slip, We will show in 4.31 that the slip area does not
border on the leading edge of the contact area in our approximation,
Hence we must have that the strength of the singularity (Xe,Ye)
vanishes at the leading edge:

(x%,Y%)

(x%,Y%)

0 on leading edge of E,
(4.35)

Lim (%,Y)V1-(x/a)%~(y/b)?
(x,y)> edge from inside

The question arises whether this last condition indeed suffices
to remove the undeterminateness of the boundary conditions (4.30).

In the case of a circular contact area and vanishing POISSON's ratio
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we succeeded in determining the solution in terms of an infinite
series of spheroidal harmonics, the coefficients of which were stated
explicitly (see KAIKER [1], p. 171, eq. (8.10)). It was found that
the problem is indeed completely determined by the conditions (4.30)
and (4.35). Although this does not constitute a proof, there is a
strong presumption that the conditions (4.30) and (4.35) indeed
completely define the more general problem (¢ # 0, elliptical contact
area) we have here,

In the case of a finite number of the parameters a_ , b_ it is

o
impossible to satisfy (4.35). We then approximate (L4.35) by the

demand that (aon’bon) are chosen so as to minimize the integral

/2
fﬂ {(x°)2 + (¥°)2} ay = minimal, x = acosy, y = bsiny;
-%/2 (4.36)

(x%,Y°%) given by (L4.35).
Since (Xe,Ye) depend linearly on the parameters [a'on’bon)’ condition
(4,36) furnishes us with the following (2M+2) linear equations in the
(2M+2) unknowns (a’on’bonJ:

-

n/2 e /2
[ 3X°_ |, aY by I“ [ gg? .y 2

X + =] ay=0, n=0,...,H
-n/2 aa‘on aa‘on -n/2 abon ’ e
e .
Xe,Y ¢ linearly dependent on (a’on’bon) s (
e
X .
38: % cevgeacegoas 1ndependen":. of (aon,bon] . J

(%.37)
4,31, Proof that no slip takes place at the leading edge, when

creepage and spin are infinitesimal.

As we pointed out in 4.3, an infinite traction at a point of
the edge on the contact area means that this point belongs to the
slip area Eg. COULOMB's law also states that the slip is in the same
direction as the tangential traction. To obtain an insight into the
slip at the traction singularity, we determine the limiting
behaviour of S, and Sy as we approach the edge of the contact area

from the outside since 5, = sy = 0 inside the contact area.
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We can express the slip in the traction by means of (2.16):

t o) = i ? h
s (x',¥") vty o+

e

+ 2 gi_—- fé [z, { _1_;_0 + &(3(;—}3‘2&} + Y(x,y) cr(x—_x;;(-t'u]dxdy,

s _(x',y') = v_+¢x +
y( ') y¢

e dogir I [xGean) {122 4 2000 s () 20Xt oy

1S

R = Vlx-x')2+(y-y')2, E: contact area. ]
- (4.38)
Since (x',y') lies outside the contact area, we may interchange

differentiation with respect to x' and integration:

VU t) =y ot
sx(x 7') v -ty' +

- —x! —x')3
*qg I it { A200en) oG]y

+ o¥{(x,y){- y;};' + 3(x—x'£g-y') }]axdy,

( (%.39)

S_(x',y') = u_+¢x' +
Y( ') y¢

TG R3 RS

* ol - S o AL Yy

We assume that the tangential traction has an inverse square rooct

+ 1—-— ff [Y(x’y){ (1—0)(}5-}{') + 3U(X-X')(y—y')2 } R
L

behaviour at the edge of the contact area,

X1 (xyy) { 1= (x/2)2-(3/0)2} 2,
¥ () {1=(x/8) 2= (3 /0) 2} 2,

where X¥'(x,y) and Y'(x,y) are continuously differentiable functions .

X(x,y)
(4.%0)

Y(x,y)

llow it will be shown later in this section that when the distance u'
of (x',y') to I approaches zero, see fig. T, then the relative slip

is given by
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y
Fig. T. The contact area with the u,v-axes.

3\

s_(x',y'")= cosy{ 20 (5,y) (1-ocos?y)~ 20" () cosysing}+0(1)

% GBYu! GBYa

s_(x',y')= cosy{ B GEY) (1oggin2y)- 2EET) cosysingfro(1)

J Gnva? . B (3.41)
u': distence of (x',y') to E, B = /2 /(x'/az)z*'(y'/bz?, (

¥ : angle between pos. x-axis and immer normal on edge of &
which pesses through (x',y'); .

(%,7): intersection of this normal with the ellipse;

- 0(1) : any bounded function. y

Vhen POISSON's ratio 0=0, s, and sy becone

Sv(x' ' )= M cosy + 0(1),

e )
. (k.h2)
S_‘ (x' ’y' ): gf_'__(_x_'ll COSW + 0(1),
v oB YA

from which we see that the vector (Sx’sy) is parallel to the
tengentiel traction (X,Y) as u'+0, when, at any rate, (X',Y')#(0,0)
or, in other terms, when the traction goes to infinity at the edge.
The veetor has the same sense as (X',Y') when cosy>0, .and the
opposite sense when cosy<0, It is easy to see from fig. T that

cosy>0 when (x',y') approaches the trailing edge x<0, and that
]



cosy<0 when {x',y') approaches the leading edge x>0. It is thus
plansible to suppose that at the lesding edge the slip would be
opposite to the tangential traction, if the traction goes to infinity
there; according to the friction law, this should not happen, and
therefore the traction singularity should be removed fram the

leading edge.

When POISSON's ratio o#0, the slip and the tangential traction
are not precisely parallel, but we can show that at the leading edge
they are almost opposite, and at the trailing edge almost in the
same sense, In order to show this, we calculate the angle 6 between
slip and traction from (4.41). After some calculation we obtain:

Xs + YSy [¥2+Y2~0 (Xcosy+Ysiny)2 }sign(cosy)

6 = =
cos T(X:Y) ﬂ (Sx’ SQ , ‘/X2+Y2 A{Z,‘,YZ_U(Q_G) (XCOSLP"‘YSinq)) 2

(4.143)

where we dropped the prime of X' and Y'. We denote by D the ratio

D = (Ycosy + Ysiny)?/(X2+¥2), (4o hba)
Since (Xcosy + Ysiny) is the campoment of (X,Y) in the direction

(cosy, siny),

0<Ds 1., (4. 44)
In this notetion, cos® becomes
coso = {1=eD)sign(cosy) . (k.45)
/i=o(2-0)D
It can be shown without difficulty that the absolute value |cos6 |
reaches a maximum of 1 when D=0 or D=1, and a minimur of ?—:?/T—-—g when

D= 2—15- « When 0=0, the minimum equals unity as we knew already. When
o=}, the minimum is 0.987, corresponding to an angle of 90; when

o=}, the minimm is 0.941, corresponding to an angle of 20°, s &
consequence of this and of the presence of sign(cosy) in the
expression for cos®, we have that on the leading edge the angle 6 is

nearly 1800, and on the trailing edge it is nearly zero. lumerically

we have:
at the leading edge: 180°- By S 6 < 180°+6m,
at the trailing edge: -0, 3628, (h.16)
o
6, =0foro=20;8 =9 for ¢ = i 8, = 20 for o = 1.

The conclusion is again that the traction singularity should be

8o.



removed from the leading edge of the coﬁtact area.

In the remainder of this section we will establish (L.41), We
see from (4.39) and (L.41) that this task consists in calculating the
part that behaves as 1/vu' (see fig. T and (4.41)) as the distance u'
fram (x',y') to I goes down to zero, of integrals of the following.

type:

I(x',y") ” £(xyy) (x=x' )m(.‘)’y > dxdy, R:
TR PR e ey /)

where f(x,y) is & continuously differentiable function, and (x',y')
is a point outside the elliptic area E. We shall show that

|T(x',y') |+ = as (x',y') approaches the elliptic area E, and we shall
caleulate the singular part of I.

In our coordinate system, we take the minor semi-axis of E as
the unit of length. From (x',y') we drop & normal on the ellipse,
see fig. T3 the point of intersection is (X,y). It is clear that the
contribution to the integral of the domain of integration outside a
neighbourhood of (x',y') with radius § is bounded. We denote by D
this neighbourhood in so far it intersects with the elliptic area E.
D is shown shaded in fig. T. We also denote & bounded function by
0(1). So we obtain

I(xt,y') = £ (%) (x=x" ) =y )™ dxdy + 0(1). (4.48)
X ff ﬁn+n+2/7(}(/a)2 (y/b) &y

We introduce the cartesian coordinate system (u,v) into this

integral, which has (X,y) as origin, and the positive u~axis of
which coincides with the inner normal to the ellipse at (X,¥y), see
fig. T« Iet ¢ be the angle between the positive x-axis and the
positive u-axis. Then:

X=X = ucosy=vsinyg, y—§ = usinytveosy;

the point (x',y') has in the (u,v) coordinate system

the coordinates (=u',0);

u' is the distance from (x',y') to E, u'>0; L (B.k9)

x-x' = (utu')cosy~vsiny, y=y' = (utu')sinyg+vcosy; V

R2 = (utu')?+v?; dxdy = dudv;

£(x,y) = £(5,F) + 0(A%2) = 2(EF) + o (Vwru TP,
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Also, since (X,y) lies on the ellipse,

(/a2 y oy 2 B2, Pomy? (o) (B Gimw)) | (o) (EF=(Foy))
8.2 b2 a2 R b2
2}—{ ‘—— . 2— . - )
= - :28% %V;mp}u. (- X:;n‘h ngsw}ww (u,v),
(4.50)
vhere h'(u,v) is a homogeneous quadratic form in (u,v). So,
h'(u,v) = 0(u?+v?) = o((utu')2+v2) = 0(R?) in D, (L,51)

where we made use of the fact that u'>0, and that u>0 in D. Also we
have that the coefficient of v vanishes in (4,50), since the ellipse

is tangent to the v-axis. That means according to (4.50), that

- - =2 =2
g—;—c-= acosy, —2%-= asiny, a = = 2\ /X + L. = + B2 (1+0(R)),
& LAl a* bt (4.52)
_/_y x! 2 .L'- 2
2- 5V (55 (B,
so that (4,50) becomes
1-(x/a)?=(y/b)2 = B2{uth(u,v)}(1+0(R)), . (4.53)

with h'(u,v) B2(1+0(R) )n(u,v) = 0(R2),

In (L.53) we choséfthe negative sign for a, since a point (x,y) with
v=0, O<u<<1 lies inside the ellipse, so that 1-(x/a)2-(y/b)2>0.
The integral (L,43) becomes with (L4.L49) and (4.53):

I(x' 7! ) =
Y {£(%,7)+0(R) H (utu') cosy-vsiny I { (uwru' )siny+veosy >
D

B(1+0(R) ) uth(u,v) REB*2

dudv+0(1).

(h.5%)

Again we introduce & new coordinate system into this integral:
w = uth(u,v), v = v; (4,55)

we denote .
r2=(w+u')2+v2; then, h{u,v)=0(r2), R2=r2(1+0(r));
dudv = {1+0(r) }awdv;
(u+u')cosw;vsinw={(w*u')cosw—vsinw}(1+0(r)), P (4.56)
(u+u')sin¢+vcosw={(w+u')sin¢+vcosw}(1+o(r)),

all in D, )
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The integral becomes

I(x'yy')= ff {£(%,7)+0(x) H (wru' ) cosy-vsiny )" y
D

B rm+n+2
X {(w'l-u')sinwvcosw}n{HO(r)}dvdw-o(1), ,

= I'(x',y')+0(1),

I (x',y")= ] £(X,7) { (wru' ) cos=vsiny ¥ { (wtu' ) singtveosy I —_
D

+n+
Bv"{;rmnz

)
(4.57)

. +
since [[ AR B2 g = 0(1).
D

We observe that the domain of integration D lies in the half-

\'4

plane w > 0, For u' > 0, the domain outside Dy in so far as it lies
in the half-plane w > 0, gives a finite contribution to the
integral. So we can extend the integration to the whole half-plane

w > 0O:
I(x'yy') =

= E{a .f(—i;-[-) aw fm {(w+u')cosw-vwifxgiyu‘)Sinwvcosl}n av+0(1)
B — i

(4.58)
We evaluate {(w+u')cosy=-vsiny}"{(w+u')siny+veosy}™ by means of the
binomial theorem, A typical integral is then

. - o - k p'
' o 2Gxy) aw (weu")™ v* dv
I(x :Y' ’ka) B é’ w,— _2 {( u')2+ }k/2|272+1 . ()4’-59)

By symmetry, this integral vanishes when & is odd. When £ is even,

we use the substitution

L
v = (wtu')tand, dv = wtu a6 (4,60)
cos?9
This gives ..
==y @ /2 \
I(x',y"k,8)= £0x,y) / — ] sin*0costs a6 =

B 0 (wu' )i _p/2

k+1 24+1
- -y (LR (5.61)
- T (%,y) ( 2 ) ( 2 ) vhen 2 is even, ?

B/a' T l‘—‘%*—z-)

=0 when & = odd. J
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S0 as a final result from (4.58), (4.59) and (4.61) we obtain:

m n
I(xt,yt)= [ L) (xext) (roy!) o0 o
Xy II Rm+n+2/1-(X/a)2-(y/b)2

(m n-:L- 1+ j+1)

'rrf(x.z (- 1)1_,_( 1)J 2 x
OBV {1§0 JEO [ J (31 I‘(m-———+g+2) g

x cosm+3-lwsinn+i-j¢} + 0(1),
= 2/ (21 /a2) e (y 1 102)2, J
(4.62)

X, ¥» u' and y, see fig, 7.
The expression (4.,41) follows from (4.39) and from (4.62) after
a straightforward, but somevhat laborious calculation, which we omit

here.

4,32, Solution of the problem.

When we use the theory of the load-displacement equations, the
boundary conditions (4.30a,c) are automatically satisfied, and the
only boundary conditions left are (4.32) and (4.36).

We define
M M-p
X',Y') = xPyl 4.6
(x*,Y*) p=0 ¢=0 (PQ P(l) T (4.63)
where the coefficients clpq, epq depend uniquely on v ,u Py on’bon

through the load-displacement equations (2.56), where we have,
according to (4.32) in terms of the constants (a'mn’bmn) of (2.32):

a “Vys 844 = ¢ , 8 0 otherwise, unless m = 0;

bw:-u b, = =1 bm1 0 otherwise, unless =0’ (k.64)
10 = “Vy» Pap = "2 ’ m =0

X and Y are given by

(X,Y) = &/1-(x/a)2=(y/p)2  (x',Y'), (4.65)
so that according to the definition (k4.35)
(x°,¥°%) = ¢ 1im (x',Y'). (4.66)
X, yredge

According to the remarks made after (2.56), [aan+s,2n+m’

b2m+e',2n+w') on the one hand, and (d2p+e,2q+w’ eep_fs.’zq.,.w.) on
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the other hand belong to a closed system of equations for each of the

four possible choices.of (e,w). If we set M=2K+1, for instance, and

~

2K
xfj): [1,2(2,}' sx ’xy ,y'-b’ esesy ¥ )
2K
x‘% = x(1,%x2,72,x%,x2y2 5%, ceay ¥7)
2K
J’.‘§ = y(1’x2gy2,xlo’x2y2,yk’ seey Y )
xJ'? = KYU =xzsy2=x‘+=x2¥29¥ks IEE R y2K.-2)!
0 =
% = (8008202802003 8ppsdgys ++ s g oyd)
1=
X [d1o,d3o,d12,d50,d32, cees d1’2K) 3 (4.67)
2 =
X = (8515851580308, 08p5s cees 8y el
3
x3 (d11,d31,d13,d51, cves d1,2K_1),
Y: as X].', with e_  instead of 4_ ,
IR pa |
u;.' as XZ.', with & instead of dpq_’
V- as X;, with b__ instead of d_ ,
j B mn Pe )
then, if we sum over repeated indices,
X'= Xix:, Y' = Yr xl, u= u1 l, v = VX, (4.68)
J J J Jd d J Jd
We can write the loamd-displacement equations (2.56) as
uz.' = (AZ:Q) X:; » MO0 sum over i; 1 = 0,1,2,3., (4.69)
v_'f)—i Y3—-:i.

J £
The matrices Ag' o &re square and have a non-vanishing determinant, so

that we can invert them:

. P | .
< ]=wd)T [8 | (4.70)
3-i 3-i
Yj A

According to (4.64), a great number of the ug.' and vz.' are zero, so

that we can drop a nuwber of columns of (A,:jLz)-1’ and we can write
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X0 = B9 5 8 ons (i=0 i.e. e=u=0), |

Xé = 8%,2n+1 0,2n+1 D v ,(1— s Lee. =1, w=0),

X% = B§,2n+1 89, o0+1 Ej Uy,(i=2, i.e. e=0, w=1),

xg = 83,211 by, on* Fj s (i=3, i.e. e=u=1),

Yg = gg,zn 8, 2n° (i=0 i.e. e=w=0), ( (ka71)
Yg = C§,2n+1 b0,2n+1+83 v s (i=1, i.e. e=1, w=0),

Y'% = ﬁg’&m B.o’zn+1+EJ Uy,(l—z, i.e. €=0, w=1),

Yg = cg’zn b0’2u + Fj ¢, (i=3, i.e. e=w=1). )

. ) Vv
The quantities with the superseript ~ vanish when 0=0, except Fg.
This gives for (X',Y'):

0 o2 1 )
1=
X 3 BJ,Zn 0, ont J{Cj,2n+1 ®o 2n+1+Dj Ux} *

+ x.{B. & +EL v } + x3{C b

,2n+1 %0,20+17%; Yy 3,20 0,20*F5 ¢bs

1= 3
Y xJBJZD 02nx{c

+ X3 {B

+D Ux} +

(4.72)
Js2n+1 O 2n+1 T .

+5) v )+ x{ch o ¥} .

senti 0 2n+1 Js2n "0, 2n J

J
We can split X' and Y' in a part X
odd in y.

" Y, , even in y and a part X ,Y ,

=0: X,= x{ B 1{c2 +p} v, }
w=0: A= j.on ao,zn'*xj{cj ,2n+1 0,2n+1705 V) 0

Y= B0 x {C

3 g0 (h-73a)
- J Jsen O 2n

5,20+1 20 2n+1+Dj v s

“1: X = 3 3
wsis X xJ{BJ,2n+1 a‘0,2n+1+Ej Uy} * X {CJ 2n o 2n J HEID

- 1
Ty= % {BJ.EnH 89,2n+1"E; Uy} {CS 2n 0,20 F ¢}

(4.73b)

X'= X +X,, Y'= Y +Y,. X (=)= X, (3), X (~y)= -X_(y).  (H.T3c)

We enter (4.73¢) into the compensation condition (L.36):
n/2 2 2
P 107 e (g o+ ¥ e 00 =
-7/2
n/2

= | g+ 2}

dy = minimel.
—n/2 + -’ ledge

(hoTH)

/2
ay + | {x2 + Y-?‘_-Hedge
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Ve see from (L.73a) that {X2+¥2}depends only on Vs B a

O,2n an
4» and that {#2+Y2} depends only on Vs ¢

Py on+ &g,on+10 384 Py op
So the system of compensation equations falls apart into two systems,

one involving the quantities with w= 0, and one involving those with

w = 1, Now, the total force is given by

-1 -1
F =6 [[ V1-(x/a)2=(y/0)?  X'axdy=G [[ /1-(x/a)2-(y/0)? ¥, axdy,
3 &
(L.752)

so that, after removal of the singularity from the leading edge, Fx

depends only on ux. Further we have that

F
y

~1
G [f /1-(x/a)2-(y/0)? ¥, axdy, (k. 75D)
E

-
¢ [ V1-(x/a)2-(y/b)2 (xY -yX ) axdy, (LaT5¢)
E

I}

M
Z

so that Fy and MZ depend only on Uy and ¢. This is completely in
accordance with the findings of 4.2, since Fx’ Fy and Mz are here
linear in Voo Uy, ¢, owing to the linear character of the compensation

condition, see (4.37).

Let us call
e . [0 0 = [y2 e _ ° - !
x x|, x x5 n 20,21 s U 20, on+1 (h.76)
1 3
s *3 0, 2n+1 0,20
v v
X N
¢
and let us indicate a transpose by a ' over the letters. Then we have
- —— -3 t
= 0 1 0 = eBe e,
X, (Xj xj) Bj,2n 0 0 8, 2n X B u (4.77a)
2 Dll|v
| © %21 P3]|%0,2041
x
- i . '
= (x2 43 2 1 = «%n%°%.
Y (xj xj) 0 c% ome1 5| %0,2n XBuj (4.77p)
B0, 0 o{[v
Js2n 0,2n+1
— -
v
e
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= (42 +3 2 ¥l [ T = Yoo o
X (xj xs) Bj,2n+1 0 I 80, 2n+1 xCu; (4e7Te)
0 3
0 Bj’zn S | L
v
¥y
LA
Y = (x? x}) |o cv o Filfa 1 = x%c%u° (4,774)
+ 375 Jjes2n Jl170,2n+1 ‘
B2 0 El olfv
Js2n+1 3 0,2n
v
¥
CEE
So,
tatl ! It v
X2 + ¥2 = u®B®x®x®B%® + u®B%x%x°B%° =
'erte elee  lo olo.oy e - (4.78)
=u (B xxB  +BXxB )u N
1 1 1 ]
X2+ ¥2 = 00 (c%x%°c° + ®x°x°c®)u®. (4.78p)

We integrate (4,782) and (4.78b) over the leading edge of the contact
area x=acosy, y=bsiny, -m/2 < ¢ < 7/2., Only the matrices x°x® and

x°x° are position dependent, There are two types of integral:

n/2 . . /2 /2
x; xi ay = f x2py2q ay = f azpbzqcoszpwsinzqwdw
-7n/2 -n/2 -m/2
. 1 1
= a2Pp2a I‘(y_z;lg(gln) , .
+79a
n/2 /2
i 20 2wkl g = £2P+] 2% ay =
)
_1[/2 —1[/2
n/2 ‘ ,
- 2p+1.2q 2p+l . 2q - .2p+l 29 _T(g+z)p! 7
_£/2 a b 2cos Ysin“*ydy = a b TTSEE;§§§T . (4.,79D)
Call
/2 o /2 ,
] x%fay = ¥°, ] x%%%ay = F°, (k.80)
-n/2 -n/2
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m/2 ' '
[ {x2+ y2}ay = 4°(8°F°B° + B°F°B°)u° = minimal,
-n/2
(4.81)
“/2 ] t 1
[ (%2 + 2}ay = u®(c®Fr*c® + C°F°C°)u’ = mininal,
-%/2

and a typlical compensation equation is found by differentiating

(4.81) with respect to a s bt

2(0,0,1,0 ... 0)(B°F°B® + B°F°B%)u® = 0, (4,82)

or, in other terms
] 1
the first (2K+1) rows of (B’F®B® + B°P°B°)u® must venish, (4.83a)

1 ]
the first (2Kk+1) rows of (C°F°C® + C°P°c°)u°® must venish, (4.83b)

These equations are solved mumerically, where we set v =1 in (4.83a),
and by multiplying the resulting (ao’zn, b0’2n+1) by v e set
uy=1, $=0 in (4.83b) end multiply the resulting [ao’2n+1, b0,2n) by
Vys and finally we set uy=0, ¢=1 in (4.33b) and multiply the
resulting (a0’2n+1, b0,2nJ by $.

In order to find the total force Fx’ F& and the torsional

couple M , wve first observe that
\

-1 -
F =G /] Y1-(x/a)2-(y/b)2  X'axdy=G /I V1-(x/a)2-(y/b)2 1 X?xgd.xdy,
E B

J
-1
F =G [ Y1=(x/a)2-(y/v)2 Ygxg dxdy, (
E
' -1
M =G /] Y1-(x/a)2=(y/b)? (xY%xg - yxgxg) dxdy. ‘
. (1. 8)
By means of (L.T1), we can determine X;’ Yg, X§, Yé from the
(aon'bon) which we find from the solution of the compensation
equations (4.83a,b). A typical integral of (4.8h4) is
1 N
[ PP Ao (x/a)2=(y/0)2 axay =
E
am 1 _2p+2q+i
= a2p+1b2q*1 J cosQPwsineqwdw J I ar={ (4.85)
0 0 V1-r?
= g2P12q+1 I(pr3)r(grz)T(3)
I'(prq+3/2) J
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We obtain

=72 = 2 = 3
F =Ce?Cy vy, Fo=Ge (0220y + Cppe9), M =Ge [032uy + Cysc) (4.86)

where the creepage and spin coefficients Ci' are calculated with
¢ = Yab as unit of length. With (4.19), (4.20) and (3.50) we obtain

for the dimensionless parameters of sec. 4.2:

[ffm)=[_’_cF i]:ltc_)zl.(cgcn.g.c c..n+ C X)
x TG e e T Tng 1152 “2p 23%* 32 33"

(4.37)

4,33, Numerical results.

The creepage coeffiecients Cij were calculated for a few values
of a/b with 2I+v=3,5,7, It was found that the solution with 2K+v=5
had a relative error of less than 1% from the solution with 2K+v=T,
Therefore, we calculated the ereepage coefficients Cij for more
values of a/b with 2K+v=5, The results are shown in fig, Oa and Jb,
and in Table 3,

For the case of a circular contact area (a/b = 1), the values
found coincide with those given in KAIKER [1]. In that paper, the
values of Cij were compared with JOHNSON's experimental results on
the rolling of steel balls [1,3]. JOHNSON found that C11 lies
between 3.8 and 4,b4; we find for ¢ = 0.28 the value L4.22, Also,
Cop = 3.47 end Cpg = 1.53; we find 3.71 and
1.49 respectively. Since according to JOHNSON the moment Mz due to

according to Johnson,

elastic hysteresis is of a higher order of magnitude than the moment
due to creepage end spin, when the latter are very small, we cannot

32 and 033 with the experiment; indeed, we conclude that

the values of ‘023 and C33 are of little practical significance.

According to the theorstical results of JOHNSON and VERMEULEN

(51,

conpare C

Cpple) = Cy5(0) ¥, (0)/y, (e),

w1(e)=1_3_—cg2_g vhen & < b (e > 0),
= -1—6' (4=c)7 when a =1 (e = 0), r (4.88a)
= gD - ogC whenazb(egO);J
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Table 3. The creepsge and spin coefficients Ci,j'

i1 Con C23 - ‘032 C33
g =0 |"1/4% | 1/2 | o= /4 |} 1/2 | o=0 1/4 1/2 g=0 |1/4 1/2
(| 0.0 2 /4 (1=0) w2 /h wg/3 - - 72/16(1-a)g
0.1] 2,51} 3.31| 4.851 2,51 2,52 2.53] 0.334| 0.L473| 0.731|6.42 [8.28 }{11.7
0.2] 2.59| 3.37| 4.81| 2.59| 2.63| 2.66| 0.483| 0.603| 0.309|3.46 {4k.27 | 5.66
0.3| 2.68( 3.L4| 4,80 2.68| 2.75| 2.81] 0.607| 0.715| 0.889|2.49 |2.96 | 3.72
‘% O.h| 2.78| 3.53| 4.82| 2.781 2.88| 2.98] 0.720] 0.823{ 0,977|2.02 |2.32 | 2.77
0.5| 2,88 3.62| 4.83} 2.88] 3.01{ 3.14| 0.827| 0.929| 1,07 |1.7h |1.93 | 2.22
0.6 2,98 3.72| 4.91| 2.98| 3.1k} 3.31| 0.930| 1.03 | 1.18 |1.56 |1.68 | 1.86
0.7| 3.09| 3.81| L.97| 3.09| 3.28| 3.43| 1.03 | 1.14 | 1.29 |1.43 |1.50 | 1.60
0.8 3.19| 3.91] 5.05| 3.19] 3.41| 3.65| 1.13 | 1.25 | 1,40 [1.34 {1.37 | 1.42
| 0.9 3.29| 4.01| 5.12| 3.29] 3.54| 3.82 1.23 | 1.36 | 1.51 | 1.27 |1.2T | t1.27
(| 1.0 3.50| 4.12| 5.20| 3.40| 3.67| 3.98 1.33 | 1.47 | 1.63 |1.21 [1.19 | 1.16
0.9| 3.51| k.22| 5.30| 3.51| 3.81| Lk.,16] 1.44 | 1.59 | 1.77 |1.16 |[1.11 | 1,06
0.8 3.65| 4,36] 5,42 3.65| 3.99| 4.39| 1.58 | 1.75 | 1.94 |{1.10 [1.04 | 0.954
b I 0T 3.82| L,sk| 5,58 3.82] L.21| L.67) 1.76 | 1.95 | 2,18 [ 1,05 {0.965| 0.852
=<1 0.6| 4,06| 4.78| 5.80| 4.06]| 4.50| 5.04} 2.01 | 2.23 | 2.50 [1.01 |0.892| 0.751
®1| 0.5| 4.37| 5.10] 6.11( 4.37| L.90| 5.56| 2.35 | 2.62 | 2.96 |{0.958|0.815| 0.650
O. | 4,84 5.57| 6.57| 4.84| 5.48| 6.31| 2.88 | 3.24 | 3.70 |0.912|0.747| 0.549
0.3| 5.57| 6.34| T.34| 5.57| 6.40] 7.51| 3.79 | 4.32 | 5.01 | 0.868{0.674| 0.4k6
0.2] 6.961 7.78| 8.82] 6.96| 8,14| 9.79| 5.72 | 6.63 | 7.89 |0.828{0.601| 0,341
(| 0.1 ]10.7 |11.7 |12.9 [10.7 [12.8 116.0 |12.2 |1L.6 [18.0 |0.795{0.526] 0.228
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C,q(e) = c . (0) e(0)/2(e),
¢(e) =B - o(D - C) when a <b (e > 0),
= 12 (4-30)7 vhen a =b (e = 0), [ (k. 88b)
= g(1-0)D + ogC when a 2 b (e 5 0).

The experiments of JOHNSON and VERMEULEN on the dependence of F_ on
v, for different values of the axial ratio a/b, (see [5], fig. 3)
show that the relationship

mGaby

—L = =
[uN ]UX=¢=O f (?111\T_w11)’ o = 0.28 (4.89)

is very nearly satisfied. We compared the functions

Caple) = Cn(0) v (0) /¥ (e),

ci,(e) = c11(0) ¢(0)/e(e)

(4.90)

with the values of ng(e) and C”(e) as we calculated them, for
0=0,25, In the range 0.2 < a/b < 1, 0.2 <b/a < 1 we found a
discrepancy of at most 7% both in 022 and in C‘”, the largest
discrepancy occurring at the end of the ranges a/b = 0.2 or
b/a = 0,2, In fact,

a/b = 0.2: C,,(0) ¢1(o)/w1(e) = 1.07 C,,(e),

1}

c11(o) ¢ (0)/%(e) 1,05 C11(e),

(4.91)

b/a = 0.2: Cop(0) w1(0)/w1(e) 0.94 Copled,

011(0) #(0)/0(e) = 0.93 011(e).

So here also the experimental results of JOHNSON are fairly close to
our theoretical results on Cope

We observe that in the calculations of Cij’ the smallest value
of a/b and b/a with which we computed was a/b = 0.1, b/a = 0.1. The
values of Ci' for a/b = 0,1 came close to those of the strip theory
of KAIKER [2], with the exception of C3p
ventured to put in the values of Cij obtained by the strip theory at
a/b = 0, and led the graphs through to a/b = 0,

Finally we note that the feature that C_, = -C23 which was

32
noted in KAIKER [1], also persists in the case of elliptical contact

= -023, for o # 0. So we

ok,




areas, No explanation has been given for this curious festure.

L,4, The limiting case of large creepsge and spin, Numerical resvlts.

When the creepage and the spin become very large, we may neglect

the elastic deformation in the expression (4.15) for the relative

slip:
_ Ju 1 ou .
Sy = VW 5 TV et T VW (b.62)
= + +3X. .l..al'v + +?
sy = Uy ox 3% ~ TV 3t T U_F+PX.

We can then regard the slip, with LUTZ [1,2,3] and WERNITZ [1,2] as
a pure rigid body rotation with angular veloeity ¢V about a point in
the plene z = O which is called the spin pole by LUTZ and WERNITZ:

spin pole =(x',y'), X'= = /4= —en/X> ¥'= v /b= i/t (4.93)

see fig, 9. No adhesion area is assumed to form, not even when the

y
Fig. 9. Contact aree with spin pole and traction vector.
spin pole lies inside the contact area. Note that the rolling

direction is no longer a preferred directiom. The surface traction
transmitted by the upper body to the lower body has the magnitude

|(%,1)| = wz = 2B /1T/a) 2= (3/0)7, (4.9%)

and the direction is perpendicular to the line between (x',y') and
(x,y), with a positive moment with respect to (x',y') when ¢ is
positive, and with a negative moment when ¢ is negative. It is easy

to see from fig. 9 that
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= = 3sign(x) /o 7 7 (y'=y)dxdy
afy d(Fx/uN) 2mab Y1-(x/a)2-(y/b) T or (3 )2 s

= - _ 3sign(x) /o 5 3 (x'-x)dxdy
ar = a(F /un) s ie /1-(x/2)2-(y /D) ety

dm!= d(M!/ulic)= %%’Q 1=(x/a)2-(y/b)2 /(x-x")2+(y~y')? dxdy.’
' (4.95)

—

Here M; is the moment about the spin pole. For the moment about the

origin, we have the relation

Moo= M+ x'Fy -y'F,. © (k.96)

We find the total force and moment by integrating (4,95),

f = ——5——355' n(X) /1_ )2_ b)2 &'ﬂ)d-xdy ,
X 2mab fé (x/a (y/v) VKx~x')2+(y—y')2

f= 3sign(x) /1-(x/a)%-(3/b)2 (x'-x)dxdy ,
¥ 2rab Ié X/a ¥ /(X_x')2+(y_y')2

n = 358800 11 AT R S By ) axay - R g —E g,
E

Z 2mabe X ¥y X X
4
(k.97)

In the special case that the contact area is circular, these
integrals were evaluated by LUTZ in [2], and in the special case
that the contact area is an ellipse, and that the spin pole lies on
one of the axes of the ellipse, they were evaluated by WERNITZ Eﬂ,
p. 63-T2, Since any line through the origin is an axis of the circle,
LUTZ's results are a special case of WERNITZ's results. If, say,

x' = 0, LUTZ and WERNITZ integrate with respect to x, end obtain as
a result a form involving complete elliptic integrals of the first
and second kind, which then has to be integrated with respect to y.
This latter integration is done mumerically. This process breaks
down, however, when the spin pole does not lie on one of the axes,
i.e. when x' # O, y' # 0. The first integration with respect to x
is still possible, but the resulting form contains also elliptic
integrals of the third kind. We accordingly abandoned the attempt
of analytically performing the first integration, and we treated
the integrals as follows. We had:

96.
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= 3sign(X) 1 Az 7777 (' -y)dxdy
fx 2wab fé 1 (X/a) (y/b) /(x..x' )2+(y_y' )2
3sign{x) Y=x" 12+ (y-y" ) ¥ ax
- . d‘,r (’4.98)
2mab IE V1-(x/a)2-(y/0)? b2

by partial integration with respect to y. Then, we set

X = arcosy, y = brsiny. (4,99)
This gives
- . 2 2'"’
£ = 3S%$E(X) f L2 diz Y(arcosy-x' )2+ (brsiny-y' )2 sinpdy =
0 41
an
—Eéﬁﬁ-—— f 1n26d0 f V(asinbcosy-x' )2+ (bsindsiny-y"' )2sinydy.
0
(4,1002)
In the same way we find
3sign(Xx) o
f 51n26d9 I v(asinBcosy-x')%+(bsinbsiny=y' )2 cosydy,
y Ewa 0
(4,1000)
3 2m
m --§%%%——— f 51n9coszed9 f /(asinBeosy-x')2+(bsinbsiny-y' )2 ay +
0
£y, _0
¥ T = % f&. (4,100¢)

By means of the substitution a = w-y in (L.100) it is easy to see
from (4.93) that
£ (e/x, (-n)/X)
fy(E/x, (-n)/x)
m (E/X, (-n)/x)

fx(E/X, n/x),
-fy(s/x,.n/x), (k.101a)
m (&/Xy n/x).

1]

By means of the substitution o = -y in (4.100), it is easy to see
from (4.93) that
£ _((-€)/x, n/x) = -f (&/%, n/x),
200X n/x) = g (e/x, n/x), (k. 1010)
m ((-£)/x, n/x) m, (£/%, n/x).

n

By means of the substitution o = n/2-y in (4,100), it is easy to see
that

0l

£_(a,b, £/X, n/X)
mz(a’b, E/X’ T\/X)

Il

—ﬁy(b,a, n/X, E/X)a
n (o,e, /%, g0, [ (He10¢)
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Fig. 10. The total force for large creepage and spin.

(a): g=0.5; (b):

g=0.2.
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Fig. 11, The total force for large creepsge and spin. g=1.

So we can confine ourselves for the purposz of calculations to the
cases with

e >0 (a <b), -x' =en/X 20, y' = c&/x 2 0, (k.102)
Under the conditions (k.102) we cen eliminate & and b from (L4.100).

This gives

£ = i@-&@-—-; sinZeds x
X

N

o infsi RE
X f /('/é sinecos¢+n/><)2"'( SRR - £/X)" simay,

g
¥ = :’—%l;—%-— f s:.nzede X

x f /t/é sinbeosp+ n/x) 2+ ( sindsiny _ /02 cosyay, L (4.103)

Hy
1

0 g
m, = _3._5EEB,__I sm@coszede x
x feﬂ/(/é_; sinecosw+n/X)2"‘( gg%i_nl - E/X)z ay +
0 g
- (n/x)fy - (8/x)f,
X # 03 if X = 0 then £, = E/v, £, = n/v, v = Ve24n2, J

99.



The repeated integrals of (4.103) are easy to integrate numerically.
The total force has been calculated for g = 0.5 and g = 0.2, see fig.
10, and for g = 1, see fig, 11, In the figures, we use the symbols v
and o

E,X = veosa, n/X = usina. (4.10h)
As to fig., 11, we observe that the force is always in the direction
of the creepage. So fig. 11 could have a simpler form then fig. 10.
We finally observe that the three integrals of (4.97) can be
written as a sum of integrals of the form

= Py(x',y") [f P (x,7)3(x,y) ixﬁi’l , (4.105)
E

where P, and P) are polynomials and J(x,y) and R have their usual
meaning. Hence GALIN's theorem of sec, 2,2 can be applied, and the I

can be evaluated by means of DOVNOROVICH's method. This gives after

some calculation: \

- 3z81gn(x 1oo 1 .5 1300 . 1 1;00]
T = [F *ZYE o e X F a0l
=_3xs153(x) [100 1 .2 21300 1 5 1oc2>]
Iy &b TX Pl t3v Flxml
- 3sign(x) [1,00 12 1oo + 12 p1300 |
m, abe Floo0* 3% Flppts ¥y Flpp*
4 1,oo 1 1300 1, 1,00]
+"h'x F Fp XY F o vyt F g,
+ X _Lp
cy ¢
(x,y): spin pole, x = =en/X, y = c&/X.
1300, )
F 13° see (3.22).

(4.106)
It should be kept in mind that (4,106) is valid only when the spin

pole lies inside the contact area, so that (4,106) has only limited
applicability.
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5. Steady rolling with arbitrary creepage and spin: & numerical

theo.zz .

In the present chapter we apply the theory of the load-
displacement equations to the problem of rolling with arbitrary
creepage and spin, In section 5.1 and its subsections we present the
numerical process., In section 5.2 and its subsections we discuss a
computer programme based on the method of section 5.1. Finally we
present the numerical results in section 5.3 and its subsections, In
5.31 they are compared with the experiments of JOHNSON and HAINES and
OLIERTON. In the *two remaining subsections of 5.3, we discuss the

solutions obtained.

95.1. The numerical method.

In 5.11, we reformulate the boundary conditions so, that the
solution becomes equivalent to minimizing a certain integral. The
numerical analysis of the minimalization is presented in 5.12, and
some details concerning the minimalization and the formulation of

the problem are discussed in 5.13 and 5.14.

5.11., Formulation as & variational problen.

Since the tangentisl traction 1s at most equal to a finite
multiple of the normal Hertzien traction, the latter vanishing at
the edge of the contact area, we will use the theory of section 3.1.

We can rewrite the results of that section as follows:

let Z

o0 V1-(x/a)%=(y/b)? inside E,

=0 on z=0, outside E;

- — 7 5 § MMy L.
It (X,Y) Gufooﬁ (x/a)e=(y/b) L [xkrk,ykrk) inside E,
= (0,0) on z=0, outside E,

M
= (19xsy:x29Xy9Y29--"y » 0,0,0,500., 0),

8.
fas
W
)

M
(0,0,05004, 0’1:x’y’xz’xV9y29-": Y ),

s
n

d

(1) = (dp0s40s8n1sdpgeees dopprBo02®102%0128007* * 280y »

(4+1) (M+2),

Sl
|

{5.1)

101.



N

then [u(x,y), v(x,y)]= £y, Z Z (ZJuJL k’zjvjka)’

with u, : coefficients of the load-displacement

jk® Jk‘
équations (3.5),

M+1 M+2
(1!x’y:x ’Wsy serey Xy s ¥ )

2 (M+3) (M+h ), )

(zj]

q

The derivetives of u and v with respect to x, which we need to

calculate the slip, are readily found, They are:

P g
3
Gz ax)' "£50 2 .z (zﬁujka’ngjka)’

M1

with [z3)=[&i)— (0,1,0,2%,5,0,3%x%, 000y ¥ ' O).

The relative slip due to the traction distribution of (5.1) in
steady rolling is then according to (4.15¢),

9
(Sx’sy) = (Ux-%’ + '3%9 Uy+¢x + %) s

{ = il § % }
g = ———— z'u. T,.
x = oo “foo Wlhg  gmg g=q 9 9k ET
{ - = i)' ; }
s = + + ziv.. 1. }.
y = Mool Wi TR T L, je1 9k E

According to (3.51),

_ _3uN__ 2ucvg
"o = Zrab6 - T1-0)pE °

v v
E:—ip_ __Lp. x:.‘?ﬂ
pe °? ue T

so that the relative slip due to the tractions of (5.1) becomes

\

a = - z+
5, = Wfop (AE-AX k;, 321 235yt
(o D1 avgs)s
s_ = uf n+AX + <
v 00 Kl sy Vik"k
(1-0)E /2
A= 1-e25in0ds.
E N )
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When we use the X and Y of (5.1),.and we calculate the surface
displacement differences also in the manner of (5.1), we accomplish
that the surface of the half-space outside the contact area is free
of traction, and that the displacement and stress vanish at infinity.
In terms of the boundary conditions (4.16), this means that (4.16c)
and (4,16a) are satisfied, Also, the normal pressure of (5.1) is the
same as the one in (4.16b). So, only condition (4.164) remains for
the slip region Eg and condition (4,16e) for the locked region E .

We repest these boundary conditions here:

) wo _ax
Sy F 5% 5y T Uy+¢x e
wx=sx/s, w&=gy/s, s=¢s§+s§; (5.4)
(X,Y)=quoo/1-(x/a)2-(y/b)2 [wx,wy in slip area Eg»

=g = = - 2., 2 4
5,78y 0, |(X,Y)|suz quOOVﬁ (x/a}2~(y/b)¢ in locked area E .

/

We set

(x*,¥")=(%,Y)/uz=(X,¥)/ {ut,&/1-(x/a) %~ (y/b)*}. (5.5)
Then we can reformulate the boundary conditions:

1
T=(X'-wx)2+(Y'—wy)2, 8= Ty (si+s§),

2
uet
00
T=0 in E_, (5.6)
g
§=0,[(X',¥")|< 1 in E.

vwhere Eg and E are unknown, and follow from the solution of the
problem, We defined S so that 1t is independent of the factor ufoo
which represents the normal load and the coefficient of friction, Ve
eliminate Eg and Eh from the equations by demanding that the

product TS vanishes everywhere in E. Moreover, |(wx,wy)|=1, so that
the inequality |(X',Y')|< 1 must hold throughout E. So we obtain

for (5.6):

™S =0, [(X,Y')|< 1 in E. (5.7)

If {5.7) is satisfied, we have found the solution of the problem.
Since TS > 0 for any choice of (X',Y'), we can integrate (5.7) to

obtain
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e}
u

Jf wrs axay = 0, |(X*,¥'){< 11inE,
E

(5.8)

W = weightfunction > 0 in E .

]

Here we have put in a positive weightfunétion W. Again, since

WTS > 0, the integral I > O for any thoice of (X',Y'), sq that the
value zero of the integral is actually a minimum. So we can
reformulate (5.8):

= [[ WIS dxdy = minimal, |(X',¥')]|<1 in E. (5.9)
E

The two conditions of (5.9) are completely equivalent to the
boundary conditions (5.%4), but (5.9) can be used to obtain an
approximate solution, namely by introducing the tr;actions of (5.1)
into it, with the corresponding relative slip (5.3), and minimizing

the integral with respect to the t,. The inequality |(X',Y')[< 1 is

k
verified afterwards.

5.12, Numerical analysis.

We summarize the new formulation of the problem:

I

/[ WIS axdy is minimal, [(X',Y')|< 1 in E;
E

H
i

L 2 [ 2 2 2 2452
(Xt V24 (Y1~ )2, uPg, 028 = sis?,

D
(x',Y*) =kz (xk k,yk )
- } (5.10)

v, = s./s, vy = sy/s, s = I(Sx'sy) fy

P a
] =1-\foo(AF—AXX+ z Z ZJ V‘k k)’

k=1 =
P q
= 1
B, = (An+Ax + .}_:1 321 2} Vi Tk)'
A= (1-0)E/2/g . )

(5.10) is an approximation in the sense that we take along only
={(M+1) (M2) parameters T,» 80 that X' and Y' are arbitrary M~th
degree polynomials in x end y, the coefficients of which are
determined from condition (5.9).

In order to determine the T from the condition I = minimal, we

10’*.



seek the stationary value of I with respect to the Ty by iteration.
We are not certain that the stationary value we find in actually the
gbsolute minimum or even a relastive minimum., In practice, however,
we determined I after each iteration step and we found in
practically all cases that at the stationary value, I was indeed the
smallest as compared with the series of values of I obtained during
the iteration. In the cases where this was not so, the solution was
grossly at fault, So there is a strong presumption to believe that
we indeed find a minimm,

At the staxionary value,

2L 2B) axay = 0. © (5.11)

This is a difficult equation, as a consequence, principally, of the
complicated dependence of (wx,wy) on T,. We find the solution by
NEWTON's method: we start with an arbitrary 1'0, and proceed by

iteration, as follows:

(-r;] = arbitrary; (5.12a)
3T dTS )
(81 )Tk—rk+A-rk E k) Tk—Ti dxdy +
R a2mg
+j}]3'w ) TT_k__z-)k Eﬂ_nmjz dxdy = 0, ((5.121;)
kK = 1,2,3,0005 D = (M+1) (M#2);

'rn+1—1' +A'rk, if max ]Ar |<8 ma.xl'r ] then solution is found;
k k

k 'k

§: a small positive number which can be chosen arbitrarily.

(5.12¢)

The equations of (5.12b) are p linear equations in the p unknowns
ATL.
The integrals are evaluated numerically, by replacing them by un-

weighted sums over a fairly large number of points, This was done

for two reasons, The most important reason is that the integrals

have no physical meaning, so that we are not interested in their
precise value. In fact, one could directly have used finite sums
instead of integrals in the original equations. Secondly, the

function T, containing as it does the discontinuous functions L and
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Wy’ is a function with locally large gradients. This does not render
it very suitable for numerical integration methods involving higher
order differences.

The process (5.12) of successive approximations converges fairly
rapidly: it depends on the behaviour of the resulting function WTS,
and to sore extent also on the starting value T;. When in the calcul-
ation of several cases we work in a chainlike fashion, by slowly in-
creasing the creepage and the spin, and using the previous result as
a starting value, the mumber of iterations for §=0.001 (see 5.12¢)
is about 5, sometimes increasing to 7 or 8 when the adhesion area is
large, or dropping down to 3 when the adhesion area is small. The
nunber of iterations increases slowly with the degree 1 of the
polynomials X' and Y'. In the calculation performed on a series of
33 different values of creepage and spin, we needed an average of
3.9 iterations per case for 152 (12 1's), L.4 iterations per case
for =3 (20 t's), and 4.7 iterations per case for M=4 (30 t's). The
number § of (5.12¢) was taken equal to 0.001.

In the contact area we took 80 points to approximate the
integral when M=2 or M=3, and about 100 points when M=k, The calcul-
ations proved to be exceedingly lengthy. On the fast Telefunken TRL
computer of Delft Technologicel University, each iteration step
(5.12b), which consists of the evaluation of the coefficients of the
linear equations and their subsequent solution, took the following

amount of machine time:

M=2, 12 equations, 80 points in the contact area .,.18 sec.
M=3, 20 equations, 80 points in the contact area ...35 sec.{(5.13)

M=4, 30 equations, 100 points in the contact area ,..87 sec.

Most of the time was used in setting up the equations. These long
calculating times are due to the complicated character of
az(Ts)/arkaT2 (see sec. 5.23), and to the fact that these calcul-
ations have to be performed for every point, that is, they must be
repeated about a hundred times for each iteration step.

' In the calculation outlined sbove, the inequality |(X',Y')|< 1
is ignored. After the Ty have been determined, we inspect the

solution to see whether |(X',Y')|< 1 in each point (x,y) of the
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contact area. The output of the computer programme has been especially
designed to facilitate this verification, see sec, 5.24, We found
that generally |(X',Y')|> 1 at some points., In judging this
sberration, we distinguish three cases, viz. T<S, T>8, and (x,y)

near the edge of the contact area.

In the case T<S, the reduced tangential tractions (X',Y') are
closer to the Coulomb value than the slip is to zero, That means that
the solution at & point where T<S approximates slip area conditions,
in which |(X',Y')| should be equal to wnity. That means that the
tractionvI(X‘,Y')[ we actually find should be regarded as a more or
less succesful approximation of unity. The situation |(X',¥Y')|> 1,
T<S indeed ocecurred very frequently in our numerical work, but for
the reason just mentioned should not be used to throw doubt on the
validity of the solution.

Points with [(X',Y')|> 1, T>S do throw doubt on the validity of
the solution. A point of this type we call an aberration of the
solution. Aberrations also occurred in our numerical work, but much
less frequently, and mostly concentrated in a small portion of the
contact area. Solutions with aberrations occur mostly at values of
the spin close to the pesks of fig. 23, sec. 5.33. The argument of
the case T<S does not apply, since the solution at a point with T>8
approximates adhesion ares conditions, where |(X',Y')| should be
smaller than unity. One might be tempted to think that where
| (X*,Y") | passes the value 1, a slip area with small T should be
found. This is, however, not always the case, since a small value of
T implies not only that |[(X',Y')|as1, but also that the angle between
slip and traction must be small, Mostly this angle is not small in
an aberration.

As to the case that (x,y) is near the edge of the contact area
while [(X',Y')|> 1, we observe that for reasons discussed in sec.

5.13, we used the weight function

W=, s 1-x2/a2-y2 /12, (5.1k4)

A5 a consequence, little weight is attached during the minimalisation
process to the behaviour of the solution near the edge of the contact

ares where W1 is small, and hence in judging the solution in the
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light of the requirement that |(X',Y')|< 1, little importance
should be atbached to the behaviour near the edge.

5.13. The choice of the weight fumction.

The weight function of (5.14) was chosen, because then WT is
proportional to the square of the absolute value of the difference
between the actual tractions (X,Y) and the COULOMB traction
A (wx,wy) , With the proportionality constant u"’-fOO?—GZ. As a
consequence, u"foo"GZVZ(W1TS) is the square of the rate of work per
unit area done by the difference of the actual tractions (X,Y) and
the COULOMB traction pZ (wx,wy) on the slip V(sx,sy), if the latter
were in the same direction as the traction difference
(X—uwa. Y—uZwy) .

We also tried W=1, and compared the total force obtained with
w=W, with the totel force obtained with W=1 for the degree M of the
traction polynomials (X',Y') equal to 2 (12 t's), to 3 (20 1's), and
to 4 (30 1's). We did not use higher degrees M, because of the large
amount of machine time, see (5.13). We calculated the force fy=Fy/uN
for a circular contact area, POISSON's ratio 0=0.28, and for pure
lateral creepage [\)x=¢=0, oy#o) » and also for pure spin (ux=uy=0,
¢#0]. The results of the comparison are given in Tables 4 and 5. In
reading the tables it should be remembered that the maximum value of

Table 4, A comparison of fy with W=1 and with W=W,, for M=lL.

1

v_=¢=0 ux=uy==0

Max | Mean Max | Mean

Ify’W=1 - fy,W=W1| 0.016[0,009| 0,046 | 0.016

Table 5. A comparison of fy with W=1, W=W_, with the conjectured

1°
value of £ ,
y

v_=¢=0 ux=uy=0

W ] Max |Mean | W ] Max |Mean

1 10.022|0.009]| 1 |0.0kk {0,023

1 1 ' -
szy,w=1 .M=L|»+2fy,w=w1 =y~ Ty M=3 |
W,|0.033]0.011} w,{0.0290.018
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fy is 1.
We see from Table 4 that there is a distinet difference

between £ ... and £ . _. for M=h, This indicates that we should
y!W-W-| y,W=1

have used a higher value of M in our calculation. The large amount
of machine time precluded that, however.

1 1 :
In table 5 we assume that (gfy’w___1’M=h+gfy’W=W1 ,M=h) is the

correct value of fy with which we want to compare the performance of
polyncmials with degree M=3. We see from Table 5 that the polynomials
with M=3 give passable results, The weightfunction W=1 performed
better ;hha.n W=W1 in the case of pure lateral creepage, and W=W1
performed better than W=1 in the case of pure spin. In view of the
fact that the largest errors occur in the case of pure spin, and in
view of the amount of machine time available, we decided to adopt

M=3, W=W1, in all our further calculations.

5,14, Final remarks on the method.

It should be observed that the formulation of the boundary
value problem as & minimalization problem is by no means unique. In
fact, one could also minimize the integral f f WTmSndxdy, but we

E

preferred the integral (5.9), since the integrand is the square of a
rate of work per unit area. A possibility to be comsidered is m=n=1:
the integrand is then a rate of work per unit area. We tried it for a
single case in which the integrand W.lTS gave good results, but it
turned out that the iteration did not converge. We suspect that this
is because VTS has too large gradients near T=0 and S=0 to be
workable.
A possibility which has been investigated more fully is the

minimalization of

/] wzcnaxay+jj W, 8§ dxdy = minimal,

Fg & (5.15)

[(x',¥')|< 1inE .
This form has the drawback that the adhesion area and the slip area
explicitly enter into the minimalization problem. It has the
advantage that for fixed Eg and Eh’ for fixed L and Wy and if W2
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and W3 are functions of (x,y) only, it is a least squares problem,
since S and T are then quadratic in T+ So it has & single stationary
value which is actually the absolute minimum. A situation which
approaches fixed [wx,wy] is that of pure creepage with vanishing
POISSON's ratio o, The variation of Eg and Eg in all cases turns out
3S, then Eh
T<W_S, Eg should be increased. In the final

27 '3

solution W2T=W3S on the boundary. So, assuming that the solution

continuously changes with the creepage, we see that in the case of

to be simple: if at a certain point of the boundary W2T5w

should be increased, if W

pure creepage with o=0 we find the best solution in the sense of
least squares, and assuming that this feature of (5.15) does not
change when o#0 and ¢#0, we see that there is a strong presumption,
that we will find the solution from the stationary value of (5.15).
Now, by a special choice of W, and W, we can obtain (5.9) back.

2 3
One must then take W _=VWS, and W_=WT., Note that now W, and W_ depend

also on T and S, whiih is diffeient from what we assimed be?ore.

Seen in this light one can say that in (5.9) WI serves as a weight
function on S in the adhesion area, so that the larger is the
difference of the approximation of the traction and the COULOMB
traction at a certain point, the more importance is attached to a
small value of 5 at that point, while in the slip area S serves as a
weight function on WT,so that the larger the slip at a certain point,
the more importance is attached to a small difference between the
approximation of the traction and the COULQMB traction at that
point.

It was found that the results of (5.12) compared better with the
experiment than those of (5.15). In view of the fact that by making
(5.15) stationary one probably finds the absolute minimum, we
conclude that the process (5.12) of making (5.9) stationary probably
leads to the absolute minimum of (5.9).

Let us finally return for a moment to the fact that we have
used the tractions of ch. 3, which are so that they vanish at the
edge of the contact area. One might argue that this choice is not a
necessary one, and that one could use any set of tractions which form
a complete set of functions, So one could also use the tractions of

ch, 2, which are infinite at the edge of the contact area. In that
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case the displacement differences can be chosen arbitrarily, for
instance
u v X PXy, V uyx 30X,

We see that u and v are second degree polynomials, and hence the
corresponding traction in the contact area has the form

1
2]

6{1- (x/a)2-(y/0)2}7% (aggta qurdy yhapgx?+a, partdyov?)

o{1-(x/a)2-(y/b)2}"

X

n

Y

Y

4

2 2
(eggteqorregTregxire, xyre v2).

Moreover, we see from (4.15c) that the relative slip (sx,sy)=(0,0)
throughout the contact area, so that the integral I of (5.9) actually
venishes. However, |(X,Y)|>>uZ near the edge, from which it appears
that we must reject this solution. So we see that the inequality
[(X,Y)|suZ is indeed essential for the solution of the problem, and
we see that we cannot use the tractions of ch. 2 in a calculation in
which the inequality is vérified afterwards. Instead, we use the

tractions of ch. 3, which, as we recall, have the form

(X,Y) = ¢f{1-(x/a)2-(y/v)2 +§ ! (a Pq,epq)xpyq.

These tractions already reflect something of the inequality
| (X,Y) |$uZ, namely, th=>y behave correctly at the edge of the contact
area, and the inequality reduces to
P_q q 3uN
(T apgx™® Doy s 5is -
This relationship is much easier to satisfy that the inequality
D, a P Q 3UIT _ 2 2
[ a, =% [ e 2y s o D1-(e/a) - (y/o)
which obtains in the case that we use the tractions of ch., 2, Indeed,
the tractions of ch., 3 lead to an acceptable spproximative solution
in a great many cases, while, as we saw, the tractions of ch. 2 do

not.

5.2, The computer programme.

In the subsections of the present section, we discuss several

features of the ALGOI~60 computer programme which was written to
perform the iteration described by (5.12). The input is described in
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5.21, in order to give some impression of the degree of generality
of the programme, The possibility to use several forms of the

integrand is described in 5.22, the optimalization of the programme
is discussed in 5,23, and in 5.24 the output is described with the

aid of an example (fig. 12).

5,21, The input.,

To be specified at input are:

a) The degree M of the traction polynomials;

b) The ratio of the axes a/b of the contact ellipse;
c) POISSON's ratio o

d) The points for the calculation of the integral;
e) The number & of {5.12¢);

f) The meximum number of iterations;

g) Creepage and spin;

h) If necessary, the starting values T;;

i) Several features of the output.

a) The importance of the generality of M hardly needs adstruction.
Owing to the lerge amount of machine time involved, (see (5.13)),
only small values of M (say, up to 6) are of interest. So the
load-displacement equations can be kept in core storage, which is
important with a view to calculating speed.

a,b,¢) The most difficult to adapt to the demand of variable M, a/b,
and o was the construction of the load-displacement equations.
They are constructed by the machine in such a way that use is made
of the fact that they fall apart into four independent systems of
equations, This was done ‘o avoid the occurrence of unnecessary
zeros in the equations, The load-displacement equations are
computed only once for a whole series of calculations, After they
have been computed, the lengthy procedure needed for their
calculation is placed on tape and the memory space occupied by it
is again free for use,

d) The points needed for the ¢alculation of the integral are taken so
that they form a rectangular network, the meshlength of which in

the x and y directions can be specified separately.
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e)

f)

g)

h)

i)

Ordinerily, we took 6=0,001. It should be noted that ma.x|A-rk| in
k

(5.12¢) is an approximation of the error present in ri. Since in

(5.12b) terms of order At At are neglected, the ri” which we

obtain at the end of the iteration contains errors of order

maxA'r|2
klk -6

_F'T' ’ that is, of order 62 = 10 .
x k

Ordinarily, we set the meximum number of iterations equal to 12.
If after these 12 iterations the inequality (5.12¢) is not
satisfied, the machine concludes that the calculation diverges,
and proceeds to another case.

Creepage and spin are put in in terms of the significant data of

the following triple loop:
for x:= X, step AX until Xe do
for a:= e, step Aa until LR do
for g:= 1 step 1 until & do 3 {5.16)

begin &:= U[l] cos o3 n:= u[l] sin aj
perform the calculation;

end; J

Here, v[1: R,e] is an array the dimension &  elements of which
are given in the input. o is the angle between the vector (g,n)
and the x-axis; it is given in degrees.

The programme works in a chainlike fashion, taking the resulting
as the starting value +? for the next case. In the first case

k k
to be treated, T; is set equal to zero, unless it is specified

T

otherwise. The presence of a set of starting values {T]Z} in the
input is indicated by a control word in the input.
The features of the output which are under control of the input

are discussed in sec. 5.2k,

5,22, The form of the integrand.

Tt was the object during the writing of the programme to put as

113.



few restrictions on the form of the integrand of I as was possible
in view of the fact that hardly any loss of machine time may be
suffered. So we chose as a general form of the integramd the
function f(x,y,a,b,T,S). f is calculated by a procedure which gives

the values of

* ° .o

. ¥ *
£, 2, 8, 27, 27, 87,

": differentiation with respect to S, (5.17)

" differentiation with respect to T,

which are all that is needed from f in the course of the calculation,
as we will see in sec. 5.23. Another function f can sasily be tried
by a modification of the body of the f-procedure alone. In order to
facilitate this, the f-procedure is kept separate from the rest of
the programme. More specifically, it is a pretranslated procedure in
the Delft TR4,

Up to now, we have extensively tried f=TS and £=W,TIS. We ealso
tried f=¢ﬁ:§§. It should be noted in this connection that the form
(5.15) is not caught in this way: a separate programme was written

for it, which actually preceeded the present programme in time.

5.23. Optimalisation of the programme.

With a view to the formidable amount of machine time, the pro-
gramme had to be optimalized as much as possible. Consequently, the
first demand is that the load-displacement equations, which are
constantly referred to in the course of the calculation, should be
immediately available at all times, Hence they were placed in core
storage. The procedure which computes them is used only once for a
whole series of cases, so it was placed on magnetic tape in order to
save space.

Since every point of the network covering the contact area
gives its contribution to every one of the (M+1)2(M+2)2 coefficients
of the linear equations (5.12b), the generation of these equations
takes up most of the machine time. Consequently, these equations are
placed in core storage, and special case is taken to perform the

calculation as efficiently as possible. This optimalisation took the
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form of reducing the number of operations in the innermost loop of
the programme as much as possible. We will give here the analysis
involved.,

We introduce the following notations:
= = = P2402.
P sx/ufoo, Q sy/ufoo==%s P2+Q2;

Jk: differentiation with respect to Ty (5.18)
*: differentiation with respect to T;

': differentiation with respect to S.
/

Hence, by (5.10),

1
1 2% U

N~ 0

v, = P/VS, v = Q/v8, Py = j

4 ' (5.19)
= ! = ] =
Q,k jz1 2} Vi X,k X Y,k Yy j

Also, we set

Us=X'-w, V= Y'-wy==9 T=U2+V2, (5.20)
We differentiste f(x,¥y,a,b,T,5) with respect to Tyt That gives
£ =fT_ +f'8 (5.21)
kT Tk k o
We diffcrentiate (5.21) with respect to Ty
* °
Tre T T T e v T8 ke ™

+ 0.0 o+t (T.s +T S )+ s .S (5.22)
k ;8 Lk W27k k0t

We observe that in £, and f occur only the gquantities (5.17)
>

k kg
?
which are produced by the f-procedure.

In order to be able to evaluate (5.21) and (5.22), we must have

the derivatives T,k’ S,k’ T,kl’ S,klz

= 2
S,k' ZPP’k + QQ,k, (5.23)

S

2P P+ 2
k2 aFe T 299 g

the latter, since according to (5.19) P
Also,

and Q , are independent of
ok oK

TR,.

115.



Tk T 20 | 2vv»k .
Uy = Xy = (P1B) o= x s o (pog ,-q2P )=
= X:k + 75- (wxwa,k_W;P,kJ » (5.24)
(RS CACHRES SV '5—1,/5 (e P20 )=
=Y ¢ —j/-_s- (wxwyP’k-wiQ’k) . J
We differentiate T,k with respect to Ty That gives after scme
calculation, if we recall that X;;l=Y1'd=O:
T,kz = 2U,kU,£ + 2V’kV’2 + QUU,kE + QW’kz 5
U,kz =-% P,l [3WXW§P;k+(wy_3wywi)Q,k]+
+'% Q,E [(wy-3wyW§)P,k+(wx-wawi)Q,k]; (5.25)
V,kz ='é P,L [(w&-3w&w§)P,k+fwx-3wxw§)Q’k]+
+’% Q,l [wa-3wﬁw§)P,k+3wyW§ Q,k]'

We introduce (5.23), (5.24), and (5.25) into (5.22). Clearly, f g 18
19 3 t 1 t 1]
a bilinear form in (X,k’ Y,k’ P,k’ Q,k) and (X,L’ Y,z, P,z, Q,Ej' We

write 1t in matrix form, as follows:

- 7 Mx T
T = @, Y2 0 ) Ay A, A5 Ay X ] (5-268)

Aoy By By Ay | Yy
Ay Ay A5 Ay P,k
_Aln ho Bys Ath Q‘,kJ

with
q q
= f = 1 = = ' = ! . .
Aij Aji’ X,l Xp» Y’l-yl, P’E j21zj Us g Q’z j£1ZJ Vig 0 (5.26b)
and
Ay, = 2" + L2, A, = Le**yv,
= __2_ 2 ®e - * % -
Ag 5 Tvr 4 beTUP - br Uwy(Uwy W ) /Y8, oo
=2__ * had ®% > 5.26¢c
A, = T 4eTUQ + br wa(Uwy-wa)/@,
- * %2
A, =2f% + herrV2,
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_ 2_ # # o _ 2E . _ 1
Ay =T L ¥ 4T PV - bf me(Uwy v ) /8,

e _2_ Ro e b -
Ay, = =Tk Lf vQ + bt wa(Uwy wa)//é,

2 #r oo 2 _ 2 .
Ay =%T {wy+3wxwy+V(Wx 3wxwy)} + 2f +

i £%%42 (w_~vwr_)2-8£" w_w_(Uw_-Vw_)+ht P2,
S A A xXyty X (5.26¢)
, (5.26¢

Ay =2 3 2) 7 (302
34 = T {—way+U(wy 3wywx)+V(Wx 3nyy)} +
Lo wew r o N2 L A N N .
- = f - 2 2 w2 - °t
= f wxwyLUwy W )% +he (wx wy)LUwy Vv J+hf PQ,
=2 2 2 - 2 '
Ay =5 {wx+3vawx-|-U(wy 3Wywx)} +2f +

+ —g- %2 (ow v ) 248¢% RAMCENE J
Tt should be noted that all three factors of (5.26a) are position
dependent., It should also be observed that if f=W1TS or =TS, only
A21=A12 venishes identically. So, very little is gained by writing
a special programme dealing with these cases only. The greater
generality of f in the present programme is thus obtained at hardly
any cost.

A programme which computes the coefficients ff,k£= ff,lk of the
equations (5.12b) in a way which is based on the form (5.26a) of

i k! is easily given. Its innermost loop might look as follows:

Generate the 4 arrays X' Yo Pys Qs 3
L) * ] L
comment here and only here the load-displacement
equetions are used;
Generate the A..;
1J
comment no array to save time;

pi=  (M+1)(M+2);

for ki= 1 step 1 until p do \ (5.27)
H s = ' t 4 + .
begin Cir= Ay X'y + ApYN + AgP oy + AQ s
C2:= vee) 03:= ces) Ch:= coe}
comment the Ci form no array to save time;

for #:= k step 1 until p do

o 1 + 7Y .
[£ ggi= ff,kz Xy X CRP T O0
end; /

By meking use of the fact that half of the numbers X'l and Y‘Z
L] ]
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vanish, (see (5.26b) and (5.1)), more calculation time can be saved.
We avoid the use of subscripted variables as much as possible, since
the call of a subscripted variable takes more time than the call of

an ordinary variable.

5,24, The output.

In the course of time, the output underwent a number of changes.
We will discuss here only the final version, which was introduced
when T5% of the calculations described in sec. 5.33 were finished. A
page of this output is reproduced in fig. 12. We will discuss this
figure in some detail, in order to give an impression of the
verification of the inequality in (5.9).

The format of the numbers in fig. 12 has three forms:

texxx, txx: a floating number with exponent at the right (fl);
txxxexx ;@ fixed point number (£i);¢(5.28)

£X XX : an integer (in).

It should be remembered that throughout the programme the major

semi-axis £ is unit of length.

SPIN, MICROSLIP, HOEK: a1(fi) ae(fi) a3(fi)

with a,=X, a,=v, a,=a, see (5.106) .

2 3
Specification of creepage and spin.

UPSX, UPSY, PII: a1(fi) ae(fi) a3(fi)
with a1=ux/ufoo, a2=uy/ufoo, a3=¢£/ufoo.

TOEG GEV a1(fl) az(fl) GEMAFW a3(f1)

with a, = 6 max Irn;1l, 8

5 = m;x ]ATk|, see (5.12¢),

n
8, =~% ) f(n)(x,y,a,b,T,S), m: number of points in
1

contact area,

We can see from the series of lines TOEG GEV etc. how fast the

iteration process converges. It should be noted that a, gives
an approximation of the error in the previous iteration. In
combination with the fast convergence when a, gets small (here even

faster than quedratic, when a, << 1) this justifies us to give 6 the

2
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modest value of 0,001, It should also be noted that a3 gives the

+ . R
mean value of f for 1, = ri rather than ™ 1, which i1s the one

k k
generated by the iteration., When the last value of a, is smaller

than all the previous ones, we conjecture that the siationary value
is a minimum, It is seen that in the present case this condition is
satisfied.

CONVER
After the machine concludes that the iteration is finished according
to the criteriwm (5.12¢), the word "conver" is printed. If the
iteration is not finished after the number of iterations specified at

input, the word "cycle" is printed and a new case is taken up.
F) FY MZ: a1(fi) a, (fi) a3(fi)

with a1=fx=Fx/uN, a2=fy=Fy/uN, a3=mz=Mz/uNc.
The total force and the torsional couple exerted on the lower body by
the upper body.

TAU

(& number of lines of floating numbers)
The Ty of the solution, Taking the inner product with xi and yg (see
(5.1)) gives the traction polynomials X'=X/uZ, and Y'=Y/uZ
respectively., It should be recalled in computing X' and Y' that the
mejor semi-axis of the ellipse is the unit of length.

uvx

(a number of lines of floating numbers)
The slip polynomials, Taking the inner product with 2xM';:1 and 2yM;1
(see (5.1)) gives P and Q. The contributions of the creepage and the
spin, which are first degree polynomials, are accounted for in UVX,

AFWIJKINGEN @

7,8,Y,X,F,S,HOEK: a1(fl)ae(fl)a3(in)ah(in)a5(fi)a6(fi)37(fi)

with a1=T, a2=S, (ah,a3) = coordinates in the network of the point

under consideration, a_=vX'4+Y'<, a6=¢§, a= angle between traction

5
and slip in degrees.

This is a list of all the aberrations, i.e. the points of the network
with T>8, |[(X',Y')|>1, that is, the points in which the inequality of

(5.9) is not satisfied in the critical case that T>S., In the present
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case, we have that the aberration occurs at the edge of the contact

area, while T is only a little larger then S. So the solution is

acceptable.
G,H,A,OPP: &

1(in) az(in) a3(in) ah(in)

with a1=number of separate areas of slip; a2=number of separate areas
of adhesion; a3=number of aberrations; ah=number of points in Eh.
This line gives some statistics regarding the solution. It should be
observed that the solution itself does not specify the division of
the contact area in areas of slip and locked areas. One can only say
that a point with T<<S belongs to the area of slip, while a point
with T>>S belongs to the area of adhesion, Quite arbitrarily, we set
the boundary between an area of slip and an area of adhesion at the
line T=S. It will be seen later on that in the case represented by
fig. 12 the region where T®S is narrow, so that there is in fact a

sharp distribution between the locked region Eh and the slip region

E .
g
CONTACTVLAK :
T 000~-1=1=1=1000
etc. etc.

This is a crude picture of the division of the contact area in aress
of slip and adhesion. The numbers at the right were only used to
generate the picture on the left, and to compute the statisties of
G,H, etc. In the picture on the left, the column of integers
indicates the line mumber {y-coordinate}. A point indicates that the
point belongs to the area of slip, an H indicates that it belongs to
the locked area, and an A indicates an aberration. Complete data
regarding the solution at an sberration are found in the AFWIJKINGEN
list, It is seen from the picture in fig. 12 that we took a
rectangular mesh of points which has at most 10 points in the x-
direction and 10 points in the y-direction giving & total of 80
points in the contact area.

T,S,INT,X,F,FW,ANF,WS,ARS:

Y: ao(fi)

a1(fl) ag(fl) a,(f1) au(fi) as(fi) a6(fi) a7(fi) as(fi) a9(fi)

3

etc,



with a = y-coordinate of the points listed below; a1=T, a2=S, a3=f,

a) = x-coordinate of the point, 85 = VX' 24y 12, 2 = VX7+Y2/ufOOG,
a, = angle between traction and x-axis in degrees, ag = /38,
By = angle between slip and x~axis in degrees., The angles &y and

a, ere between 0° and 90°, when X'>0, Y'>0; 8,05 8,20,

This is a specification of the solution at the point (ah,ao), where
it should be recalled that the major semi-axis is unit of length. The
values of (&h’ao) are specified in the input., From this list we cen
judge the quality of the solution. In the case represented by fig.12
one can see from the T and S of the points (-0,35, 0.5),

(-0.25, 0.5), and (-0.15, 0.5) that the distinction between locked
area and slip area is sharply defined. It is also seen that the
solution at y = -0.5 is of good quality. The angle between slip and
traction is satisfactorily small (up to 30), and the traction is
quite close to the COULOMB value (error up to 4%). The values of f
are all below average, see GEMAFW, The values of f at y = + 0.5 are
above average, and it is seen that the guality of the solution is

much worse than at y = - 0.5. It is worst at the separstrix T = S.

5.3. Numerical results.

The present section is divided into three parts. In 5.31, we
calculate several cases with the object of comparing them with the
experiments of JOHNSON [1,3], and of HAINES and OLLERTON [1]. In 5.31
we treat only cases with circular contact area, since most of the
experimental evidence is so confined,

In 5.32, we try to give a qualitative survey of the behaviour
of the surface stresses occurring under conditions of rolling with
creepage and spin,

Finally, we direct our attention in 5.33 to the total force

exerted by the upper body on the lower body.

5.31. Comparison with the experiment.

We calculated the cases of pure creepage in the x and y
directions respectively, of pure spin and of combined lateral
creepege and spin all for a circular contact area, with the object

of comparing them with the experiments. The results are shown in
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figs. 13 to

17,

In fig. 13, the dimensionless forces fX = Fx/uN and fy = Fy/uN

are plotted against the creepage parameters £ = pr/pc, and

n = uyp/uc, respectively, Also plotted in fig, 13 are JOHNSON's

experimental values taken from [1]. As the theoretical curves for

the degrees M=2,3,L4 nearly coinecide, we show only one viz., M=2 for

the g—fx diagram, and M=l for the n-fy diagrem. The weight function

W=1, The agreement is quite satisfactory.
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Fig. 13. The total force due to longitudinal and
lateral creepage. a/b=1, 0=0,28, x=0.
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In fig. 14, fy is plotted as a function of the spin parameter
X=¢p/u, for zero creepage. The weight function w=w1. Curves for
M=2,3,4 are showm; where not drawn, the curve for M=2 follows the
curve for M=3, Also given are experimental results taken from K.L.
JOHNSON [3, fig. 8]. The coefficient of friction was not kiown; it
was adjusted to fit the curve M=b best (p=0,09%). It is seen that
the curve of M=3 lies markedly higher in the region x=0.T7 to x=2.
In this region, a change in the coefficient of frietion has little
effect upon the fit of theory and experiment. The curve of M=l in
that region lies somewhat lower than the curve of M=3, but still

above the experimental values.
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Fig. 14, The total force due to pure spin for various
degrees 1 in comparison with experiments by
JOHNSON, a/b=1, 0=0.28, u=0.094 (estimated).
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Fig. 15. The total force due to combined lateral creepage
and spin in comparison with experiments by
JOHNSOW. a/b=1, 0=0,23.
13 X=0; 2: X==0,561; 3: X=-2.25; h: X==4,78; 5: x=-9.58.
1,2,3: p=0.0845; 4,5: u=0.10k4k,

In fig. 15, the results of the numerical theory are compared with
the experimental evidence of JOHNSON [3] on combined lateral

creepage and spin, 1.e. u =0, (uy,q&)#(o,o). The numerical results
were obtained with the weight function W=W

also, the coefficient of friction u was not known; however, the

1 and the degree M=3, Here

differences between theory and experiment are rather insensitive to
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changes in p for the curves 1 and 2 of fig. 15 which represent small
values of the spin, so that they give a clear impression of the
deviation of theory and experiment for small spin, The curves 1,2,3
were measured with the same apparatus, so that it seemed natural to
suppose that the coefficient of friction was the same in all three
cases, It was adjusted so as to minimize the difference between
theory and experiment for the curve 3(pu=0.085). As a consequence of
the way in which u was estimated, the correlation between experiment
and theory for curve 3 is not necessarily as good as the one shown
in fig. 15, JOHNSON performed the experiments for the curves 4 and 5
(large spin) by means of a different apparatus, so that it seems
justified in assuming for curves L4 and 5 a coefficient of friction
which differs from the one taken in curves 1,2,3., The p for 4 and 5
was chosen so as to minimize the differences between theory and
experiment in those curves (u=0.10Lk), The differences appeared to be
very sensitive to changes in p. Consequently the correlstion between
experiment and theory is not necessarily as good for the curves 4 and
5 as the one shown in fig. 15.

The moment Mi agreed badly with the experiments., However, it was
pointed out by JOHNSON [3] that a moment Que to elastic hysteresis is
present in the experiments, which is of the same, or even larger
order of magnitude than the moment due to surface friction. So there
is little practical significance attached to the moment MZ as we
calculate it, and consequently we omit it from our further
considerations.

In fig., 16, the results for pure longitudinal creepage,
calculated with W‘=W1 and M=3, are compared with the photoelastic
work of HAINES and OLLERTON [1]. In the upper left part of fig. 16,
the circular contact area is divided into an area of adhesion and an
area of slip, the separatrix being assumed to be the line T=S. The
distinction between Eg and Eh is quite sharp. Also shown is the
separatrix according to HATINES and OLLERTON. It is seen that the
lines are quite close. Also shown in fig. 16 is a comparison
between HATINES and OLLERTON's surface stress and our results., The
agreement is best for y=0, and worst for y=0,80., The value of P (see
(5.18)) is shown for y=0. It is seen that it rises sharply in the slip
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Fig, 16. A comparison with the photoelastic
results of HATNES and OLLERTON.
a/b=1, 0=0.5, n=x=0, £=0.90.

zone, and winds itself about zero in the adhesion zone.

In fig. 17, we show the division of the contact area in areas
of slip and adhesion according to the numericel theory, the strip
theory (KAIKER [2]), end the experimental evidence of JOHNSON 4],
which consists of a photograph of the track of a rubber ball rolling
over a sooted transparent plate (JOHNSON [h], fig.8b). The value of
the spin parameter X=1.20, and POISSON's ratio 0=0,50 (for, taking
the rubber ball as the upper body, we have that ¢">>6", ¢7=0.503
hence, according to (2,10}, G=2G*, 0=0.50, k=0), The longitudinal
creepage ux=0, so that FX=O, and uy is chosen so that Fy also

veanishes: that is, we are in fig., 15 at the intersection of the line
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Fig. 17. The separatrix for combined lateral creepage and spin.
0=0.5, £ =0, X=1.20, n= -0.5T.
1: strip theory. 2: numerical theory.
Broken line: a photograph by JOHNSOI.

X=1.20 {not shown) with the n-axis. The theoretical separatrix is
the line T=S, the degree M=3, the weight function W=W1. It is seen
that JOHNSON's contour is asymmetric with respect to the x-axis,
while our contour is symmetric, as it should be with Ux=0, see
(4,26), This is attributed by JOHNSON to the fact that the soot is
swept into the adhesion area in the lower part of the figure, while

it is swept away from the adhesion area in the upper part.

5.32. Qualitative behaviour of the solution.

In the present section and its subsections, we will make some |
observations on the gqualitative behaviour of the solution in the
case of pure creepage (¢=0, sec. 5.321), pure spin (ux=uy=0, sec.

5.322), and arbitrary creepage and spin (sec. 5.323).

128,




5.321, Pure creepage.

In the case of I;ure creepage, the area of adhesion borders on
the leading edge of the contact area, and it is, according to the
numerical theory, approximately symmetric about the x-axis. In the
cases of purely longitudinal or purely lateral creepage, the form of
the area of adhesion is well predicted by the strip theory of KAIKER
[2:], which is a generalization of the strip theory due to HAINES and
OLLERTON [1]. According to KAIKER [2], the separatrix is found by
shifting the trailing edge of the contact area parallel to itself

along the x-axis, see fig. 18, where the case of a circular contact

orea of

areg

adhesion Eh

slip Eg

y

Fig. 18, Separatrix according to KAIKER [2] for pure creepage.

area is shown, So, in the theory of KAIKER [2], the area of adhesion
is symmetric about the x-axis when there is combined longitudinal and
lateral creepage, but no spin. When the total creepage increases, the
separabtrix comes to lie further and further from the trailing edge,
until there is no ares of adhesion left and gross sliding commences.
Adhesion areas of this type have been observed by HAINES-OLLERTON [1]
for pure longitudinal creepage, and by HAINES [2] for pure lateral
creepage.

The behaviour of the absolute value of the traction can be seen

from fig. 16. Going in the rolling direction elong a line parallel to
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the x-axis, the tangential traction first increases according to
[(X,Y)|=uZ in the slip area, then falls below uZ near the separatrix,
and stays below uZ in the locked area. According to the strip theory
of HAINES end OLLERTON [1] and of KAIKER [2], the curve representing
the traction would have a vertical fanvent at the separatrix.

The traction vectors are in general not parallel to each other.
In the case of pure longitudinal creepage, the traction direction
behaves qualitatively as sketched in fig. 19a. The division of the
contact area in areas of adhesion and slip is not shown, our
considerations are valid both for the area of slip and for the area
of adhesion, y is the angle between the traction and the x-axis. It
is seen that the angle vy vanishes on the x-axis, since the traction
is mirror-symmetric about the x~axis, see (L4.27), When the
longitudinal creepage changes sign, the direction of the traction is
reversed, that is, the arrows in fig. 19a are reversed. To give an
idea of the magnitude of vy, we give some values for £=0.8, n=y=0,
a/b=1, 0=0,28, Then Y5 = =Yg = 302 and Y, =Y, = 3°, For increasing
|y |, the absolute value of y increases. For increasing longitudinal
creepage |£|, |y| decreases. For increasing values of POISSON's
ratio o, |y| increases up to values of about 20° for 0=0,5, For

values near unity of the excentricity |e| of the contact ellipse,

Q) b)
=Y, ==Y, {{ A
1 P2
—_— e X } 4
! |
~<v, =<, P\ P\
By _— B
creepage creepage \\\-_l

Fig. 19. An impression of the direction of the traction for

a) longitudinal, b) lateral creepage, without spin,
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|y| decreases. It should be remarked that the foremost points of fig.
19a lie in the area of adhesion or close to it, when |£|=0.8. Deeper
in the adhesion area, and for smaller values of ]E], the traction
becomes much smaller than the COULOMB value, and its direction
according to the numerical method tends to be erratic. One should not
place undue reliance on the fact that the direction of (X',Y') is
erratic when [(X',Y')[<<1, since the error in the numerical method
may drown the information. We also meet thig phenomenon later on.

In the case of pure lateral creepage (Ux=¢=0), the traction
direction behaves gualitatively as sketched in fig. 19b., It is seen
from fig. 19b that on the x-axis the angle 8=0, since according to
(4.,26), the traction and slip are mirror anti-symmetric about the
x-axis, whenever Ux=0. Also, when under the conditions of fig. 19b
the lateral creepage changes sign, traction and slip are reversed.

If 1=0.8, E=y=0, a/b=1, 0=0.28, then B,= -s3=7°, end B,= ’Bh=3o‘

Bl

; |8| decreases for |e|+1, and for

increases for increasing ly
» The foremost points of fig. 19b lie in the area of

increasing |n
adhesion or close to it when |n|=0.8. Deeper in the adhesion area,
and for smaller values of |nl, the traction becomes much smaller than
the COULOMB value, and its direction according to the numerical
theory tends to be erratic.

We finally observe that the maximum values of |y| and |B] found
here are of the same order of magnitude as the angle 6 of (4.46),
which is the maximum angle between slip and traction in the problem
of infinitesimal creepage and spin. The same values also occur in the
strip theory of KAIKER (2], fig. k.

We leave the discussion of the total force exerted on the lower

body to section 5.33.

5-322. Pure spin.

In the case of pure spin, the ares of adhesion is symmetric
sbout the x-axis, in accordance with the symmetry relations (%.26).
In fig. 20, we sketched the division of the contact area into areas
of slip eand adhesion for different values of the spin persameter X.
The separatrix is assumed to be the line T=S5. All three figures

correspond to a/b=1, 0=0.28, Ux=Uy=O‘ The adhesion areas are shown
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Fig. 20. a/e: Areas of adhesion (shown shaded) and slip for pure spin.

a/b=1, 0=0.28. f: Traction Y and slip Q on the x-axis for X=2.65,
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shaded. The trivial case =0 hss not been sketched; the adhesion
ares then covers the whole of the contact area (free rolling). In
fig, 20a, the case X=0,53 has been sketched. It is seen that slip
commences at the trailing edge of the contact area, but that the
x-axis lies entirely in the adhesion zone. For increasing values of
the spin, the areas of slip grow, while the x-axis remains in the
adhesion zone; the adhesion area becomes narrow in the y-direction
(see fig. 20b, x=1.24), and finally splits into two parts (fig.20c
X=1.95) . The island on the left is the adhesion ares sbout the point
with X?Y=sx=sy=0. The traction vectors from a rotating field about
this adhesion area, see fig., 21. Both slip and traction have a large
gradient there in the numerical solution, see fig. 20f, With further
inereasing spin, the adhesion area on the right of fig. 20c decreases
in size; then it breaks up into smell parts (fig. 204, X=2.65), and
finally venishes (fig. 20e, X > 3). The island on the left remains,
retains the character outlined sbove, but moves inward toward the
centre of the contact area, where the spin pole of LUTZ [1,2,3] and
WERNITZ [1,2] is situated (see (4.93)). The behaviour of the solution
on the x-axis, upon which the islend lies, can be gathered from fig.
20f, in vhich is sketched the relative slip Q (see (5.18)) and the
distribution of the traction Y, both on the x-axis., The circle
represents the COULOMB value of the traction., It is seen that slip
and traction vanish at sbout the same point in the adhesion island
on the left. It is also seen that going in the rolling direction the
relstive slip Q increases sharply with increasing x, attains a
naximum, and decresses again with a much smaller gradient. This
clearly shows the influence of the two small adhesion areas on the
right of fig. 20d. It should be observed, finally, that it is doubt-
ful whether the two small adhesion areas on the right of fig. 20c
actually exist, Indeed T > S,lbut the difference is small, and,
moreover, the largest contribution to T stems from the fact that the
engle between slip and traction is rather large (up to 14°). In fact,
for slightly different values of ¢, n , end &, &berrations occur in
that region, in the sense that |(X,Y)l>uZ, and T > S, The occurrence
of the island on the left is also scmewhat doubtful, It is entirely
possible that the tractions have a discontinuity there, and that the
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slip has there a simple zero.

In fig. 21, the traction distribution in the contact ares is
shown for various values of the spin. Only half of the contact area
has been drawn., The traction distribution is given in the form of
curves of constant ratio between the resultant surface stress |(X,Y)!
end the COULOMB traction uZ in percents. These lines arc symmetric
about the x-axis. The arrows represent the direction of the traction
exerted on the lower body; according to (L,26), the tangential
traction is mirror enti-symmetric about the x-axis, see fig. 19b.

It is seen from fig., 21 that the tractions form & rotating field
with somewhat varying centre of rotation. The spin pole of IUTZ and
WERNITZ lies in the centre of the contact area, but it is seen that
there is no point X=Y=0 inside the contact area when X=0.,53
(fig. 21a), such a point enters the contact area, (fig. 21b, x=1.24),
and slowly moves towards the centre of the contact area with

increasing spin (fig. 21c, x=2.65).

5.323, Arbitrary creepage and spin.

The case of arbitrary creepage and spin lies between the cases
of the spin pole at infinity (pure creepage) and of the spin pole at
the center of the contact area (pure spin). An exemple is sketched
in fig. 22, in the manner of fig. 21, The determining parameters of
fig, 22 are: X=0.70, £=-n=0.50, a/b=1, 0=0,28, M=3, W=W,. The spin
pole of LUTZ and WERNITZ lies on the circle, and has the coordinates
(0.71a, 0.71a), where a is the radius of the contact circle. The
point X=Y=0 lies approximately at (0.25a, 0.50a). Since the traction
is small near this point, it is not clearly defined. Also, when the
parameters £,n,y get larger in absolute value in such a way that the
spin pole retains its position, the absolute value |(X,Y)| of the
traction has a minimum inside the contact area, but no zero. However,
the accuracy of the numerical method is not so that one can come to
a decision on the point whether there is a zero or not. It is seen
from fig., 22 that the traction again forms a rotating field with the
centre somewhere in the first quadrant x>0, y>0. In this guadrant,
the velues of the traction are small, and, especially near the point

X=Y=0, the direction is erratic; this is possibly a case of the error
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Fig. 21. Traction distribution for various values of the spin.

a/b=1, 0=0,28, E=n=0.
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Fig. 22. Traction distribution for & case of combined creepege and

spin.
a/b=1, 0=0,28, X=u=0.T7, & = =U45°,

in the calculation drowning the information.

5.33. The total force transmitted to the lower body.

For fixed ratio of the axes a/b and fixed POISSON's ratio o, one
can imagine surfaces of constant creepage U=v/€_2+_nz in the three-
dimensional (fx,fy,x) -space. The surfaces of constant creepage all
lie inside the cylinder f}zc + f;’; = 1, or, equivalently, FJZ; + F}2,=u2N2.
This cylinder represents the limiting case that EZ+n2+ =, see fig.
2ha,b,c. It was found that the surfaces u=constant form tubes in the
X-direction which lie inside each other, and which have a roughly
circular intersection with the planes X=constant, the radius of the

tube increasing as v increases. The radius decreases when the spin
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becomes larger, i.e. as |X| increases, see fig. 24a,b,c, In the limit
X + e« , the force is determined solely by the parameters ci/X, and
-cn/X, which are the coordinates of the spin pole, see (4.93). So
the "radius" of the tube is roughly determined by the quantity v/|x|,
as X > «,

It follows from the considerations of symmetry of sec. 4.2 that
the (X,fy)—plane is a plane of symmetry of the tubes, for when the
point (fx,fy,x) corresponds to (&,n), then (—fx,fy,x) corresponds to
(=g,n), see (4.23f), It follows from (4.22e) that the tubes are
symmetric about the origin, for if the point (fx,fy,x) corresponds to
(Eyn), then (—fx,-fy,—x) corresponds to (-&£,-n). Hence we need for
the construction of the tubes only the pertinent information in the
quarter space fx > 0, X 2 O, When £=n=0, the tube degenerates into a
line in the {fy,x)-plane. This is the case of pure spin, which is
given in fig., 23 for four values of the parameter a/b, with POISSON's
ratio 0=0,28,

The total force transmitted to the lower body was celculated in
a great number of cases, with the degree M=3, the weight function
W=W1, end 0=0,28. First, we calculated the case of pure spin E=n=0
for a/b=2, 1, 0.5, 0.2. The results are shown in fig. 23, Then we
calculated fx and fy as functions of £ and n, for fixed values of
spin, POISSON's ratio, and ratio of the axes a/b. The values of X
were chosen so that we obtain the plane of pure creepage (x=0), then
two values of X before the peak in fig. 23, one at the peak, and two
after. In fact, we calculated

0=0.28, a/b=2; Xx=0,%,1,2,31,7; variable £ and n.
0=0,28, a/b=1; X=0,3,1,2,5,10; variable £ and n.
0=0,28, a/b=0,5; x=0,1,2,3,5,10; variable £ and n.
0=0.28, a/b=0.2; X=0,%,1,2,5,10; variable £ and n.

(5.29)

The case X = = has been treated in sec. L4.4, fig. 10 and 11.
The results of these calculations will be laid down in & report of
the Laboratorium voor Technische Mechanica of the Delft Technoclogical
University. Some results of the calculations with X = constant are
given in fig. 2U, all for a/b=1, 0=0,28.

We elso attempted to calculate the case a/b=5, but hers the
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Fig. 23. fy—x diagram for various values of a/b.
0=0.28, E=n=0,

numerical method failed to give results in a large portion of the
curve of pure spin, situated around the peak. Either the iteration
process (5.12) failed to converge, or it gave incorrect results, with
aberrations covering nearly the entire contact area, and with fi+ f§
exceeding unity. By teking special care in the choice of the initial

value 10 , the trouble could be concentrated in a smaller position

k 3
of the curve of pure spin, but even so the solutions obtained showed
many sberrations., We decided to drop the case altogether in view of
the formidable smount of machine time needed to obtain any results

at all, which would be of poor quality as well. Also, the case would
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a/b=1, 0=0,28, X=0,

seem to have little practical interest: it is the case of a contact
area which is narrow in the lateral direction, an extreme case of
which is a circular knife rolling over a plane. The trouble in the
case a/b=5 was already foreshadowed in the calculations of the case
a/b=2, where near the peak many sberrations T > 5, |(X,Y)|>uz
occurred, In pure spin also, the resulting values near the peak of
fy for a/b=2 were somewhat erratiec, which is the reason why that
portion of the curve of fy for a/b=2 is given in fig. 23 with a
broken line.

In fig. 23 we show the case of pure spin, for different values
of a/b. The curve for a/b=0.5 is shown only partially; it goes
through the origin in the same way as the other curves, and on the

right the curve a/b= 0.5 is very close to the curve a/b=2. In fact,
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the values of fy lie slightly higher in the case a/b=0.,5, but not
significantly so, It is seen that the curves of fy as functions of X
increase from zero to a maximum, then decrease again, apprc.cning
zero asymptotically., Two competing mechanisms are at work. For small
values of |x|, the effective spin pole lies far from the origin, see
fig. 21, However, the area of adhesion is large, which keeps the mean
absolute value of the traction down as a consequence of elastic
deformation. As |X| increases, the area of adhesion becomes smaller,
and the mean absolute value of the tractions grows. At the same time,
however, the effective spin pole moves towards the origin.
Consequently, the direction of the traction becomes diversified,
which tends to diminish the total force. Especially for small values
of a/h, the effects appear to keep each other in check for a large
renge of values of X around the maximum, for the maximum is very
flat, -

It is seen from fig. 23, that the value of the maximum decreases
when a/b decreases, that is, when the ellipse becomes narrower in the
rolling direction., If we assume tentatively that the effective spin
pole lies in the point (-aa,o0), where a is some function of X
independent of the ratio a/b, it is clear that with decreasing a/b
the area occupied by points with a large x-component of the traction
increases, while in the determination of the total force the x-
components cancel each other, owing to the mirror antisymmetry of thé
traction.

It is also seen from fig, 23 that the value of X at which the
maximum is reached, first increases with decreasing a/b, reaches a
maximum at a/b~0.5, when 0=0.28, and then decreases sagain. This is
partially because for the same value of the spin parameter ¢c, &
slender ellipse has & larger area of slip than a non~-slender ellipse,
so that the effect of the elastic deformation described ebove, dies
out for a smaller value of ¢c.

We now turn our attention to the figures 24, They represent the
case 0=0,28, a/b=1, In the three-dimensional (fx,fy,x)—space
introduced@ above, they are planes of constant X. In fig, 24a, X = 0
(pure creepage). Fig. 2U4b represents a value of X near the peak of
fig. 23 (x = 2). Fig. 2hc represents a value of X beyond the pesak,
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for which £ (ux=0, uy=0)z% max fy: X = 5, In the figures, the
X

tangentials are lines of constant creepage v 2 E2+n2 = constant.

The radials are lines of constant o, where
£ = vcosa, n = usina, v = VE%+n?, a in degrees, (5.30)

in accordance with {5.16).

In fig. 24a, only the first quadrant is shown because when X =0,
there is symmetry sbout both the f and fy axes. It is seen that the
iines a = 30° and a = 60° are nearly straight, except at the end
v + ©» , where they make & sharp turn. This means that the ratio fx/fy
depends principally on the ratio £/n for velues of v up to 1.7. In

fact,

30°, 0 < v < 1.T;3] a/b=t

25° < tan™ (£ /£,) < 27.6° vhen o
y (5-318.)

53° < tan"(fy/fx) < 56.7° when a = 60°, 0 < v < 1.7.| 0=0,28

According to the theory of JOHNSON and VERMEULEN [5], these angles

are constant, and

L]
1

tan"[fy/fx) 25.8° when a = 30°, v > 0,

55.4° when o = 60°, v > 03 (5.31)

tan"(fy/fx)

a/b=1, 0=0,28,

In figs. 24b and 2he, only the first and fourth quadrants are
shown, since the fy-axis is a line of symmetry. The curves v=constant
are egg-shaped, with the flat end up. In fig. 2kb (X = 2.0), the
curves for a = -30° and a = -60° show some waviness, It is not at all
certain whether this waviness actually occurs in practice: it is
quite possible that it is due %o evrors in the numerical calculation.
It is seen from fig. 24c that the waviness is completely gone for
X = 5, In fig. 24c, the effect of the diminishing radius of the tube

v=constant with increasing X is clearly shown.
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6. Conclusion.,

In this final chapter we will review in 6.1 the results which
have been achieved in this thesis, and in 6.2 we will make some

observations on further research.

6.1. Results achieved.

In this thesis, we confine ourselves to contact problems
between purely elastic bodies which can be approximasted by half-
spaces, while the contact area is elliptic in form. The method for
the solution of contact problems with friction which is discussed in
this thesis is, strictly speaking, only valid when the elastic
constants of the bodies are the same, or when both bodies are incom-
pressible, The method gives an approximetion in case that these
conditions are not satisfied. A crude estimate of the error of this
approximation is given in sec. 2.1,

In chapters 2 and 3, we discuss the general theory. It was shown
in 2.2 that a generalized version of GALIN's theorem (GALIN [1],.ch.
2, sec. 8) can be established without recourse to LAME's ellipsoidal
harmonics. As a consequence of this, DOVNOROVICH's method [1] for the
calculation of contact problems without friction on the basis of
GALIN's theorem could be adapted in 2.3 to contact problems in which
there are also frictional forces., DOVNOROVICH's metﬁod was generalized
in 2.4 sqq. in the sense that the connectioﬁ between tractions and
displacement differences was given explicitly for any degree M of the
determining polynomials. In 3.1, the theory is worked out for the
case without traction singularity at the edge of the contact area.
DOVNOROVICH also considered this problem, but he did not arrive at the
simple relationship (3.15). The examples %reated in 3.2 sqq. are all
well-known.

In chapters 4 and 5, we discuss the problem of contact in steady
rolling, The boundary conditions are well established, see e.g. DE
PATER [1] and KAIKER [1]; they are set up in section b,1. In L.2,, we
derive a number of symmetry relations between the surface tractions
and the slip on the one hand, and creepage and spin on the other

hand. These relations lead to a number of symmetry properties of the

1hh,




total force and the total torsional moment as functions of creepage
end spin, It is also found that the determining parameters of the
problem are a/b, E, n, X, and ¢. We have not found the symmetry
relations in this form in the literature.

The limiting case of infinitesimal creepage and spin (sec. 4.3
sqq.) was treated before in the literature, but we generalized it to
elliptic contact areas, KAIKER's proof (see [1], p. 168~169) that no
slip takes place at the léading edge of the contact area when creepage
and spin are infinitesimal, and which is valid for circular contact
areas and vanishing POISSON's ratio, was extended in see. 4.31 to
elliptic contact areas and arbitrary POISSON's ratio, The creepage
and spin coefficients Ci' {(p.91 to 93) coincided with those obtained
in KAILKER [1], pg. 174, when the contact area is circular, It was
found in KAIXER [1] that the creepage and spin coefficients agree
with JOHNSON's experiments [1,2,3], when the contact ares is a
circle, In a comparison with the experiments of JOHNSON and
VERMEULEN [5], it was found that 022 agrees well with the experiment
when the contact area is an ellipse. The curious and unexplained

phenomenon that C,5 = -Cgp, which was noted in KAIKER [1], occurred

also with ellipti53contact areas,

The theory of LUTZ [1,2,3] and WERNITZ [1,2] for very large
creepage end spin, which is confined to the case thet ux=0 or v _=0
when the contact area is an ellipse, was generalized in sec. 4.4 to
the case that u_ # 0, Uy # 0,

The numerical theory of ch. 5 for steady rolling with arbitrary
creepage and spin, which consists of the minimalization of a certain
integral, appeared to work reasonsbly well for the degree M=3, and
the weight function W=W,. The error in the total force is at most
about 10%, see fig. 15. The error in the traction distribution is
larger, see fig., 16, A qualitative description of the tractioms in
steady rolling is given in sec. 5.32 sqq. The caleulations were
carried out for a large number of the defining parameters a/b,

E, n, X (see (5.29)); POISSON's ratio was kept at 0=0.28 throughout.
The calculations provéd to be exceedingly lengthy, so that in our
opinion the main significance of the theory of ch, 5 lies in the

possibility that existing approximate theories (JOHNSON [1,2,3,4,5],
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wrz [1,2,3] - WERNITZ [1,2], DE PATER [1] - KALKER (sec. k4.3 sag.),
HAINES - OLLERTON [1], KAIKER [2]) or theories that will be developed

yet can be tested with the numerical theory.

6.2, Further research.

It would be of interest to have a deeper insight in the inter-
action between the normal end the tangential problem, when K # 0,

Such an interest is mainly academic in the case of the influence
of the tangential traction on the normal problem. An interesting
aspect of such a theory is the change of the contact area as a
consequence of tangential tractions. A simple, non-triviel problem of
this sort is the problem of gross slidirg in Hertzian contact. In

that case, the boundary conditions are

W = -Ax2-By? + a,

=Wz, Y =0 in E, (6.1)
W > -Ax?-By? + a,
X=Y=1%=0 on z = 0, outside E, (6.2)
Displacements and stresses vanish at infinity. (6.3)

In the rotationally symmetric case of pure spin about the z-axis,

X==- —Efz-; s Y =+ -Efg—; , the normal problem is unaffected by the
Vxe+y VxX<+y

tengential tractions, see SNEDDON [1], ch. V, sec. 31,

The case of the normal problem influencing the tangential
problem is of greater practical interest, especially in the case of
e small cnefficient of friction u. This would be an investigation
into the second approximation of sec. 2.1. This has salready been
carried out for the two-dimensional case of two cylinders rolling
freely over each other, see JOHNSON [h]. In the general three-
dimensional case of rolling contact, the treatment would differ only
slightly from the one given in chapter 5. The only new thing needed

is

aut [EBJ oy _ [B_V (6.4)
ax OX [y=y=0* 3x 3% | X=Y=0 *

which can be given as a surface integral derived from (2.11a,b), with

the Hertzian normal pressure
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2(x'y') = G £, /1-(x"'/a)*=(y'/0)*. (6.5)

By means of the substitutions of the fundamental lemma of sec. 2.2,
the double integral derived from (2.11) can be reduced to a single
integrael with periodic continuous integrand which is integrated over
the period. So the gquantities (6.4) are brought in a numerically
accessible form. The relative slip is then given by (L.15¢):

o= e [l e (B B |

[ i -

v XA v
v_+¢x +[_i']= U_+ox + | + | ’
y = y* [ax]x=x=o [3"}z=o

the only difference with the theory of ch, 5 is, that a known

n

(6.6)

s

function is added to 8, and Sy at each point,

An enalytical investigation into JOHNSON's problem of free
rolling is also feasible in the case of a circular contact area. The
problem is:

Determine Vs Uy and ¢ so, that

- au a—u - 1
g, F Ux-¢y + [ax]X=Y=0 + [Bx]z.:O 0 in E,
5 F u_+¢x + v + -a—v:l = 0 in E; (6.7)
¥y Y 9X | y=v=0 3X |z=0

No singularity at the edge of the contact area;
= J1ow2 Ja2v? /a2
Z = fy, C 1-x%/at~y*/a*.,

This investigation could he based on potential theory, using the
methods developed in KAIKER [1].

As a final project we mention the case of instationary rolling:
it is perhaps possible that the theory of ch. 5 can be adapted to

same problems of unsteady rolling.
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Notations.

N S
Underlined symbols designate vectors. A superscript indicates that
the quantity belongs to the lower body. A superscript  indicates
that the quantity belongs to the upper body. We list only symbols

the meaning of which extends beyond the section where they are

defined.
Symbol Meaning Definition, etc,
a In sec. 1.1: half width of contact | Fig. 2
area
Elsewhere: semi-axis of contact (1.5a)
ellipse in x-direction
& Coefficient of u-polynomial (1.10)
B (No vector) A complete elliptic (3.17)
integral
b In sec. 1.1: coordinate of trailing | Fig. 2
edge of locked area
Elsewhere: semi-axis of contact (1.5a)
ellipse in y-direction
b Coefficient of v-polynomial (1.10)
C.. In sec., 4.32: creepage coefficient | (4.36), Fig. 8
1 Table 3
c (No vector) A complete elliptic (3.17), Table 1
integral
c = /ab, geametric mean of semi-axes (3.50)
of contact ellipse
i Coefficient of w-polynomial (1.10)
D (No vector) A complete elliptic (3.17), Table 1
integral
Integer with special meaning (2.67)
- Coefficient of X'-polynomial (1.9), (4.63)
E (E1liptic) contact area (1.5a)
E Slip area
g 1
Eh Ares of adhesion, also called
locked area
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Symbol

Meaning

Definition, etc.

P
mn
Eh;2p+e,2q+w
2mte , 2ntw

£

Fpa

mn

Fh;2p+s,2qfw
2mte , 2n+w

I(d,i,j,e)
J(x,y)
J(d,i,j,e)
K

K
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A certain integral

Expressed in complete elliptic
integrals

(No vector) Complete elliptic
integral of the 2nd kind
Signed excentricity of contact
ellipse -
Coefficient of Y'-polynomial

(x,y) components of total
tangential force on lower body.
See also (fx,fy)

Coefficients derived from En;£§

Expressed in complete elliptic
integrals

In 5.22, 5.23: integrand of I
Components of dimensionless |
total force exerted on lower
body

Modulus of rigidity: combinéd,
upper body, lower body
=min(a/b,b/a). Ratio of axes of
contact ellipse

In ch, 5: an integral to be
minimized

A complete elliptic integrai
"Square root singularity"

A complete elliptic integral
Integer connected with the
degree: M=2K+v

(o vector) Complete elliptic
integral of the 1st kind
Integer; also: major semi-axis

of contact ellipse max(a,b) .

(2.35),(2.48},(2.53)
(2.73),(2.74),(3.22)

(3.17), Table 2
(2.63), Table 2

(1.9) ,(k.63),(5.1)
(4,2k)

(3.%4),(3.15)

(3.12),(3.13),(3.22)

sec, 5,22

(4,19), Figs. 3, 8,
10, 11, 13, 14, 15,
23, 24

(2.4),(2.10)

(2.63), Table 2
(5.9)
(2.74),(3.14),(3.21)
(2.21a)
(3.13),(3.14),(3.21)

(2.54)

(3.17), Table 2




Symbol

Meaning

Definition, etc.

td

-+ - -
R o BBy
sx,sy]

Degree of traction polynomial
Total moment asbout the z-axis
on lower body

Dimensionless total moment
sbout z-axis

Total normal force

Origin of cartesian coordinate
system, centre of contact area,
Also: order of magnitude symbol
Proportional to x-component of
relative slip

In ch. 5 only: number of
degrees of freedom
Proportional to y-component

of relative slip

In ch, 5 only: summation limit
Distance between two points on
the surface

Radii of curvature of bodies in
X%, &z plane

Distence from origin to a point
of the plane z=0 (except in
sec, 2,1)

Positive definite function of
relative slip

Minor semi-axis of contact
ellipse min(a,b)

Relative slip (vector end
camponents) of upper body

over lower

Positive definite function of
traction difference

Time

(1.9)
(L, 2h)

(5.1)

(5.18)

sec, 3,221

(2.33)

(5.6)

(2,63)

(4,15)



Meaning

Definition, etec.

W

¥

(Vx ’Wy)

(X,Y,2)

(%,Y)
(x',Y")
(xa.VsZ)
x-direction
y-direction

z=direction

]

z!
J
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Displacement differences,

except in 2,41 and 4.31

Elastic displacement of lower/
upper body

Magnitude of rolling velocity,
except in sec. 5.23

Weight function

A special weight function

Components of unit vector inv
the direction of the slip
{x,y42) components of surface
tractions on lower body
Tengehtial traction components
Traction polynomials

Cartesian coordinate system
(Nearly the) rolling direction
Lateral direction

Inner normal on lower body at
centre of contact area

Normal pressure distribution,
mostly Hertzian

Standard polynomial

x~-derivative of z'j

Angle between creepage and
x-axis in degrees

A small positive number with
several meanings

Parity numbers (0 or 1);

ete'=1

Lateral creepage parameter

An elastic constant

(neglected in the present work)

Coefficient of friction, assumed

(1.4), (1.6b)

(4.9),(L.10)

(5.8)
(5.14)

(1.88)

(4,%0),(4.63),(5.5)
sec, 2

(4.10)

(1.5b)

(5.1)
(5.2)
(4.104),(5.30)

(2.38)3(4.10);(5.12¢)
(2.54)

(4.20)
(2.10)




Symbol Meaning Definition, etec,

to be constant

vyv! Parity numbers (0 or 1); vv'=1 |(2.54)
Longitudinal creepage parameter |(4,20)

p Characteristic length of the (3.38)
bodies

a,0+,c- Poisson's rstio: combined, upper|(2.4),(2.10)
body, lower body

T Coefficients of traction (5.1)
polynomials
Creepage. In ch. 5: (5.16},(5.30)

_qu,uy) Creepage vector, longitudinal (k.11), (4. 14a)
and lateral creepage

& Spin (4.12), (k. 1ka)

X Spin parameter (4.20)

weln? Parity numbers (0 or 1); wtw'=1 |(2.54)
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