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On the rolling contact of two clastic bodies

in the presence of dry friction

by J.J. Kalker
Errata.
page 23, formula number (2.10) should read (2.20)

page 56. eq. (3.38) L(A-B)2 = etc. should read
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Samenvatting.

Twee zuiver elastische, volkomen gladde omwentelingslichamen
worden op elkaar gedrukt, zodat een eindig contactgebied ontstaat.
Vervolgens worden zij om hun assen gewenteld zodatAzij over elkaar
rollen, Indien men een koppel aanbrengt op het ene lichaam en af-
neemt van het andere, dan blijken de amtreksnelheden van de lichamen
niet gelijk te zijn, zelfs indien de overgebrachte kracht kleiner is
dan het produkt ven wrijvingsco#fficiént en normaalkracht. Dit ver-
schijnsel wordt de "gemiddelde slip" (Engels: creepage) van de
lichamen genoemd. Is er loodrecht op het contactvlak een component
van rotatie van de lichamen ten opzichte van elkaar, dan spreekt men
van "spin"., In deze dissertatie worden de verschijnselen in het con-
tactvlak bestudeerd; in het bijzonder verdt de betrekking gezocht
die het verband aangeeft tussen de éemiddelde slip en spin enerzijds
en de totale tangenti&le kracht, die de lichamen op elksar uitoefenen,
anderzijds.

Na een historische inleiding in Hoofdstuk 1, worden in Hoofdstuk
2 en Hoofdstuk 3 een aantal wiskundige hulpmiddelen besproken, die
voor de hier gegeven behandeling van het probleem noodzakelijk zijn.
Wat betreft het elastische gedrag worden de omwentelingslichasmen door
elastische halfruimten benaderd en wij zullen dus de elastische ver-
plastsingen onderzoeken, die worden teweeggebracht door verdeelde
belastingen van verschillende sard, die mangrijpen in een elliptisch
gebied gelegen in het overigens spanningsvrije oppervlak van een
elastische halfruimte., Dit onderzoek leidt tot het opstellen van een
stelsel lineaire vergelijkingen waarmee de verplaastsingen in de be~
lasting kunnen worden uitgedrukt. Dit stelsel is geschikt om de
randvoorwaardeproblemen uit de elasticiteitstheorie op te lossen,
waartoe sommige contactproblemen aanleiding geven,

In Hoofdstuk 4 keren wij terug tot het oorspronkelijke probleem.
De randvoorwaarden worden opgesteld, en het aantal paremeters daet het
probleem bepaslt, wordt tot vijf teruggebracht. Tevens worden een asan-
tal symmetrie eigenschappen besproken. Hoofdstuk 4 is verder gewijd
aan de theorie van twee grensgevallen, t.w. het geval van zeer kleine

(infinitesimale) gemiddelde slip en spin, en het geval van zeer grote
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gemiddelde slip en spin (volledig doorglijden). De behandelings-
methode van het eerste geval is afkomstig van DE PATER [ﬁ], en werd
door KAIKER [1] toegepast op cirkelvormige contactgebieden. De
methode wordt hier toegepast op elliptische contactgebieden, waarbi]
de theorie van Hoofdstuk 2 wordt gebruikt, Het geval van volledig
doorglijden werd reeds behandeld door LUTZ [1,2,3] en WERNITZ [1,2].
Zij losten het probleem op voor het geval dat de gemiddelde slip de
richting ven een der hoofdassen van de contactellips heeft. De
theorie van Hoofdstuk 4 is niet aan deze beperking onderhevig.

In Hoofdstuk 5 wordt een numerieke methode beschreven voor het
algemene geval van eindige gemiddelde slip en spin, waarbij al dan
niet volledig doorglijden optreedt. Het probleem wordt eerst terugge-
bracht tot de minimalisatie van een oppervlakte-integraal., Daarna
wordt een numerieke methode besproken waarmee de integraal kan worden
geminimaliseerd. Er wordt vervolgens uitvoerig ingegaan op het reken-
machineprogramma dat de numerieke methode verwezenlijkt en tenslotte
worden de resultaten toegelicht. Er bestaat een redelijke overeen-
stemming met het experiment.

In Hoofdstuk 6 worden een asntal conclusies getrokken en enige

projecten voor nader onderzoek asngeduid.
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Summary.

Two purely elastic, perfectly smooth bodies of revolution are
pressed together, so that a finite contact area forms. Then they are
rotated about their axes, so that they roll over each other., If a
couple is applied to one body and taken from the other, the
circumferential velocities of the bodies appear to be no longer
equal, even in case the force transmitted is smaller than the product
of the coefficient of friction and the normal force. This phenomenon
was called "creepage” by CARTER [1]. If there is, perpendicular to
the contact area, a component of rotation of the bodies with respect
to each other, "spin" is said to be present. In this thesis, the
phenomena in the contact area are studied and in particular the
relationship is sought which connects the creepage and the spin on
the one hand, and the total tangential force which the bodies exert
upon each other on the other hand.

After a historical introduction in chapter 1, we discuss in
chapter 2 and chapter 3 a number of mathematical tools which are
needed for our treatment of the problem, As far as the elastic
behaviour is concerned, the bodies are approximated by elastic half-
spaces. So we investigate the elastic displacements which are due to
distributed loads of different types acting in an elliptical area of
the surface of an elastic half-space, while outside the elliptical
area the surface is free of traction. This investigation leads to the
construction of a system of linear equations by means of which the
displacements can be expressed in terms of the surface tractions.
This system enables us to solve the boundary value problems of the
theory of elasticity which correspond to several contact problems.,
Chapter 3 finishes with an application of this method to a number of
well-known contact problems.

In chapter 4 we return to the original problem. The boundary
conditions are set up, and the number of parameters defining the
problem is reduced to five., Also, a number of symmetry properties is
discussed, The remainder of chapter 4 contains the theory of two
limiting cases, viz. the case of very small (infinitesimsl) creepage

and spin, and the case of very large creepage and shin (bodily
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sliding). The method of treatment of the former case is due to DE
PATER [1], and it was applied by KALKER [1] to circular contact
areas. Here, the method is applied to elliptical contact aress, using
the theory of chapter 2, The case of bodily sliding has been treated
by LUTZ [1,2,3] end WERNITZ [1,2]. They solved the problem for the
case that the creepage has the direction of one of the principal

axes of the contact ellipse. In chapter 4, this restriction is
removed.

In chapter 5 & numerical method is given for the genersl case of

finite creepage and spin, with or without bodily sliding. The problem
is first reduced to the minimalisation of a surface integral. Next,
& numerical method is discussed by means of which the integral can be
minimized. Then we consider the computer progreamme which realises the
numerical method, and finally we discuss the results, These appear to
agree reasonably well with the experimental evidence.

In chapter 6 certain conclusions are drawn, and some projects

for further research are indicated.
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1. Introduction.

Consider two purely elastic, perfectly smooth bodies of

revolution, see Fig. 1. They are pressed together with a force N,

4

Fig. 1. Two bodies rolling over each other.

as & consequence of which a contact area comes into being along
which the bodies touch. According to the theory of HERTZ (see
LOVE [1], pg. 193 saqa.), this contact area is an ellipse when
the bodies are counterformal. Subsequently, the bodies are
rotated about their axes, so that they roll over each other. As
a consequence of dry frictiom, the bodies can exert tangential
forces upon each other at the contact area. If a couple is
exerted on one body, and taken off from the other, it is found
that the circumferential velocities of the bodies are no longer
the seme, without the occurrence of gross sliding. This
difference in the circumferential velocities of the bodies,
divided by the rolling velocity, is called the creepage of the
bodies. If also the rotations of the bodies about an axis

perpendicular to the contact ares are different, we speak of



spin. The problem is, to investigate what takes place in the
contact area, and in particular to find the connection between
the two components of creepage (one in the direction of rolling:
longitudinal creepage, and one in a direction perpendicular to
the rolling direction: lateral creepage) and the spin on the
one hand, and the two components of the total tangential force
and the moment about an exis perpendicular to the contact area
on the other hand.

It is assumed in this work that the law of dry friction
(COULOMB's law) with constant coefficient of friction commects
the tangential traction at a point of the contact area, and the
local veloeity of the bodies with respect to each other (the
slip), and that a steady state is reached.

1.1. Historical outline.

The problem which we just stated was treated first by
CARTER [1] in 1926. He considered the case of two cylinders with
parallel axes, in which creepage only occurs in the direction of
rolling, and he gave a complete solution of the problem. The
tangential stress distribution is found as the difference of two
stress distributions which are semicircular when the scale is
properly chosen, see fig. 2., One of the stress distributions is
acting over the whole contact width, and the other over a part
of the contact width, viz. over the region where the local slip

is zero: the area of adhesion, or locked ares Eh' The area of

adhesion is determined by the creepage, here defined as

v =——-—-——-V-'V+ . {(1.1)
X vy

where V' and V™ are the circumferential velocities of the
rolling cylinders. The velocity -%(V++V') which occurs in the
denaminator of (1,1), is the rolling velocity. The semicircular
traction distribution over the whole contact area equals uZ,
vhere Z is the normal pressure distribution and u is the

coefficient of friction. It is a consequence of the semicircular
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e e

rolling direction

Fig. 2. The tangential stress distribution according to CARTER.

traction distribution over the area of adhesion, that the slip
vanishes in the area of adhesion, while the total tangential
traction falls below the bound uZ given by the law of friction.

It is seen from Fig. 2 that the adhesion area borders on the
leading edge x = a of the contact area. No explanstion of this
phenomenon was given by CARTER, but it was supplied in 1950 by
CATN [1] in a discussion of a paper by PORITSKY. If the area
of adhesion does not border on the leading edge, there would be
an area of slip there; but CAIN showed that in that area of slip,
the slip does not match the tangential traction as far as the
direction is concerned, so that it cannot occur. In the area of
slip behind the adhesion area, slip and traction do match in
that respect.

The coordinate b of the trailing edge of the contact area

is given by

fo, le
b/a = 2’:3 -1, a: half width of the contact ares,
1 1 [1 1 + - .. . (1.2)
==7 (77 +—}, R, R: radii of cylinders,
e R R~/ positive when they are convex.
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It is seen from (1.2) that when the creepage vanishes, then

b/a = -1, so that the area of adhesion covers the whole contact
area, and the tangential traction venishes, This is called free
rolling, in which there is no dissipation by surface friction.
There can be dissipation by elastic hysteresis, but such effects
are not considered in this work. When the creepage increases,
b/a increases, so that the area of adhesion diminishes. When
|ux|p/ua = 4, b reaches the leading edge of the contact area,
and when the creepage increases further, b passes the leading
edge. This should be interpreted as follows: no area of adhesion
forms at all. The tangential traction equals uZ everywhere, and
the slip matches it. This is called gross sliding.

We will give same impression of the magnitude of the
creepage in the range we are interested in. When the cylinders
have the same radius, then the characteristic length p is the
dismeter of the cylinders. In that cease, a representative value
of p/a is 200, the contact width being dependent on the normal
load. A representative value of the coefficient of friction is
0.3. 30, when i1. this example ‘UX[ = 0.003, the adhesion area
covers half of the contamct area, and gross sliding sets in when
lu | = 0.006.

In the region between free rolling and the first onset of
gross sliding, the total force Fx exerted on the lower body is
given by a parabola which is tangent to the line Fx = uN, see

Fig. 3. In the region of gross sliding, Fx has the maximum value

]JN.
1 UxP 8 Ilep . qulp
x - 76 W ua T » 1T Ha

lo, 1o
Ha

5]
i

(1)

(1.3)

v
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Fig. 3. The total force Fx/uN vs. the creepage-ag— according to

CARTER.

Progress was made by JOHNSON in a number of papers. JOHNSON
performed a number of experiments in order to determine the
connection between the total tangential force and the torsional
moment on the one hand, and creepage and spin on the other hand.
In [1] and [5] he also gives a theory of creepage without

spin, which is a direct generalisation of CARTER's theory. In
this theory, JOHNSON approximates the area of adhesion by an
elliptical area which is similar to the contact area, and is
similarly oriented. It touches the boundary of the contact area
at its foremost point, see Fig. 4. Here also the traction
distribution is found in the form of a difference between a
semi-ellipsoidal traction distribution acting over the entire
contact area, and another, which acts over the adhesion area
alone. However, there is a serious flaw in this theory: in the
region shown shaded in Fig. Y4, the slip and the tangential
traction do not match. In fact, if we define the slip as the
local velocity of the upper body with respect to the lower,

and consider the traction exerted on the lower body, the slip
and traction are almost opposite in the sheded area, violating
the friction law. In the slip region outside the shaded area,
the traction and the slip are almost in the same sense; in fact,

they make a small angle, and this is another, smaller, objection



——

V”ﬂd

area area of
of adhesion Eh

3
slip Eg

~—
-

Fig. 4. Areas of adhesion and slip sccording to JOHNSON.

against the theory. The conclusion we draw from the shaded area
of error is, that the area of adhesion is given incorrectly in
JOHNSON's theory. If JOHNSON's theoretical results are compared
with the experiment, it appears that the theoretical value of the
creepage at a certain value of the total force parameter

(%,
is at most 25%, so that JOHNSON's theory can be used very well as

Fy)/uN is lower than the experimental value, This difference

an approximstive theory, especially since the values of the
coefficient of friction p differ considerably from one case to
another.

Another theory is given by HAINES and OLLERTON'[1]. Only
creepage in the rolling direction is taken into consideration,
and it is assumed that in narrow strips parallel to the rolling
direction, CARTER's traction distribution is valid. It then
appears that the area of adhesion is given by a lemon shaped
area the leading edge of which coincides with the leading edge
of the contact area, see Fig. 5. The trailing edge of the
adhesion is an arc which, measured along the rolling direction,
has a constant distance to the trailing edge of the contact

area, in other terms, it is the trailing edge of the contact
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area orea of

adhesion Eh

~

Fig. 5. Areas of adhesion and slip according to HAINES and
OLLERTON «

area shifted parallel to itself in the rolling direction. This
theory can in principle be used only for contact areas which are
slender, with the minor axis in the rolling direction. However,
HAINES and OLLERTON have also done photoelastic work from which
it appeared that the theoretical form of the area of adhesion
was in good agreement with practice, also when the contact area
was not slender,

Recently, the theory of HAINES and OLLERTON was generalized
by KAIKER Bﬂ so, that lateral creepage and, to a limited extent,
also spin can be accounted for. In this theory, the elasticity
equations are integrated approximstely. This approximation is
best when the contact ellipse is slender, with the minor
semi-axis in the direction of rolling. With this approximate
solution of the elasticity equations it is accomplished that
1°. there is no slip in the adhesion area; 2°, that the
tangential traction in the slip area has the value uZ; but 3°.
there generally remains an angle between traction and slip in
the slip area. This angle is small almost everywhere in case of

pure creepage and when the spin is small, but deteriorates when

Te



the spin increases. When for a slender contact ellipse the total
force is compared with the results of ch. 5 of this dissertation,
it is found that there is excellent agreement in the case of pure
creepage, but in pure spin there are relative errors of up to 20%.

For spin there is & smaller amount of theory than for pure
creepage. We just mentioned the theory of KAIKER Eﬂ. Aside from
that, there are only theories on the two asymptotic cases, viz.
very large creepage and spin, and infinitesimal creepage and
spin. Experimental work on spin has been done by JOHNSON [?, 3]
both on pure spin and on spin in combination with lateral
creepage, by LEE and OLLERTON [1], and by POON [1].

The case of very large creepage and spin was treated by LUTZ
[1, 2, 3] and WERNITZ [1, 2]. In their theory, they assume that
the creepage and spin are so large, that the influence of the
elastic deformation on the local slip can be neglected. As a
consequence, there is no area of adhesion, and the local slip is
completely specified by creepage and spin alone: there is no
effect of the tangential traction on the slip. So, the direction
of the local slip is known, and hence the direction of the local
¢raction, its magnitude being given by uZ. The total tangential
force and the torsional moment follow from integration. LUTZ [2]
treated the case of a circular contact area, and WERNITZ [1] the
case of an elliptical area. The latter case was treated, however,
with & restriction on the components (ux, Uy) of the creepage:
either v, = 0, or Uy = 0. This is the case in friction drive;
which LUTZ and WERNITZ considered. We will treat the case of
very large creepage and spin without this restriction in sec.
L.b of this dissertation.

The opposite case is the case of infinitesimal creepage and
spin. Here it is assumed that the adhesion area covers the
entire contact area. For a circular contact area, this case was
trested by DE PATER [1] for POISSON's ratio o = 0, end by KAIKER
[1] without this restriction on o. In sec. 4.3 sqQg. of this
dissertation, this theory is generalized to elliptical contact
areas. Earlier, JOHNSON [2] treated the case of infinitesimal

8.




spin for a circular contact area and arbitrary POISSON's ratio.
In KAIKER [1], a comparison is made between the theories of
KAIKER [1], JOHNSON [2], and JOHNSON's experiments [2]. There
appears to be a fairly large discrepancy between the theories,
and KAIKER's theory was found to be most in agreement with the
experimental results.

In chapter 5 of this dissertation, a mumerical theory is
developed which can be used for arbitrary creepage and spin.
This theory is mainly of academic interest in the case of pure
creepage, owing to the fact that the approximative theories are
of good quality. In the case of non—vanishing spin, the theory
of chapter 5 provides the comparison needed for the safe use of
the strip theory; such a comparison is made in KAIKER [2]. For
values of the spin not covered by the strip theory, the numerical
theory of chapter 5 is the only ome available, It can also be
used to judge, when creepage and spin are large enough so that
the theory of LUTZ [1, 2,3] end WERNITZ [1, 2] can be used.

1.2, Two simplifying assumptions. Outline of the thesis.

As far as the theory elasticity is concerned, the lower and
the upper body are approximated by half-spaces. In the Cartesian
coordinate system (0, x, y, z) which we will adopt, the lower
body occupies the half-space z > 0, and the upper occupies z < O.
Quantities pertaining to the lower body are distinguished by a
superscript * added to the symbol from the analogous quantity of
the upper body which carries a superseript . The normal
pressure is denoted by Z, while we define the tangential
tractions (X, Y) as the local tangential (frictional) force per
unit area exerted on the lower body by the upper body.

The contact area E and the distribution of normal pressure
7 are determined by the boundary conditions of the HERTZ theory;
see LOVE [1] pg. 193 sag.:
= w (x,y,0)=w (x,¥,0)= -Ax2-By?+a, Z 3 0 inside E, (1.La)

w+(x,y,0)-w-(x,y,0) > —Ax?-By2+a, Z=0 on z=0,
outside E, (1.4p)

% 5
¥ oK
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where ' is the displacement ccmponent in the z-direction, while
w(x,y) is called the displacement difference in the z-direction.
A end B are determined by the radii of curvature of the bodies,
see (3.38), and o is the penetration of the bodies.

In the first place, we will assume that the tangential
traction distribution (X,Y) acting between the bodies does not
disturb the displacement difference w(x,y). Such an assumption
was already made by MINDLIN [1] in 1949. It was shown by DE PATER
0] pg. 33, that the assumption is completely correct in the case
that both bodies have the same elastic constants. A discussion of
the error of the approximation when the elastic constants are
different will be given in sec. 2.1, The assumption implies that
neither the contact area E nor the normal pressure Z are disturbed
by the tangential tractions. Consequently, E and Z are given by
the HERTZ theory of frictionless contact. According to that
theory, vwhich is treated in some detail in sec. 3.221, the
contact area E is elliptical in shape, so that we can choose our

origin and x and y axes so that
E={x,y,2z: 2z =0, (x/2)2 + (y/b)2 <11}, (1.5a)

while the normal pressure Z is given by

2 2
7 = 5%%3 /q_(x/a) - (y/b) inside E,

=0 on z = 0, outside E, (1.5b)
N: total normal load.

The local slip at a point is defined as the local velocity
of the upper body with respect to the lower body. We ordinarily
use the relative slip (Sx‘sy)’ which is equal to the local slip
divided by the rolling velocity. We will show in sec. 4.1 of this
dissertation that when steady rolling takes place in the x-
direction, the relative slip is given by (4.15):

= ou _ v
Sy = VY + =, By = U Hex + oL, (1.6a)

"with

10.




(ux, uy): the creepage, ¢: the spin,
w = {u (x,5,0)-u"(x,7,0)}, v = v (x,y,0)-v (x,5,0)} (1.6b)

ut, v¢: (x,y) displacement components in lower/upper body.

We will also assume thet the normal pressure distribution Z
does not disturb the displacement differences (u,v). Such an
assumption was made by MINDLIN [1] in 1949. It was shown by DE
PATER [1], pg. 33 that this second assumption is completely
correct in the case that the bodies have the same elastic
constants. A discussion of the error of the epproximation when
the elastic constants are different will be given in sec. 2.1.

 As & consequence of the assumed independence of W on (x,1),
the problem falls apart into a normal problem which completely
determines the normal pressure and the contact area, and a
tangential problem which uses the results of the normal problem
as data., The reason for the assumed independence of (u,v) on 2
lies in the fact that the case of equal elastic constants is
technically the most important, while the theory becomes somewhat
simpler, and the coefficient of friction does not figure as an
independent parameter in the calculation.

A method to obtein a better approximation was indicsated by
JOHNSON [4], pg. 18 sqq. JOHNSON proposes to retain the
assumption that w is independent of (X,Y), but to take the
dependence of (u,v) on Z into account. The value of this method
consists of the fact that the dependence of (u,v) on Z is much
more important than the dependence of w on (X,Y), especially when
the coefficient of friction w is small, see sec. 2.1. The
advantage over the rigorous theory is, that the normal problem
remains the seme, and that the tangential problem changes only
in that e term is added to the formula for the relative slip,
the term being explicitly known, and being independent of the
creepage and the spin. This method is not investigated further
in this thesis, where we will retain the two assumptions of

MINDLIN.
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The tangential problem is determined by the following conditions.

(X,Y) and (u,v) are comnected by the elasticity equations
for the half-space, in which stresses and displacements (1.7)

vanish at infinity, while X = Y = 0 on 2z = 0, outside E;
(x,Y) = quwx,wy), L sx/s, v, = Sy/s’ s = Vsi + s§
in the area of slip Eg; (1.8a)

8, = 5, < 0, |(X,Y)|s uZ in the srea of adhesion E. (1.8b)

We see from (1.7) and (1.8) that the tangential problem naturally
falls into two parts. In the first part, we must study fhe effect
of the traction distribution (X,Y) on the displacement differences
(u,v), in order to get the connection between the traction and the
slip. We solve this problem by giving this comnection for certain
standard traction distributions which form a complete system. In
the second part we superimpose the standard tractions so as to fit
(approximately) the boundsry conditions (1.8). It should be noted
that the division of the contact area into areas of slip and
adhesion is not known beforehand, but must result from the
calculations.

In chapters 2 and 3 of the thesis, we attack the first sub-
problem, viz. finding a complete set of tractions with their
corresponding displacements differences. Apart from the
tangential problem in which (X,Y) are given and Z is unimportant
as we have here, we also treat the normal problem where Q;Y) are
unimportant, Z is arbitrarily prescribed. This is done because it
widens the scope of chapters 2 and 3, while it is done without
much trouble, since a normal problem is equivalent to a
tengential problem in which POISSON's ratio ¢ vanishes.

In chapter 2, we give the theory of tractions of the form

£_ )xPyd, (1.9)

1+ M
= {1- 2 2y-2
(x,Y,2) = {1-(x/a)2-(y/b)2}7% } (@ 2802 %pq

p+g=0
It is shown in 2.2 that to the tractions (1.9) surface displace-

ment differences belong
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M
(u,vow) = J (a ,b _,c )<%" if (x,y) in E. (1.10)
min=o 0’ mn’ mn

The remainder of chapter 2 is devoted to the connection between

the (amn,bmn,cmn) and the (dpq,epq,qu

in the form of a square set of linear equations, which we call

)

). This comnection is given

the load~displacement equations. They express (a'mn’bmn’cm.n
explicitly in (dpq’e f ).

In chapter 3, we treat speciel cases of the load displace-
ment equations. In 3.1, we consider the special case that (X,Y,Z7)

vanish at the edge of the contact ares, and have the form

1o 2_ 2112 Y
(X,Y,2)={1-(x/a)2=(y/b)2} p§q=o(dpq,epq.qu

Again, (u,v,w) are given by (1.10), The coefficients of the load-

)xPyd (1.11)

displacement equations appear to undergo only minor changes. In
3.2, we treast a number of examples, viz. a rigid, flat die of
elliptic circumference pressed into a half-space (3.211), the
problem of CATTANEQ snd MINDLIN without slip (3.212), the problem
of HERTZ, fairly detailed because it is used later on (3.221),
and finally the problem of CATTANEO and MINDLIN with slip,
without twist (3.222).

In chapters 4 and 5, we attack the second subproblem, viz.
the fitting of the boundary conditions (1.8), by means of the
theory of chapters 2 and 3. In 4.1, the boundary conditions are
derived; this is followed by considerations of symmetry in k.2,
The remainder of chapter 4 is devoted to the two limiting cases,
viz. infinitesimal creepage and spin (sec. 4.3), and very large
creepage snd spin (sec. 4.4). The case of infinitesimal creepage
end spin, which wes treated before by DE PATER [1] and KAIKER [1]
is extended@ to the case of an elliptical contact area. Tractions
of the form (1.9) are used. The case of very large creepage and
spin, which was treated by WERNITZ for elliptical areas only
when ux=0 or Uy=0, is here extended to the case of arbitrary
creepage. The method of LUTZ and WERNITZ is retained, and the
theory of chapters 2 and 3 is not used.

13,



In chapter 5 we treat the case of arbitrary creepage and
spin. The procedure is, to write the boundary conditions (1.8)

in the form

T[] _01-(x/2)2-(y/0) 21X v, )24 (11w )2 Hs, s, 2 Yaxay=o0

(1.12a)
!(X"Y')IS1 »
with (X,Y) = uz(X',¥")= % {1-(x/a)2=(y/0)2}*? (x',11),
, M 2.4 (1.12b)
(x Y') = p§q=o (dpq’epq) Y5 M=,

It should be observed that (1.12a) can only be satisfied if at
every point of the contact area at least one of the factors of
the integrand vanishes. The first factor does not vanish except
on the edge of the contact area; if the second factor vanishes,
(1.8a) is satisfied, and the point belongs to the area of slip; if
the second factor vanishes, then (1.8b) is satisfied, and the
point belongs to the area of adhesion. The inequality |(X',Y')|<1
ensures that the meximum uZ of the tangential traction is not
exceeded. We see from (1,12b) that the tractions (1.11) of sec.
3.1 are used. This is done with the purpose to enter a rudiment
of the inequality into the integral. In practice, we take M = 3
in (1.12b), and minimize I with respect to (dpq’epq)' since the
positive definite integral I vanishes only for infinite M. The
inequality of (1.12a) will be verified afterwards. It is seen
that in this method the difference between the locked areas Eh
and the slip areas Eg disappears fram the problem. The domain

of slip can, however, be identified with the area in which
{(X'-wx)2+(Y'-wy)2}<<(sx2+sy2), and the domain of adhesion E

is that in which {(X'-wx)2+(Y'—wy)2}>>(sx2+sy2). This distinction
is especially sharp in the case of pure creepasge. The calculations
were performed for a large number of parameter combinations Uy
Uy’ ¢, and a/b (= ratio of the axes of the contact ellipse). In
5.1 sqq, the theory is discussed; in 5.2 sqq, we present some
considerations on the computer programme with special emphasis on

the optimalisation of the programme and the verification of the

1)4.




inequality, and in 5.3 sqg. we devote our attention to the
numerical results.

The dissertation finishes with a conclusion in which the
results achieved are summarized, and in which we make same

remarks regarding further research.
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2. Two elastic half-spaces under normal and shearing loads acting

in an elliptical contact area.

In the present chapter, we will consider the stresses and
displacement differences that arise when two half-spaces are in
contact. Throughout the chapter we assume that contact takes
place along an elliptical contact area E.

We introduce a cartesian coordinate system (0,x,y,z), the
origin of which lies in the centre of the comtact ellipse. The
directions of x and y are the axes of the ellipse, and the axis
of z is directed along the inner normal of the lower half-space.
We denote the surface tractions by (X,Y,Z), the elastic displace-
ment in the lower haelf-space z > O by (u+,v+,w+), and the elastic
displacement in the upper half-space z < 0 by (u™,v ,w ).

We saw in the previous chapter that as a consequence of our
assumptions.we could decompose the problem into two partial
problems, viz. the normal and the tangential problem,

The normal problem has to be solved first, and it is
equivalent to a contact problem without friction. Its boundary
conditions are formulated in terms of Z and the displacement
difference w(x,y)=w+(x,y,0)-w-(x,y,o), and the most important
condition is that w(x,y) takes on a prescribed value in E. We
can schematize the elasticity part of the problem by solving the
following

Normal problem: The shear tractions (X,Y) vanish identically

on the whole of the boundary z = 0O, and the normel traction
Z vanishes outside the elliptical area E, The surface dis-
placement difference w(x,y) is given at E as a polynomial of
degree M in x and y:

M-m

M
W(XQY) = z z
m=0 n=

e xy® inside E. (2.1)
mn
0
Find the normal traction Z acting at the area E.
This problem seems to be artificial., The reason why we
restrict ourselves to polynomial displacement differences is,
that for such a displacement we can find the normal traction Z

by solving a finite set of linear equations. Moreover, we observe

16.



that the polynomials are complete in the sense that they can
approximate any continuous function as well as one likes.
Finally, in several problems, e.g. the problem of HLRTZ (sec.
3.221), and the problem of a flat rigid die of elliptical
circumference that is pressed into & half-space (sec. 3.211),
the displacement difference w is actually a polynomial.

Making use of the results of the normal problem, we proceed
to solve the tangential problem. From a point of view of elastic-
ity alone, this problem is equivalent to a problem in which there
is no normal load at the boundary, as & consequence of the second
assumption of MINDLIN, see sec. 1.2. The most important boundary
condition in the area of adhesion is the (almost complete) pre-
seription of {(u(x,y), v(x,y)) = (0¥ (x,y,0)-u"(x,¥,0), v+(x,y,0)+
v (x,y,0)) in it. Hence it is desirable to solve the following

Tangential Problem: The normal traction Z vanishes

identically on the entire boundary z = 0, and the
tangential surface traction (X,Y) vanishes outside
the elliptical area E. The displacement differences
(u(x,y), v(x,y)) are given in E as polynomials of
degree M in x and y:

M M-m
(ulx,y), vix,y)) = z ) (amn,bmn)xyyn inside E. (2.2)
m=0 n=0

Pind the tangential traction (X,Y) acting at E.

This problem, too, can be solved explicity, in the same way
as the normal problem. As in the normal problem, there is an
example in which (u,v) are actually polynomials: it is the
problem of CATTANEO [1] and MINDLIN [1], in which two bodies are
pressed together and then are shifted or twisted, while slip is
assumed to be absent. This problem is treated in sec. 3.212.

We finally observe that both problems reduce to problems of
the sinéle half-space, when one of the two elastic half-spaces is

assumed to be perfectly rigid.

2.1. Formulation of the problems as integral equations.

The connection of the surface tractions and the displacement

17-



of a half-space can be given by an integral representation. In order

to find it, we observe that the displacement in the lower half-space

due to a concentrated load of magnitude Z acting at the origin in the
direction of the positive z-axis is given by LOVE [1], par. 135, pg.

191, as follows:

uhe L xz D X
rp r¥® bn(A+yw) r(z+r)
vie Loxe L ¥ } (2.3)

b r3 Le(d+u) rlz+r)
2
W+ = ._Z_Z—- -+ Ml , r = ,/x2+y2+zz
bry 3 bap(a+y) r

where A and u are LAME's constants, which are connected with the

modulus of rigidity G and POISSON's rastio o by the relations

W= 6, A =22 e = B, e2u = 3%%%591 . (2.4)
So, (2.3) becomes R
oS = 2 . { xz _ (1-20 )x
iNile: rd r(z+r)
+
e Z_qyz_ (- )y (2.5)
LnG r3 r(z+r) r
2
ot = 7 . { zt | 2(1-07) } o
bwG r? r

The displacement in the lower body due to a distributed pressure

7Z{x,y) in the z-direction is then given by superposition:

N

\i + ]
u* (x,y,2)= = /[ 2ty (oxt)z | (1220 ) (o)} gy gy

g r3 r(z+r)
v lxy,2)= == [] 2zt ) (y=y')z _ (1-20")(y-y") } axvay
IgYe) E r3 r(z+r) ? (2.6)
+ [
W+(XQY,Z)= 1 2 +M } dx'dy‘,

ff z(x' ’y'){ %
E r

bngt r

r = /(x-x')2+(y—y')2+zz, z 2 0.

We must also have the displacement in the upper body. It is due to
the reaction of Z(x,y), and consequently it is given by the same
equations, but in a coordinate system (x,y,z'), where z' = -z, To

find it in our coordinate system (x,y,z), we must change z to |z],

18.



and W' to ~w everywhere., This gives for the displacement in both
half-spaces: _

-% ! - + _x!
1 - Ij 2(xt oy { (x-x )[;l,_ (1-20 ) (x=x") b axray’,
koGt B rd r(|z|+r)

u:(x’Y9z)=

- \ ¥ .
v+(x,y,z)= 1 — J’f Z(.’X_' ’yi){ (}’-Y )lzl _ (1-20 )(Y—Y ) } d.}('dy',
¥ E r3 r(|z|+r)

T F
w+(x,y,z)= +1 II Z(X',y'){ Ei ¥ Eil:g_l } dx'dy',
+ E r3 v .

r = V(x=x')2+(y-y')2+22, upper and lower sign as z < 0, z > O,

(2.7)
From this we see that in case G and ¢ are the same in both bodies
(elastic symmetry),
+ -
u (x,y,z) =u (xsy,’z))
+ - .
v (X,¥7,2) = Vv (X,¥,-2), ifX=Y=0 (2.8)
+ -
w (X’Y:Z)= =W (x,y,-z),

a result due to DE PATER [1], pg. 33.
The displacement differences, which are prescribed in the normal

and tangential problems, are:

u(X,y {u Xy¥,0 (x,y,O)} =
1 1-20+ 1-20~
P - Z 1] 1]
W | ¢ G } Ié = R?
V(X9Y) = {V+ ’Yao)‘v (x !yio)} =
== { ———1':; lo2e ff y__z ax'dy', | (2.9)

w(x,y) = {w (x,7,0)-w (x,y,O)} =

+ - ] [}
=1_.{Ji+_1:°_}ﬂz(xv,yv)_di§§’_,
B R

2m G+ o

Y = 0, R = V(x-x")2+(y-y")?.

X

We combine 6+, ¢~ =nd G+, ¢~ in the following manner:

+

1 1 1 o 1 a
=z (s+=)g=3(Z+

2 G+ G * G 2 G+

+ -
1,.¢1=20" 1-=20
)y k =G - —=]. (2.10)
’ B g ¢

Qf—
m||ql
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It is easy to see that G lies between ¢t and G, and that ¢ lies
between U+ and 0~ ; in the case of elastic symmetry,

¢6=6"=6,0=0"=0¢", « = 0. (2.10a)

The constant « vanishes in case of elastic symmetry, and also when
both bodies are incompressible. Its maximum is 0.5, but in practice
it is mostly small, e.g. 0.03 for steel on brass, and 0.09 for steel
on aluminium. In terms of the constants of (2.10), the displacement

differences become
N

u(x,y) = - == fé Z(x',y") E;f— ax'dy', (a)
v(x,y) = - = é 2(x',y') Y—;ZL' ax'ay', (b) ¢ (2.11)
w(x,y) = %ég Jf z(x',y") Qz%gzi . (¢)

E /

If w is prescribed in the contact area E, (2.11¢c) is en integral
equation for the unknown normal pressure Z(x,y).

The procedure for the tangential problem is very nearly the
seme, We start with the displacement in the lower body due to a
concentrated load of magnitude X acting at the origin in the

direction of the positive x-axis, see LOVE [ﬁ], par. 166, pg. 243,

+_ X o a3p1 x2 X 1 X 1 _x? )
4 ﬂu( weoT 3 )- Zran) T hw(x+u)( 2T T p(gtr)?2 )4
+ X xy X Xy
v = - .
bmu 23 7 hn(atn) C r(z4r)2 ° (2.12)
+ _ X xz X X
W — + .
by r3  br(A+n)  r(z+r)
r = Vx2+y2+z2.

/
The effect of a distributed shear stress X(x,y) in the x-direction is
found by superposition. The displacement due to a load Y in the y-
direction is found from (2.12) by cyclic interchange of x and ¥, u
and v, X end Y. The displacement in the upper helf-space is given by
(2.12) in a coordinate system (x,y,z'), with z' = -z. However, we
must take into account that the shearing traction on the upper body
has the opposite sign. So we find the displacement in the coordinate
system (x,y,z) by replacing X by -X, Y by -Y, z by [z], W by -w ,
end it is for both half-spaces
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ut (x,7,2) =

= ¥ 1 fj [X(x',y'){ 1 + 1-2gF . (x-x')2 (1'201)(X—x‘)2 } .

ynat E |z |+r r3 T r(]z]+r)?
ks
vooryg Lx=xD) (r=y")  (1=20%) (ex?) (yy') L
+ Y(x',y ){ X w3 - r(‘Zl"'I‘)z }:} dx'ay!',
V;(x,y,z) =
= 1 ff [X(x' ¥ )1 (x=x") (y=y*) _ (1-20 )(x—x')(y—y') b
hnat E ’ r? r{|z]|+r)?

+x(xt,y) {1+ 1-20" | (y=y")? _ (1-20%) (y-y')? |

r o |z]+r rd r(|z|+r)? ] ey, [

W+(X:Y9Z) =

U [X(x',y"){ (x-x HJ (1-20%F) (x=x") W

r(|z|+r)

[

hvG
+ Y(x',y")

- ' —
L=yl |, (1-20%) (y-y") 1 ax'ay',
r3 r(|z|+r)
r= /(x-x")2+(y-y')2+22, Z = O.
Upper sign: upper half-space, lower sign: lower half-space.

/
(2.13)
From this we see that in case G and ¢ are the same in both bodies

(elastic symmetry),

u+(x,y,z) = —u (X,¥,-27),

1l

vV (x,7,2) = =V (x,¥,-2),p if Z = 0, (2.1h)

w+(x,ysz) = +w (X,¥,-2),
a result due to DE PATER [1], pg. 33.
The displacement differences u(x,y), v(x,y), w(x,y), which are
prescribed in the normal and tangential problems, become with the

definition (2.10) of G, o, and x,

u(x,y) =
= -’:T—G' IIE[X(X'pY'){1;O + (X-x }+Y(X ') _(_XM.LZ.] dx'ay’,

32R ]
ox'3y!

ax'ay*,

! vy - g 22R —_
e fé [X(x',y )fg -c 3;75} -0 Y(x',y*)

(2.15a)
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N

vix,y) =
2 Jf xx',y") ole=x) (y=y') | v(x' ’y.){l:_g_ + Eﬁkﬂﬁ}]dxndyv
e g R R RS

3

1 ' ' BZR ' 1 1 BZR ] []
=?§H[‘UX(XaY)W+Y(x,y){§=oay'2}]dxdy, J
(2.15b)
wix,y) = l:r-a fé [X(x‘ ) X;JZ[' + ¥{x" ,y') .L;{%'_ ]d}{'dy', (2.15¢)
Z =0, R= V(x=x")2+(y-y")2. (2.16)

If Z = 0, and u and v are prescribed in the contact area, (2.15a) and
(2.15b) are two . imultaneous integral equations for the unknown
tangential tractions (X,¥).

According to (2.11) and (2.15), we see that a rough estimate of

(u,v,w) in the cou-act area is

u = O(Fx/Gs) + O(oFy/Gs) + 0(xN/as),
v = O(GFX/GS) + O(Fy/Gs) + 0(kN/Gs),
w:

0(kF_/Gs) + O(KFy/GS) + 0((1-0)N/Cs), r o (2.17)

Fx’ Fy, N: total force in the x,y,z-~directions,

s: half diameter of the contact area. J

Throughout the present work we will neglect the influence of the
small constant k. This leads to exact results in the technically
important case of elastic symmetry, and also when both bodies are
incompressible.

It would seem that our approximastion leads to a high precision
in the case of w, since Fx and Fy are the most of the order uN
(u: coefficient of friction), so that the influence of X and Y on w
is of 0(ukN/Gs), which seems to be negligible with respect to the
influence of Z, which is of 0((1-0)N/Gs). But neglecting the
influence of 2 on (u,v) can lead to serious errors: this influence
can be of 0(kN/Gs), while the influence of the tangential traction
is of O(uN/Gs). Hence we would obtain a good second approximation by
taking the influence of Z on (u,v) into account, and neglecting the
influence of (X,Y) on w. The division of the problems into a normal

and a tengential problem is then retained. This second approximation
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was worked out by JOHNSON [h] for CARTER's problem, and he compared
his results with the exact theory (see JOHNSON [L4], fig. 7), from
which it appeared that the error of the second approximation is small.
We finally observe that the problem is governed by three elastic
constants, viz. G, 0, and k. That is one less than one would expect,
since in principle the four constants G+, G, c+, o~ can be
arbitrarily chosen. We also see that G can be eliminated by
introducing dimensionless tractions. So the elastic properties are
taken into account by the two dimensionless parameters x and o, one

of which we set equal to zero.

2.2, The fundamental lemma.

As we saw in the previous section, the normal and tangential
problems can be formulated as the integral equations (2.11c) and

(2.158,b). They are

u(x,y) = 5
=1 J’f [X(x' ’yl){l:.g_ + 0_(3{:1{'_)2_} + Y(x',y") ﬂ%ﬁ]h»dye’
TG E R R3 R3
v(x,y) = 3
=4 3 ' G(me')( my') — _1:_2 0( - v)2 . ,
_Ejé [X(x,y)—a-—m_;él-—as-}»y(xsy){R +——X§§—}.]dXdYSJ
(2.18)
wix,y) = %ég f% Z(x',y') 95%91l , (2,19)
with
R = /(x-x")2+(y-y")2, E = {x,7: x2/a2 + y2/v2 < 1}, (2.10)

We will now prove the following

Fundamental Lemma:

Let
Hix,y) = <& yg'q'.k/Rzg'H, k and £ positive integers, 22 > k;
Jayy) = {1=(x/)2 = (y/0)2}7%; B2 = xPay?;
K(x,y) = DZ/I MEP a_ *FyY, 4 arbitrary constants;
=0 g=0 Pd ]

(2.21a)
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-~

I(x,y) = ff J(x',y )K(x',y" JH(x-x" ,y~y' )dx'dy",
E
then, if (x,y) lies in E = {x,y: x%2/a2+y2/b2 < 1}
M M-m n (2.21pb)

I(x,y) = T I & X yn,
m=0 n=0 b

that is, I(x,y) is a polynomial in x,v of the same degree

as K(x,y).

The lemma was established by GALIN [1], ch. 2, sec. 8, in the
special case that k=£=0, by means of LAME's functions. Its
significance for the solution of the integral equations (2.18) and
(2.19) is the following. We see that all functions of (x-x') and
(y-y') that occur in the integrands of (2.18) and (2.19) are of the
form H(x-x',y-y'). If we suppose that the tractions X,Y,Z are of the
form J(x,y)K(x,y), then it follows that the displacement differences
u,v,w inside the elliptical area are polynomials in x and y of the
same degree as that of K(x,y). But that means that there are as many
parameters in the displacement differences as there are in the

x)

numerical work, that the displacement fields are independent of each

tractions. There is a strong presumption » borne out by our

other. It follows that we may invert the argument, and say that when
u, v and v are given as polynomials inside E, the tractions X,Y,Z
must be of the form J(x,y)K(x,y). Clearly, the connection between
the constants dpq and an is linear, owing to the linearity of the
equations. Summarizing, we see that the lemma presumably implies

that

M M-m

mn ..
(u,vow) = ¢ I (amn’ b s cmn) Xy inside E
m=0 n=0
M D (2.22)
S (X,Y,2)=7(x,y)6 £ I (4 repqot q)xpyq,
p=0 g=0 P2’ Pa’ D
where the constants (amn’bmn’cmn) are connected with (dpq’epq’qu)

x) KIRCHHOFF's uniqueness theorem does not hold when the stresses

go to infinity, as they do here.
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by linear equations.

We now turn to the

Proof of the Lemma.

Consider a typical term of the polynomial K(x,y), viz. xPy%.
Then the lemma is proved, if we can show that

/] J(x',y" )x Py Y H(x-x',y-y" ax'dy' = P (x,¥), (2.23)

E ptq

where Pm(X,y) denotes an arbitrary polynomial in x,y of degree m. We

introduce polar coordinates R, ¢ about the point (x,y):
x'-x = Reosy, y'-y = Rsiny, dx'dy' = R4Rdy, (2.2k)

and we introduce a new notation: Fm(w) is an unspecified function of

¥, independent of R, x, and y, for which

Fo(yem) = (-0 F_(v). (2.25)

For example, siny = F1(w), cosy = F1(w). Multiplication of functions

Fm(d)) is governed by the law that Fm(w)Fn(\p) = Fm+n(w). Now,

It

k - +
H(xex',y-y") = (xox") 5 (y-y" )27 5/R24 | oo,

H(x=x',y-y") -% Fo(w). (2.26)

We must write the factor 1-(x'/a)2-(y'/b)? in polar coordinates:

1= (x/a)2-(y! /0)2 = 1 - ABcosprx)® _ (Reingry)?

a? b2
2 42 : 2 .2
- (1_ Xt ye )—ZR( xcosy , ysiny )-RZ( cos?y . sin%y )=
a2 b2 a? 12 a2 b2
= - A {R%+2DR-C} = - A {(R+D)2-C-D?} = A {B2-(R+D)2},
with
2 {02
A:M.;.M:p (w) > 0,
8.2 b2 o
c =71- {1-x2/a2-y2/b2},
_ 1 (xcosy , ysiny
D= 2t )» v (2.27)

B =B(y) = /B2 = /-k (1 - =2 ._I/i_)+ 1 (Xeosy Xsigﬂ‘)z -

A2 a2
= B(m+y),
1 - (x'/a)2-(y'/v)2 = A{B2-(R+D)2},
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As to the limits of integration, ¢ goes from O to 2w, since
(x,y) Lies inside the area of integration, and R goes from O to the
positive zero of 1-(x'/a)2-(y'/b)?, that is, to -D+B. So we get from
(2.24), (2.26), and (2.27) that (2.23) becomes

f] I(x',y ) x Py W (x-x ,y-y " ax'dy!' =
E

(2.28)
2n B-D P : q
_ (x+Reosy)* (y+Rsiny)
= F (y)a dR = R
E’)’ ol¥)av é VBZ_(R+D)2 Pp+q(x v

where the factor 1/vA and RH(x-x',y-y') have been taken together
into the single term Fo(\p).

We can expand the term (x+Rcos y)P(y+Rsin W to a rinite double
sum by means of the binomial theorem, twice applied. A typical term
is Aini+jxp.iyq-jsiniwcosjw, which can be written as Ri+'jFi+J.(xp) x
x xp-iyq-j. Inserting this into the integral (2.28), we see that it

is sufficient to prove that

pmi _a=j f21r IB—D Ri+j R :
x y F.oL(y)ay ——— =P (x,y). (2.29)
) 1+) 0 I/RZ-(R+D)2 ’ pta
Setting i+j=m, we see that (2,29) is satisfied when
2n B~D m
[ E (Way [ —E B - p (x,y).
0 o /B2-(rD)2 T

Now we introduce the variable t=R+D instead of R. Then, dR=dt, and
the limits are from D to B:

2m B m
EEAOLY| le=b)ar

D /AB2x2

We evaluate the term (t-D)m again with the binomial theorem. A

B (x,y). (2.30)

typical term is Aqtqu'q. If into this we introduce the value of D
from (2.27), we obtain

- i n-q
At e - w)tq ( xcosy + ysiny ) .
q o} al b2

Here again we evaluate the right-hand side with the binomial
theorem; a typical term is

Fo(0) Aty PeosPyein™ P hymr | (9)ehy™P70,
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Inserting this in (2.30), we get for a typical term:

2w B q
p_m=-p-q t = dt
x F (y)a ——— =P _(x,y)
y ,g q(‘l’ w]}; B’_—Z_tz m( Y/
and this is satisfied if
27 B q
t*dt
F (y)a —— =P (x,¥). 2.31
A 230

Now there are two possibilities: either q is odd, or q is even.

gq=2m+1 is odd. (2.31) becomes then

27 B , 2m+1
£ gt
[ FWay [ ==
0 D 242
2n BZ m
t%at
=/ F (v)ay =
o ! 1{2 Z@Z-t \
m B% {Bat _ B (Ba

} =o,

F {y)d —
é 11 { 1f>?- vB2-t D2 VBZ-t

since by (2.27),

D2(yp+w) = D2(y), BZ(y+m) = B2(v). So, the odd values of g do not
contribute at all to the integral.

g=2m is even. (2.31) becomes then

27 B . 2m C2n 1 2m32m
F(pay | L& = F (pay ] 2%
é ° ]J; /8242 ({ ° IJ;/B /1-t2
2 1 .2m T D/B  -D/B .,2m
= F()BPay [ = _ [ F (v)2%ay + rat
[ % el S A S A s

and the latter two terms vanish, because tzm/V1-t2 is an even
function of t. As to the first term,

1 .om
[ 2 at

0 V1-t2
is a constant, so that we must consider

2n
[ F (y)8%ay;
0 (o]

but B2 is a second degree polynomial in x and y, with coefficients

depending upon Y. Sc B2m is a (2m)-degree polynomial in x and y,

2T



and (2,31) becomes

2n
gy =
é Fo.($)B Ty = P, (x,3),

which establishes the lemma.,

2+3. DOVNOROVICH's method.

In the previous section we showed that if

M M—p
(%,1,2) = 6(x,y) [ ] (a, pq,qu)xpy ,
. p=0 g=0
-1
with J(x = /1= (x/a)?-(y/b)2 , then and (presumsably)
only then (2.32)
{u,v,w) = X Z (a__,b )x™y" inside E,

mn® mn?’ mn
m=0 n=0

with E = {x,y: (x/a)2+(y/p)? < 1},

vhere the coefficients (d,e,f) on the one hand, and (a,b,c) on the
other hand are connected with each other by the integral represent-
ations (2.15a,b) and (2.11c). In order to find the equationms
connecting (a,b,c) and (d,e,f) explicitly, it is, of course,
possible to follow exactly the road indicated by the proof of the
fundemental lemma. However, we prefer the road followed by
DOVNOROVICH [1] in his treatment of the normal problem. DOVNOROVICH
uses the lemma only in the form proved by GALIN, that is for

H(x,y) = 1/R. He calculates Cun by differentiating the integral
representation (2.11¢) m tlmes with respect to x and n times with

respect to y, and then he sets x = y = 0:

mtn M M=j

] J.k

minle = Yol e.x y'] =
m [meayn j=0 k=0 i x=

[ R ff - __?ggxl } -

ax"™ ay TG x=y=0

m+n M

3 1= dx'dy!

T_n_o- z z £ J'f J(xv’yv)xvpy|Q__dL} .
ox 9y~ T "p=0 q=0 Pd ‘g X =y

Since the values of v and g for which p+tq < m+n give rise to
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polynomials of & degree lower than m+n, these values do not give any

contribution to Con? hence

mn
min M '
1-0 9 D dx'dy!
=T[—m——n ) fq I] J(x',y')xv*y'q—f-*"—} :
ax dy p+gcmn,p20,920 E x=y=0

As we will prove later in this section, we may interchange different-

iation and integration in this expression, so that

minlc =
mn
M min -1
= _%q- z f fj J(x,y)x'py'q 8__51_5. d_xdy =
pa>mtn Pd g ax' oy'" |x'=y'=0
pz0,920
M mn_ -1 [ (2.33)
=1 ) (=1 )m+n f ff J(x,y)xFyd a_x axdy
pa ¥ m, o ?
ptezm+n, E 90X oy
p20,920
r = Vx2+y2, )

Tn exactly the same way, we find from (2.15a,b), and (2.32) that
m!n!amn = N
p ¥ m+n D.a e, g2,
== ) (=1) J[ 3(x,y) <%y L. (== -¢ — )+
p+a>mtn, E 3x 9y ax oy

ontqzo
n+n+2
-0 e _.B__—_r—. dxdy
Pg 8xm+13yn+1 *
mintb_ =
m b
1 M m+n P.q 3m+n+2r
== z (-1) ff J(x,y)x"y —Udpq——mﬁ"'
prqemtn, B ax 3y
p>0,q20
am+nr—‘l am+n+2r
+epq — -0 - n+2)dxdy.
0x oy 9xX dy
r = /x2+y2, E = {x,y: x2/a%+y2/p? < 1}, ]
(2.34)
The integrals
hipg _ (-1)™" p.q %R~
s = A= —_——
B s ] 3(x,y) 2Pyt = axay (2.35)
E ax dy
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are fairly easy to calculate; we will do thet in the next section.
The remainder of this section is devoted to the proof of the

validity of the equation

3111"'1‘!.
—s/J f(x,y)H(X-x',y-y')dxdy] =
ox! By' B xl=yl=o

m+n
+ 3 H
= (GO 20xy) SBE) gy, , (2.36)
E 9xX 3y
h_l
£(x,y) = 306, y) ey, Elx,y) = (x2+y2)°7F,
when
2h+ptg-m-n > -1, (2.37)
Proof. We divide the domain of integration into a small square
D= {x,y: |x]| <8, |y| <6} (2.38)

about the origin, and the rest E-D of E. When the point (x',y') is

close enough to the origin, say
x| <6/2, |y']| <&/, (2.39)

it lies in the square D, and then all derivatives of H(x-x',y-y')
with respect to x' and y' exist and are continuous in E-D. Hence we

may interchange differentiation and integration in E-D, so that

i}

am+n
['—_ JI fx,y)B(x-x",y-y')dxdy ]

ax'May'® “E-D x'=y'=0
wén, (2.40)
= (_1)m+n If £(x,y) 8 _H{x,y) dxdy.
E-D meayn

We will now show that the contribution of the square D to both the
right hand side and the left hand side of (2.36) vanishes as § + 0,
that is

A= [ [ flx,y) ==Ll axagy + 0 as § + 0, (2.41)
-5 -8 ax"ay™
am+n § 6
B=——— [ [ f(x,y)H(x-x",y-y')dxdy + 0 as 6 = 0 (2.k42)

ax'may'“ -5 =§

Evidently this will establish (2.36).
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m+n_ 2h~1
2 r - C(rZh—1-m—n)

axmByn

over, f£(x,y)=0(x,y)LyL = O(rp+q), so that the integrand of A is
O(r2h_1+P+q’m_n), and
2m 28

A=0f é ay é

As to (2.41), we observe that ; more-

pPBtpra-m-n ar) 0 as § + 0,

when 2h+p+q-m-n>-1. (2.43)
As to (2.42), let us consider the case that m=1, n=0. Evidently,

8 8
3
2 L ay [ rtext vy ax =
~8 =8
8 8
;ig g &y £ P,y HH{x=x"=k,y-y " ) ~H{x-x',y=y ') }

§
k+0 =6 -

x
K

-8
+ %~ [ f(x+k,y)H(x-x',y-y')dx +
-8=k
§
/ f(x+k,y)H(x—X'.y—y')d%}}=
8=k

=l

§ 8 3f(x,y) §
g dy g S Blxexty-yax - dY[f(x,y)H(x-x',y’y')]
- - -5
or, summarizing,

x=6

=6

§
E%T J ay [ f£(x,y)H(x-x',y-y')ax =
T )
= { dy g ———%;X— H(x~x',y-y') dx +
) =6

-*f [f(X,Y)H(x-x' ,y—y' )] dy,

=& x=-8
We observe in passing that the right hand side of (2.L44) is formally

3 (2.L4)

equal to -ff(x,y) %% dxdy, integrated partially. This integral,
however, is not absolutely convergent when h=0, unless x'=y'=0,
The first integral on the right hand side of (2.4L) is anslogous

to the original integral [[ f(x,y)H(x-x',y-y')dxdy; when we
D

differentiate it further, we obtain forms analogous to (2.4h4). The
second integral may be differentiated under the integral sign, since

H(#8-x',y-y') has continuous derivatives of any order with respect
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to x' and y', when x' and y' satisfy (2.39). So we find, by differ-
entiating first m times with respect to x', and then n times with
respect to y', that

am+n § 6 3
5yt By D £ g £(%,y ) H(x-x" ,y-y" ) dxdy =
x'dy -0 -

[ 8 m+n ( )

- i i = d (2.45)
) mz‘l fﬁ[ alf(x?y) am—l-x'n i-1q4 ]x;; .
i=0 § 3t pxtBiT] ay'® Jx=-¢
n-1 8 am+1f(x,y) an-:l.—1 H y=68
- Z [ m, i n-i-1 dx,
1=0 -8 9X 3y N y==6
I
m
just as if we had integrated (_1)m+n ff fx,y) —a—mﬁﬁ- dxdy partially
D 3x Ay

with respect to x and y. It follows from the definition (2.36) of
f(x,y) and H(x~-x',y-y') that
i . m+i .
o fix -1 3 f -m-1
—(Q.L) =0 (6P+q ), (X,X) =0 (6p+q )’

ax* meayl

[ m+n-i-1 n-i-1

9 H 2h+i-m-n 3 H _ 2h+i-n
= =of¢ Vo | T | =067,
ax’' Ay'T [x=1%8 oy y=148

so that the line integrals of (2.45) are all

2h+p+g-m-n 2h+1+ptg-m-n ]

§
of s ay = 0(s
=8
The surface integral of (2.45) behaves as

f(S )'6 52h_1 +p+q-m-n axdy = 0 (62h+1+p+q—m—n) .

-8 =4

2h+1 +p+q—m—n)

Hence all terms of (2.45) are 0(6 » which vanishes as

§+0, when 2h+p+tq-m-n>~1.

2.4. The load-displacement equations.

We saw in the previous section that when
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M Mem

n
(uyvyw) = 1 ] (am.n o ? mn)xy end
m=0 n=0
M Mep o (2.46)
(X,Y,2) = 6J(x,y) ) 2 (a Pq,epq,qu)x vy,
p=0 g=0
then is, according to (2.34), (2.33), and (2.35),
M
=2 03pq 13pa _ 13pq
&m T min! ! [dpq(E mn = OF m+2,n ) %€bq B m+1, n+1 » (2.47a)
pro>men,
p>q,9>0
2§ 1500 (%3P 551578 )
b == [—od g's ve_ (03P9ox's } (2.47b)
mn min! pra>min, pg” wmtl,ntl “pq mn myn+2
p>0,9>0.
M
¢ = % ) f Eo’ﬁg . (2.47¢)
ses pro>mn, pa
P:OQq:O
with, as we recall,
R
m+n m+n 2h-1
h3;pq _.L:ll___ p,a 2
EC = ffJ(xy) ——— dxdy,
90X 0y
vhen 2h+p+q-m-n>0, & (2.48)

=0 else.

v = AZ, 3(xy) = {1-(x/a)2=(3/0)2} 72

We call the equations (2.47) the load-displacement equations.

We can clarify the structure and the connection between (u,v,w)

and (X,Y,2) by using index notation. We set 3

U; = 8080981080038 9 et Bgyo i=1 to 2{(M+1)(M+2) )

Vi = PpoeP1poPors oo Doys

¥i T ®00°%10%01° creer Sope

X, = dygs8 90907 eeny G M2.49)
Y = 002%10°%01° e S

Z; = Topof100T01e seees Ty

X, = 1,x,y,x2,xy,y2, veeey yM .
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The square matrix ——
min!

EO;Pq, adspted to this order, we call A, .,
mn 1)

. 2 13pq . 2  lspa .
the matrix oint E m+2,n is Bij’ ] E m+1,n+1 is H.., and
—%—7 15pq is D,.. Finally we use the summation convention: when
min! m,n+2 13

two indices in an expression are the same, sumation from 1 to

1(M+1)(M+2) is understood. Then we have:

>4
L}

GJ(x,y)Xixi, Y=

U= U.X,y VEV.X,y WEW
i%i i%i

GJ(x,y)Yixi, Z = GJ(x,y)Zixi,

. X,
i7i?

and the load-displacement equations are

R
u, = (4, ,-0B,.)X,-0H,.Y,,
1 1J 137 4
v, = -oH, . X, + (A..—UD;.)Y., L
1 13 4 13 137 d
w, = (1-0)Aij Zj, '
so that
\
u = xi{(Aij—cBij)Xj—oHij Yj}’
v = xi{-aHinj + [Aij—oDij)Yj},>
v =x.(1-0)A,. Z, »
i 13 73 J

(2.50)

(2.51)

(2.52)

We note that only x. is position dependent. For illustration, we

write out the quantities connected with Z for M=1:

(xi) = (1,%,7); (Zi)

z = 6J{1,x,y) foo'
Ty
To1 |

207 ¥ = (%)

We consider again the constants E

E

=(f

0;00
E 00
0300
0
0;00
01

oo0?
y WFE (1,x,y)

f10’

0310
E 00
0310
E 10
0310
E 01

f01

00
10
‘o1]

0o

0;01]
E 00

0301
10

0301

E

E

); oWy =

01
h

(002210201

oo

f10

f01_

3P ohich we defined as
mn

integrals in (2,48). Since the integrand is an odd function of x

when (p+m) is odd, and since the domain of integration

E = {xy: (x/8)2+(y/b)2<1} is symmetric about the x-axis,

3)45




g13P2

0 when (p+m) is odd. In the same way, we find that

mn
Eh;pmnq =z 0 when (q+n) iS odd. SO,
m+n m+n_2h-1
hipg _ (=1) 1 r
Em 2 /] I(x,y)xy mon X
b0 X 9y

when (p+m) and (q+n) are even, and 2h+p+q-m-n>0,| (2.53)

0 in all other cases.

The fact that Eh;ig = 0 unless (p+m) and (g+n) are even, has an
'y

n

important practical consequence for numerical calculations. This
consequence is, that the load-displacement equations for u and v, and
also those for w, can be decomposed into 4 independent systems.

In order to show this, we bring out the parity of p,q,m and n
by writing for p: 2p+e, or 2p+e' as the case may be, for q: 2q+w or
2q+w', for m: 2m+e, or 2m+e', and for n: 2n+w or 2n+w'. Here, € and w
take on the values O or 1 only, while e¢' and w' correspond to ¢ and w
by the equations e+e'=1, wtw'=1, so that when e=1, then e'=0, and
when w=1, ©w'=0, and vice versa. Further we will consider the case
that the degree M of the polynomials is given by 2K+v, (v=0,1;

vu'=1):
M=2K+v, €=0,1; w=0,1; v=0,1; e+e'=wrp'=v+v'=1, (2.54)

It follows from a consideration of the 8 cases v=0,1; €=0,1; w=0,1,
that the ranges of the summation can be represented in the formulae
2m2n+e+w < 2pt2qtetw < 2K+v

+ min < prq £ K-vewrv'(e'w'-1),

2m+2n+e+w < 2p+2qret+w’ < 2K+v (2.558a)
+ mn+l-g'~w' £ ptq < K-ve'w'+v'(ew~1),
while
2m+1+e=2{m+e)+e', 2n+1+u=2(n+w)+w', (2.55b)

So we find from {2.47):

A [] [ =
i(2m+e) ! (2n+w)! Sombe,2ntw

K-vewtv'(e'w'=1)

ptg=mtn,
p20,q20

K=ve'w'+v' (cw-1)

0;2pte,2qtw

da ( B E1;2p+e,2q+w )
2pte ,2qtw 2mte ,2n+w

+
2(m+1)+e,2q+w’ |

132ptet ,2q+w’

- Copte! ,2q+u’ 2(mte)+e’ ,2(ntw)+w’?

prg=min+ 1-w'-e',

pz0,q20 ’
(2.56a)
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1 )t tye =
1{2m+e') ! (2n+w’)! b2m+£’,2n+w'

Kevewtv! (e'w'-1) 1;2pte ,2q%w
] ]

TT° prg=m+n+ l-c~-w, d2p+5t2q+w 2(m+e')+5’2(n+“')+w+
20,920 [
ot ! -

. Kove'w'+v! (ew 1)e ( 0j2p+e’ ,2q+w' oE1;2p+e',2q+w' )
ptg=m+n 2p+e' 2qtw' 2m+e! 2ntw' em+e ', 2(n+1)+w'’?
20,920 A

(2.56b)
N
3(2mte) ! (2n+w)! ¢ =
2m+e , 2n+w

K-vewtv'(e'w'=1
= (1-g) ( : f 032p*e,2qtw . 7 (2.56¢)

prgemin, 2pte, 2q9+w 2m+e ,2n+w

p20,9>0

We see immediately from these equations that the systems (2.56a) and
(2.56b) teken together form a closed system of equations for each of
the four possible choices for (e,w), viz. (e,w)=(0,0), (0,1), (1,0),
(1,1). The seme can be said of the system (2.56c). Moreover, when
0=0, there is no longer any interection between Y and u, and between
X and v, sc that the equations (2.56a) can be solved independently
of (2.56b); in fact, (2.56a) and (2.56b) get the same form as
(2.56¢) with ¢=0.

After these general considerations, we will determine
Eh;2p+e,2q+w

omte ,2ntw in the next subsections.

2.41. A differentiation formula.

In the present subsection, we derive the following different-

iation formula:

am+n(x2+ 2)a ]

meayn
m n (-1)k+2 (_a)k+2 m:n! 2 2 =K 2k-=m 28=n
sz RIS = e b e H ermn H e M R C 2 R
(2.57)

in which we use the notation (z)j:

(2); = TEED L () =15 (o) malat1)enn(2do1), 3=1,2,3,0e (2250)
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Proof. We expand {(x+u)2+(y+v)2}a about (x°+y?). fccording to

TAYLOR's theorem, we have that
et umvn am+n ( x2+y2 ) a

{(eru)2+(y+n)2}* = ] ] L. (2.59)
m=0 n=0 min! 90X 3y

H

This expansion has a radius of convergence which differs from zero,
when {x2+y2) # 0.

On the other hand, we can expand H by means of the binomial
theorem:

H

"

[(x+u)2+(y+v)2}° = [(x2+y2)+ (2xutu+2yvev2) | =
o (=1)K(-a), (2xutu2+yviv? K

(x2+y2)® ] £ —
k=0 k! (x2+y2)

0k (-1)(<a),

—myre (B2 (eruni?) S (ayven?) h

k=0 2=0

In this double sum, we interchange the summation. The summation
ranges are then 0gl<e, 2<k<e, Then, we replace k by k+&, which gives
us an expression for H which is symmetric in k and &:

k+2
2w (<)) (a)

H = Z Z T k+2 (x2+y2]a-k—2 (2xu+u2)k(2yv+v2)2 =
2=0 k=0 o

k+8
@ o k & (-1} (—a)k+£u

QZO kzo mz_:o Hzo (k-m)!(ﬂ,—n) !n!m!

k+m_ 2+n
v

(x2+y2)a—k—l(2x)k—m(2y)l-n‘

In order to get W™ in this sum, we replace m by m~k, and n by n-2:

o @ 2k 2 (-1)k+£(-u)k+E Wy
H= [ ] 1 1 (kem) T {m-k) T (22=—n) ! (n=2) !

2=0 k=0 m=k n=%
% (x2+y2)a-k—l (2x)2k—m (Qy)zl—n.

We bring the summation over m and n in front. The range of summation

of k and m was: Ogk<we, k<m<2kj; this becomes Ogm<w, %mgkgm. So,

- o k+2 2,.2 O=K=-1£
) oy n (-1) (—a)k+2(x +y?)

H = m£0 HZO kgm/e zgn/z oK) ! (n-2) ! (2k-m) ! (2k-n) !

x

% umvn ( x)2k—m (

2 oy)2An (2.60)

Comparing this with (2.59), we see, that indeed
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SR (24,2)% i
meayn
m n (—1)k+2(-a) mln!
- (x24y2
k>n/2 2>n/2 (m-k)!(n-2)!(2k-m)!(22-n)!

as we set out to prove.

2

) o=k-2 ( x) 2k-nm (2}’) 2%-n

2.42, The coefficients of the load-displacement equations as finite

sums of complete elliptic integrals.

We use the differentiation formula (2.57) to calculate the

integrals
Eh;2p+e,2q+w -
2mte 2n+uw
+w 2m+2n+e+w 2h-1
_(-nE 2pte. 2q+w 3
= [] 3(x3)x™F"%y S axdy,  (2.61)
2n E ax oy
where
e=0,1; w=0,1; h+p+q-m-n>-3} (2.62)

see (2.53), in which the coefficients of the loasd-displacement
equations (2.56) are expressed.

We call |e| the excentricity of the contact ellipse A
(x/2)2+(y/b)2 = 1, 0<|e|<1; g = /1-e? is the ratio of the axes. When
a is the minor semi-axis, we take e>0., We will denocte the minor semi-
axis by s:

e>0: s=a=gb<b=s/g, J={1-(x/s)2-(gy/s)2} 2,
e<0: s=b=ga<a=s/g, J={1-(gx/s)2-(y/s)?}72, (2.63)
6= i, || = /g

We interchange in (2,61) x and y, p and ¢, m end n, ¢ and w. Taking

Nl N

(2.63) into account, we see that

$2pte 2gtw - hi2qgtw,2pte _
Eh 2mte , 2n+w (e) = E 2n+w,2m+e (=e). (2.64)

So, without loss of generality, we consider the case of e>0 only.
We substitute the differentiastion formula (2.57) into (2.61).

This gives:
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Eh;2p+e,2q&m -
2m+e ,2n+w
omte ontw  (-1)FTHEROOI ) (emre)!(2ntw)!
= 1—-- ktd X
2T yemte fen+w (Cmbe—k)!(2ntu—2) ! (2k-2mee ) ! (28~2n=u)! )
2k42 4=21=2N—E— +2p=-2m_24+2q-2 — k=
x 2 28~2m=-2n-e=1 ff J(x,y)x2k D 2my 2424 n(x2+y2)h s=K=f axdy,
E
1
with J(x,y) = {1-(x/s)2-(gy/s)?2} 2.

In the double integral (2.65) we introduce polar coordinates:

x = srcosy, y = srsiny, dxdy = sZrdardy.
The form J(x,y) becomes

1 _1

J(x,y)={1-r2cos2y-r2g2sin?y}~2 = {1-D?r2}72, D = V1-e2sin?y. (2.66)
The integration is taken over all points x and y, for which J(x,y) is
real. That is, the limits are in polaer coordinates: 0<¢<2m, 0<r<1/D.
If we set 2k+2p-2m=2i, 22+2g-2n=2j in (2.65), we see that a typical
integral of (2.65) becomes

2m 1/D 2i, . 25 .24
24+1 cos sin r-dr

I =5 f dlpf Y 2 s
oo S (e.6m

i = k+p~-m, j = &+g-n, 4 = h+ptg-m-n. J

Chenging the variable to t = D2r2, with dr = —— , we obtain
2Dvt

27 2i . 2j 1 1 1

I = s2d+1 f cos " ysin Yydy f td’2(1-t)—2 at. (2.68)
0 2D2d#1 0

The integral over t in (2.68) is a complete Beta function,

1
Blx,y) = [ 71 (1=t)7"1 at = I(x)T(y)/T(x+y). (2.69)
0

As to ¥, we may restrict ourselves to the interval O<y<w/2, owing to
the symmetry of the integrand. So we get from (2.66), (2.68), and
(2,69), that

] 2y 2t ey
E (x2+y?2) J-dra

1

I

22 () T(D) (2 cos?ysinyay
I (d+1) 0 (1-e2sin2y) ¥t

This is a complete elliptic integral of a general type, which can,

(2.70)
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in principle, be reduced to a combination of elliptic integrals of
the first and second kind. We substitute (2.70) into (2.65), setting
i=k+p-m, j=f+g-n. Then,

hj2pte,2q+w - whi2atw,2pte -
B ombe, 2n+0 (lef) = 5" 2n+w, 2mte (~lel) = ]
, 2me 2ot (—1)k+£+€+w(%-h)k+2(2m+e)!(2n+w)!hk+£-m-n2_e_w
5 e— x
2n k=m+e L=n+w (om+e-k) ! (2n+w-2) ! (2k-2m-€) ! (28-2n-w)! ’
L 282 @ )r ) (M2 (con?y) BT Rainy) 9y
2_:.2 d+% ’
d! 0 (1-e%sin?y)

d = h+ptq-m-n>0. /
(2.71)

We replace k by k+mte, 2 by L+n+tw. The limits of summation then
becaome Ofkfm, O<£§n. Meking use of the formulae of the Gamma function

I(3+2)r(3-2) = n/cos(wz), T(}) = V7, (Z)j = I%%E}l , (2.72)

(a+3)r(3) in (2.71) becomes
T (i-h+mént+k+g+e+w)T(3)n _

3 . 1
it is easy to see that (z—h)k+mr

1 1 —
by, pamemaesn T (BT = =S aycoemg =
_ D(3-a+ptgrk+o+e+w) cosmh I‘(%+h) =
T{z~-d) costd T

- ptq-m-n_, 1

= (—1)‘ w(z-d)p+q+k+2+s+w(%)h .
S0, (2.71) becomes
3 2pte, 2qtw =
Eh,Zm*e:23+m (e)

u hk+l(2m+e)!(2n+w)1524+1

m
=(%)h(-2)€+w ) I(d,k+pte R+qtw,e),

k=0 2=0 (m-k)!(n-2)!(2k+ec)!(28+w)!

(2.73)
with
/2 (coos2y)* (eginy )Y
1(a,4,3, |e))=1(8,3,1,-le])= 37 (3-a)y, (-cos2y)* (-sin zi1dw ’
: 0 (1-e2sin2y)®2
% =0 vhen d = =1, =2, =3, ..s
(2.74)

which is valid when d = h+ptg-m-n>~3, When h is an integer, as it is
in the load displacement equations, 4 is also an integer, and then
(2.73) is a finite sum of complete elliptic integrals of a general
type which can be reduced to complete elliptic integrals of the first
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and second kind.

It is useful for the purpose of numerical calculstions, to know
beforehand what elliptic integrals (2.TY4) actually occur in the load-
displacement equations (2.56). Let the degree of the polynomials
(2.46) be 2k+v, with v = 0 or 1. Then it can be shown that

M=Zk+v, v=0,1 0 < d <k, 4 < i*j < 2ktv~d, i >0, § > 0,]
for w (eq. 2.56c) and for u,v when ¢ = 0 (eq. 2.56a,b), J (2.75)

and |
M=2k+v, v=0,1 + 0 < d <k, d < i+j < 2k+1+v~d, i > 0, 3 > o,

for u,v (eq. 2.56a,b), o # O. (2.76)

2,43, Transformation to another metric.

We will consider the case that we transform the coordinate
system (x,y,z) to another coordinate system (x,y,z) with the same
origin and axes, but with another metric:

X=AX, ¥y =Xy, z = Az, 5 = As, (A constant). (2.77)
We distinguish quentities taken with respect to (x,y,z) from the

corresponding quantities in (x,y,z) by a bar over the letter. Clearly,

we have
(ut, v, we)= Alut,vi,wt),
(w,v,w) = r(u,v,w), (2.78)
(X,¥,2)/G = (X,Y,2)/c, G = a/xr%,
Also, .
’ —— — -1 -1 l
IEF) = A=(3/3)2-(3/5)2 = Ni(x/a)2-(y/0)2 = Jlxy), 219)
- - 2.
It is easy to see that
- M  M-m _ _ _ -m -n
(@,v,w) = ] 7} (amn’bmn’cmn)x y o=
m=0 n=0
M M-m
= Z Z >‘m+n (E sb ,E )x yn=
=0 n= mn® mn’ mn
M Msm n
= A(u,v,w) = ; Z A(amn,bmn,cmn)x Yo,
m=0 n=
from which it follows that
- 1=m~-n = 1=m~n - 1-m-n
& = A - & s B = A b, T =) Cno (2.80)
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and it follows in the same way from

1T a )& 5
(}-(,Y,Z)/a = J(?_C,}—’) a f‘ X ;’ =
p=0 g0 PY’ ®pa*'pa
M M-p
= (X,Y,2)/G = J(x,y) J ] ) xPye,
p=0 =0 %59*®pa*Tp
that
d =aP%g e =Pl [ F = )\TPdp | (2.81)
Pq pa’ pq Pa® “pg pq
From (2,73) and (2.7h4) we see with the aid of (2.77) and (2.79) that
Ehgig = 24! Eh;pq, 2d = 2h+p+g-m-n. (2.82)
If (a_,b ,c ) and (4 ) are such that the (unbarred)
mn® “mn® “mn pa’°pq*Tpg

load-displacement equations are satisfied, we see immediately from

(2.47) that the barred load-displacement equations are satisfied by

G 5,5 ) =" (4 b o),

mn’ mn’® mn mn?® mn® mn
= = = =-p-q

d e £ = A d e f
( ?a” pq’ pq) ( pq’ pq’ pq)’

that is, by the same parameters as in (2.80) and (2.81). So, solving
the load-displacement equations for one value of A, means solving them
for all .
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3. Special cases of the load-displacement equations.

In section 3.1 of the present chapter, we develop the theory of

the load-displacement equations further. In fact, we will study the

special case that the traction behaves as v1-(x/a)2-(y/b)2 as one
approaches the edge of the contact area, rather than as

V1-(x/2)2-(y/0)2 -1, as we had in chapter 2, see eq. (2.32). This is

of importance in some applications of which we will name the normal
problem of HERTZ, which is treated in 3.221, and the tangential
problem of CATTANEO [1], and MINDLIN [1], which is treated in section
3.222, Since for a general polynomial displacement the traction goes
to infinity at the edge, the demand that the traction must vanish
constitutes a restraint on the displacement, in other terms, the
displacement must have a special form in order to meet it. In the
HERTZ case this special form results from the adaptation of form and
size of the contact ellipse; similarly, in the MINDLIN-CATTANEO
problem of section 3,222, and in CARTER's [1] problem, the area of
adhesion is =0 adapted.

One can perhaps say that in tangential problems in which slip is
actually present, but is neglected in the calculation, the load-
displacement equations of section 2.4 must be used: the infinity of
the traction at the edge of the contact area indicates an area of
slip. This is the case, at any rate, in the MINDLIN-CATTANEC problem
without slip (sec. 3.212), in DE PATER's [1] treatment of the problem
of the rolling contact between two cylinders with parallel axes with
infinitesimal longitudinal creepage, and in the treatment of the
problem of rolling contact with infinitesimal creepagé and s3pin of
section 4.3. In that section, the interpretation of the traction
singularity is treated more fully. In normal problems, the pressure
singularity can indicate a sharp edge, as is the case in the problem
of an elliptical die pressed into a half-space, see section 3.211.

If in the tangential problems slip is not neglected, as we have
in sec, 3.222, the MINDLIN~CATTANEC problem with slip, without twist,
and in the theory of rolling with arbitrary creepage and spin,
chapter 5, the tangential traction generally veanishes at the edge of

the contact area. For the normal pressure distribution will mostly
be Hertzian, and the friction law demands that |(X,Y)| < uZ. So X and
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Y must also vanish at the edge of the contact area, and at least as

fast as the normal load Z.

3.1. The load-displacement equations, when the surface tractions

vanish at the edge of the contact area.

As we pointed out in section 3, the demand of vanishing
traction at the edge of the contact area E constitutes a restraint
on the surface displacement differences (u,v,w).

We had found in sec. 2.2 (see 2.32) that when

_2 M+2 M+2-p
(X,Y,2) = a{1-x%/a2-y2/p2}"2 § } (a - eéq ﬁq)xpy s (3.1)
p=0 q=0
then
M+2 M+2-m
(uyvow) = J % (amn b s mn)x Yo (3.2)
m=0 n=0
Now, the tractions must vanish at the edge of the contact area. This
means that the constants (d' se! ,f! ) must be so, that
pa’ pa’ Pq ’
M+2 M#2-p

p=0 q=0
is divisible by {1-(x/a)2-(y/b)2}. That means that

M+2 M#2-p )
(X,Y,2) = &J(x,y) pzo qZ (a pa%pq’ Pq)
M Mop 2 21,P.a
= GJ(x,y) PEO qZO (dpq,epq,qu){1-(x/&) -(y/v)?}x"y
- - o U Mo 5,9 X
= 6/1=(x/a)2-(y/b) pgo qzo (CHR N E
M M-p
_ _ A yprepe 1 poar?
GJ""”pZO qZO (4pq>2pqToe) 7° r Z XY )
J(x,y) = {1—(x/a)2-(y/b)2}-% . J
(3.3)

Comparing {3.2) and (3.3), we see that there are more constants
(amn’bmn’cmn) in (3.2) than there are constants (dpq’epq’qu) in
(3.3). So, the matrix of the load-displacement equations is no
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longer square.

We seek the connection between (a.mn,b

mn’cmn) on the one hand,

and [dpq'epq’qu) on the other hand. For that purpose we define
phipa _ ghipa _ 1 phspt2,a 1 phip,at2 (3.4)
mn mn g2 mm b2 mn

We note that by (2.53) Eh;ig = 0 when Zh+ptq-m-n<0, (h=0,1), but that

h3p+2,q hsp,qt2 .
for 2h+ptq-m-n = =2, E ’;n *2 and E“’m;‘ do not vanish for all

values of p,q,m,n. Keeping this in mind, we see from (3.3), (3.2),
(3.4), and (2.47) that

A
M
2 03pq 15pa 13pa
a =—/ 1 fa (F2 -0 F )Joe_ F }
mn mini pra>mn-2, PQ mn m2,n Pa m+1,n+1
20,920
2 hzd { (0'pq by o | 15pq }
b= == e |[F**<-0gF? ~od_ F? s 4
mn min! pr>mn-2, ols} mn m,n+2 jelo} m+1,n+1
p20,9>0
M
°mn=_—2:$11';?) ) £ pOPY,
7Y preemtn-2, ra
20,920 J
(3.5)

We will now calculate Fh;ﬁg. We see fram (3.4) and (2.53) that

Fh;ig‘ = 0 when Zhiptg-m—n = -3, =k, =5, e, (3.6a)
and we note that (p+2) and (g+2) have the same parity as p and q,
respectively, so that it follows from (3.4) and (2.53) that

Fh;gg = 0 unless both {p+tm) and (g+n) are even. (3.60)

Hence, the load-displacement equations can again be decomposed into
4 sets. Further, by (2.6k4) we have from (3.h4) that

P3P (Je])=2"3R3 le])- (1/52) BB 200 (e )- (62/52) B 222 fe]) 4 (3.7a)

FHL (e |)aEB (- |e])- (1/52) BB (- fe])- (g2/52) EB L 2P (- e ),
(3.7b)

where s denotes the minor semi-sxis, and g is the ratio of the axes
min (a/b,b/a). Since Eh;ﬁg(e)ﬂjh;gi(-e) according to (2.64), it
follows from (3.7) that
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FHPYe) = FHP(e), (3.8)

Fh;2p+€,2q+w(| l)
2m+e ,2n+w *
We consider a change of metric as described in sec. 2.43. It is easy

to see from (3.2), (3.3), (3.5), and (3.4), and from (2.32) and

(2.47) that the analysis of 2.43 remains valid in the present case of

So, by (3.6) and (3,8), we only have to calculate

zero stress at the edge of the contact area, so that the effect of a
change of metric here is also described by (2.80), (2.81), and (2.82),
if we read F for E. So, we have to set up the load-displacement
equations for one metric only.

We see from (3.4) that the Ehgfg occurring in the expression for
Fh;:lnjg all have the same h, m, and n, So in substituting the Eh;i&
from (2.73), we can bring the double summation outside the brackets.

Then we have for e>0:

Fh;2p+e,2q+w -
2mte , 2ntw
_ phi2pte,2qtw 2y-h32(p+1)+e,2q+w 2,.27032p%ve,2(q+1)+w_
B 2mre,2n+w (1/s%)E 2mte , 2ntuw - (g2/s%)8 2m+e , 2n+w -
m n k+2 24+1 4
_r1 etw 4V (omte )t (2ntw) ! s [
—(z)h(-Q) kzo Lo (m—k)!(n-273(2k+e)1(22+w)!II(d’k+p+€’£+q+w’e>+

=I(d+1,k+p+i+e, +q+w,e)-g?I(a+1,k+pre, L+qtl+u,e)],

e>0, d=h+p+q-m-n.
(3.9)

We define

J(a,i,5,]e]) =I(d,i,d,]e]) -I(a+1,i+1,3,]e|) -g2I(a+1,i,5+1,le]) ,
J(aydyis=le])=I(a,j,i,-]e])-I(a+1,3,i+1,~|e})-2I(a+1,5+1,1i,-e|),
' (3.10)
so that
J(d,i,5,e)=0(d,j,i,-e), (3.11)
end from (3.8),(3.9),(3.10) and (3.11) it follows that
Fh;2p+e,2q+m (e) = Fh;2q+w,2p+g (<e) =

2mte , 2n+w 2n+w, 2m+e
m n k+8 24+1
(1 £+ L " (omte) ! (2ntw)! s
D27 L L Tk i o e TTTamraTT O (Gk4pe, teatuse).

Fh;ig‘ = 0 unless (p+m), (g+n) are both even and d=h+p+q-m-n>-1.

(3.12)
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Comparing this with (2.73), we see that Fh;ﬁg and Eh;ig have exactly
the same form, the only difference is that F has J-functions where E
has I-functions.

We calculate J(d,i,j,|e|) from (3.10) and (2.74).
T(ayiy3,lel)= 1(a,1,d,le])- T(a+1,i+1,5,le])-g21(a+1,1,5+1,(e]) =

1 /2 (_cos2y)t(-sin2y)d au 1 1
= F (E—d)i'*'j ! - d+1 - (§‘d—1)i+j+1
‘ 0 (1-e2sin2y) " ¢ (a+1)!
1r/2 2 i 2 j
x (-cos?p) (_512+\§32 2 (~cos2y-g?sin?y) .
0 (1-e2sin?y)
Since 1/d! must be interpreted as zero when d = -1, we can write
/4! = T%E%TT ; further, cos?yt+g?sin?y = 1-e2gin?y, and finally
1 . — 'I_ - 1_,
(g-c1-1)i+j+1 = (3-d-1)(3 d)i+j , 50 that
. . N
.. 24+2-2d-1 /2 (~cos? )l(.. in2 )J
J(dolsJ’Ie”: (3=d), . Y siny 4d
2(a+1)} + X T '
o (1-e2sin2y)%*2
n/2 203 (_ein2y)d
1 (=cos?y)” (~sin?y)
=3 @t 94y / Y ay, f
d+1)! 1+ 0 (1—625in21]1)d+§
J(a,i,3,lel) = J(a,d,i,-]el}, 1/(a*+1)! = O vhen d = -2,-3 ...

(3.13)
Comparing this with (2,T4), we see that
1(8,i,j,e) = 2(a+1)J(d,1i,j,e), (3.1k)
so that we find from (3.12) and (2.73), that

B3P 2(d+1)17’h;£g , 2d = 2h+prg-m-n, (3.15)

which meens that the coefficients of the load-displacement equations
for an infinite traction at the edge of the contact area can be found
by multiplying the corresponding coefficient of the load-displacement
equation with zero traction at the edge with 2(a+1).

It is useful for the purpose of numerical calculations to know
beforehand which elliptical integrals (3.13) occur. When the degree
of the traction polynomial is M = 2K+v, v = 0 or 1, it can be shown
thet
M=2K+v: w, and (u,v) when 0=0: ~1<d<K, max(0,d)<i+j<2K+v-d (3.168)
M=2K+v: (u,v) when o#0: ~1<d<K, max(0,d)<i+j<2K+1+v-d, (3.16b)
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3.2. Examples of the use of the load-displacement equations.
A list of the functions J(d,i,j,e) and Fh’ﬁg.

In the present section we give a few examples of the use of
the load-displacement equations. First we will give & list of the
elliptic integrals out of which the Fh’ig are formed, and a list of
these coefficients themselves. We define with JAHNKE & EMDE [2]:

n/2 /2
K=) — __, g=/ Vie2sin?y @y, (3.17a)
-0 Y1-e2s5in?y 0
2 . /2 . w/2 2

C = In/ s:anggcoszyfdyis , D= fﬂ 51n2}kd1{{ , B = f cos“ydy ,

-0 Y1-e2sin?y -0 Y1-e2s5in?y 0 V1-e25in?y
(3.17p)

K = 2D-e?C 3 E = (2-e?)D-e?C ; B = D-e?C. (3.17¢)

The functions K and E are the complete elliptic integrals of the
first and second kind, respectively. The functions B, C, D do not
have a special name. The five functions are tabulated by JAHNKE &
EMDE [1], pg. 78, 80, 83, and 82. In Table 1, we give a small table
of the values of  and D, taken from JAHNKE & EMDE [1:[

Table 1. C and D'as functions of g = vV1-e2,

g Y0 0.1 0.2 0.3 0.L 0.5

C |-2+log b/g | 1.7351 | 1.1239 [0.8107 |0.6171 |0.L4863
D |-1+log 4/g | 2.7067 | 2.0475 [1.6827 |1.4388 |1.2606
g 0.6 0.7 0.8 0.9 1.0

C| 0.3929 | 0.3235 |0.27060{0.22925|0.19635 = ’1'—6
D| 1.123% 11,0138 | 0.9241 [0.8491 [0.785k = -

It is well-known that the complete elliptic integrals of the
type we encountered can be expressed in two independent elliptic
integrals. We will list the reduction to K and E, because these
functions are widely tabulated. We also give the reduction to C and
D, which are tabulated in JAHNKE & EMDE [1] » because in our short
list of elliptic integrals the coefficients of D and C do not

contain the excentricity |e| in the denominator, while g2 = 1-e?
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oceurs in the denominator only twice,

The reduction is accomplished by regarding X, E, C, and D, and
J(8,i,3,|e|) as hypergeometric functions F(a,bjcse?) in the
following manner. According to ERDﬁLYI et al. [1], Vel. 1, pg. 115,
eq. 2.12 (7)

o1 (c) /2 (cos¢)2c_2b_1 (sin¢)2b_1dy
F( b;c;z)=—(—)—('_‘y
s T'{b)T(e-b 0 (‘]_Z sinzw)a (3.183.)
bt (a)n(b)n n
Tl G, e el ’

We set z=e?, a=d+}, b=j+3, c=i+j+1 in (3.18a), and from this and

(3.13) it follows that

i+
3(a,i,3,le])= é%gl1)1 r§

jarisg) "2 (conty)sinte)lay
( i

z-d) 2« o yat3
0 (1-e?sin?y) (3.18b)

_ (DM r(Goarieg) TG+ 4
T Ia+)! T(2-4) T(i+3+1)

(d+3, j+i; i+j+1; e?2).

Further we have from (3.17) and (3.18a) that

= 2 F(1,331;e2)

=
|t

F(-3,3;15e2); B = 1 F(3,53230%);

C=-z F(3/2,3/2;3;e2); D F(1,3/2;25e2),

(3.19)
The reduction itself is accomplished by repeatedly applying the 15
relations of GAUSS which connect F(a,bjc;z) with any two of the 6
functions F(a*1,bjc3z), F(a,btl;c3z), F(a,bjet1;z). These relations
can be found, for instance, in ERDﬁLYI et al. [1], Vol. 1, par. 2.8,
pe. 103-10L4, eq. (31)/(45). We shall give the result of this

reduction without proof. Since according to (3.11) and (3.1k)
I(d,i,j,e) = 2(a+1)J(d,i,j,e) = 2(a+1)J(d,J,1,~e), (3.20)

we give only J(d,i,j,le]).
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3(1,0,0, le )=
3(-1,0,1, le)=
3(-1,1,0,Je )=
3(1,0,2,]el)=
TERRNNE

J{-1,2,0,lel)=

1

J(0,0,0,|el)

J(O’O’A"‘e‘)

1

3{0,1,0,le})

n

7(0,0,2,|ef)

J(0,1,1,]el)

i

J(0,2,0,lel)

7(1,0,0,lel)

J(1,0,1,]e])

J(1,1,0,]el])

We can form the following sets

%(Q—ezlg - %e%l = 3} E,
2 2
1-e 1-2e
-2 [3-2e2)D + le = - K + E
E(B € )“ BEE he?2 — he2 =°
1-e2 1+e2
-1 (3-e2)D + ie%X = X - E
13 l‘ 2= be2 =  he2 =°
1 1 1+e2-2eh 2+3e2.-8e"
=(11-8e2)p + x{1-Le2)c= K -
8( L‘ E[ )“ Lelt - 8el =?
1 2-3el+et j-eltet
1 —al - 2 - - +
(e-e2)n - L (el lerel . el g
1 1 1-LeZ+3e" 2-Te?-3e"
11-3e2)D + 7(1-9e2)c= K - E
gli-set)n « gli-oetles =05k - = 5
]_:)_ - Eezc_ = % _Ig:
1 1
- i1 = e ——— K +—E
b= he2 =  Le?2 =
2
_%P_+ﬁe2(_j_ = =& K-_J_.E,
Le? he?
1 1 2+e? 1+e?
g D+ xC = K - E
=" 8= Be* — ket —
a2 _e2
g2-gc =g EZg,
het 8e
22k 2
P o+ g(i-3e2)g = 2etde g 1-Ee g
8el - et
{(2-e2)D - e?c}/ug? = E/hg?,
D e?C 1 1
- =-——K+ E,
8(1-e2)  8(1-e2) 8e? 8e2 (1-e2)
-&2 = .1_ K - —1.— _}2‘
Be2 8e2 /
(3.21)

from the elliptic integrals (3.21):

X=Y=7 + « on edge; w, and (u,v) for

¥X=Y=7Z = 0 on edge; w, and (u,v) for

The E's and F's which are needed for those

50'

{u,v) for o # 0

(u,v) for ¢ # 0

: the 1st degree

of load-displacement equations

: the 2nd degree (M=2),

{(M=1),
(M=1),
(M=0).

the 1st degree

the Oth degree

equations are:



0;00

1
22 g

0310

;
£ 70

}s(D~e?C)= 3sB

-5~ {2p+(1-3¢?)¢}= s~ (p-38-C)
_s-1g2(g—§)

3sD

- (2-0)

-s—1g2(22+9)

g’

1s{D+(1-2¢2)C}= 3s(2B~D+C)

-3sg%C
1s(p-C)

3 3
5 (D-e2C)= =B
8g2 - - B
_%59
1s(p+C)

1300
F 00
1,00

20
1500

02
1500

40
1300

22
1300

ob
1310

10
w1310

1310
F 12
1,01
F o
1501
F 21
1501
03

82 [ (2-e2) D-e2C}= £ g
Bel —et) Ime2lT g =

3sD

1s(D-e?C)= 2B
- (2-0)
‘325—19

-823-1(9—9)



. 3.21., The case of infinite surface traction at the edge of the

contact area.

In 3.211 we shall treat a normal problem, and in 3.212 a
tangential problem in which the traction becomes infinite at the edge
of the contact area. So the building blocks of the coefficients of
the load-displacement equations are the Eh;gg’ see (2.73), (3.13) and
(3.14):

gRs2PYe,2atw oy
omte , 2n+tw

m n hk+2' 24d+1

=(1 e+w (2m+e) ! (2n+w)ls
=(2),(-2) oo ot @KIT(n 2]t (2kve )t (20rw) T(a,ktpre, taru,e),
d = htptg-m-n; I(d,i,j,e) = 2(a+1)J(d,i,j,e).
(3.23)

The equations themselves are given in (2.56).

3.211. A normal problem: a rigid, flat elliptical die pressed into a
half-space.

A rigid, flat die of elliptical circumference with semi-axes a

and b, s = & £ b, is pressed into the elastic half-space z > 0 with

a normal force N, with the action line along =Xy Y=Yy The force is

applied so, that contact takes place over the whole of the base of

the die. Friction is assumed to be absent. This problem was treated

by DOVNOROVICH [1] with the aid of the load-displacement equations.
After deformation, the eguation of the base of the die is

W= = g0 toe, Xty (3.2h)

the vertical displacement difference w is clearly equal to w+(x,y,0)
since the die is perfectly rigid, and that in turn is clearly given
by (3.24), The constants Co0® S10° and 41 follow from the demand
that the total force and moment exerted by the half-space on the die
is in equilibrium with the applied load. We have for the normal

pressure distribution on the half-space:

o=/ o)2 | (2. 4t x4 £.3),
+ 00 10w - ol (3.25)

=26, 0=0";

it follows from considerations of equilibrium of the die that

52.



- = = = 2 g3
N = jé Z dxdy = 2mabG £, x N = jé x 2 dxdy = 5 ma¥e £,
2
Yol = j’ﬁ[ ¥y Zaxdy =% mab3G £, .,
or,
oo = N/2mebe, £, = —g— Nxo/na-"bc, £y = —g- Ny ,/meb3G. (3.26)

The condition that contact must take place over the whole of the base

£

of the die is equivelent to the condition that the normal pressure is

everywhere positive, that is, according to (3.25) and (3.26), that

N 3xx, 3y,
oo * T1oX * TotV “mapg Tt ) 2 0 (3.27a)
which after some calculation leads to the condition
2 2
*o Yo
+ <1 (3.27b)
G a2 o2
3 3

from which we see that (xo, yo) must lie inside the ellipse which is
concentric, similar, and similarly oriented with E, but the axes of
which are-% times the axes of E.

The load-displacement equations are, according to (2.56¢) and

(3.22):

- 0300 _ (1=0)N 2y L1-0)N K

eog = 2U1=0)E g fog = Smgp— (2D-e’C) = g K
. 3(1=0)Nx 3(1—0)Nxo

c = 2(1_0)}30,10 £ = ————O- (D—GZC) = B,

10 10 Y10 T T oty 2 o2 w200 (.26)

0;01 3(1-0)Ty,

oy = 2(1-0)E 01 fo1 = — D,

G = 2G+, o= c+,

which is alsoc the solution of the problem.

3.212, A tangential problem: the problem of CATTANEO and MINDLIN
without slip.

Two elastic bodies are,ﬁressed together by a normal force N, so

that a contact area forms between them. According to the HERTZ
theory, which we assume to be valid, the contact area E is elliptical

with semi-axes a, b (s=ash):
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E = {x,y: (x/e)?+(y/b)2 < 1}, s = a < b. (3.29)

After this, a tangential force [Fx,Fy) and & torsional couple Mz are
applied., Assuming that the HERTZ distribution does not influence the
tangential displacement difference and vice versa, it is required to
find the tangential displacement [dx,dy) and the torsion angle B of
the upper body with respect to the lower. Slip in the contact area
is assumed to be absent. This problem was treated by CATTANEO [1] and
MINDLIN [1].

Since we must choose the unstressed state so that the displace-

ment venishes at infinity, we have in the contact area

u(x, )—u (x,7,0)-u" (x,y,0)=6 Br=a ey,

v(x, )-v (x,7,0)-v (x,y,0)=6 +Bx—b00+b1ox.

Therefore, the tangential traction distribution over the contact area

(3.30)

has the following form:

-1
X = 6/1-(x/a)2-(y/b)? (d +do1y)
/ 2 2- (3.31&)
Y = 6/1-(x/a)2-(y/v) (e00+e1ox)
so that
- - - _ _ 2 20 32
F, =2mebGdy,, F=2mabGeyy, M, jé (xY-yX) dxdy= 3 nebG(a’e, ~b%d )
(3.31p)
The load-displacement equations are:
e (0300 1;00 3
&0 = 85 = 28 "gp = 9F 50)dg0s :
= s = o(gf300 _ ;51300
Poo = & = 2(E g = 9B *go)eqggs (3.32)
o . = - = 2(Eo 301 _ og130Ma oo g1310 f )
01 21401 12 ¢
o o,1o 1510y, 1301
Pio = B =2(E g - 0B 7 )eqym20E Py do1' )
Now, e>0, so that according to (3.22),
. . y
0300 o 51500 _ p p1500 _ -, %507 = ap,
00 = 20 %= 02 01~ %= (3.33)
g1301 o Lo g1310 & 20 50310 _ o t .
21 = & 12~ 882 & g0 T =

/

From (3.17¢), (3.310), (3.32), and (3.33) we can solve §_, ay and B:
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(K-oD)F (X~oB)F 3, (B D-oE C)
8 = X s (S = ——l B = 0 (303’4)
x TG ¥ oG mb36G( )

3.22., The case of zero surface traction at the edge of the contact

aret.

In 3.221 we shall treat the HERTZ problem, and in 3.222 the
problem of CATTANEO and MINDLIN with slip, but without twist. The
HERTZ problem is treated in some detail, since its results are
frequently used in the present work. Ve also give a numerical table.

The building blocks of the coefficients of the load-displacement
equations are the Fh’flg of (3.12):

m
Fh'2p+e 2qt+w 1 etw
’ ’ =(z -
2mte , 2ntw (e) (‘)h( 2) kzo =0

2 )-Lk+9'(2m+e) ! (2n+m)!s2d+1
{m-k) ! (n-2)1 (2k+e) ! (20+w)!

x J{a,k+pte, +qrw,e), d = htprg-m-n>-1,
(3.35)

The equations themselves are given by (3.5).

3,221, A normal problem: the problem of IERTZ.

Two elastic bodies are pressed together by a normal force N, so
that a contact ares forms between them, Assuming that frietion is
sbsent, end that for the boundary conditions the bodies may be
approximated by elliptic parsboloids, find the contact area, the
pressure distribution over the contact area, and the depth of
penetration of the bodies.

The most important case in which we shall use the HERTZ problem
ig that of two bodies of revolution which are steadily rolling over
each other. In that case the parallel circles of both bodies are
approximately parallel. We shall confine ourselves to that case. The
axes of the pareboloids then coincide. The elastieity problem
remains the seme when the axes of the parsboloids are not parallel,
but the boundary conditions require a little more algebra, which is
given, for instance in LOVE [1] pg. 193-19k4, We shall give the
results of this analysis only.

We must choose the uunstressed state so, that the displacement

and the stresses venish st infinity; in such an unstressed state, the
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bodies intersect., Let the principal radii of curvature of the bodies
be given by R;, R;, where a + refers to the lower body, and a - to
the upper body. We count them positive if the centre of curvature in
question lies inside the half-space under consideration. The equation
of the surface of the bodies near the contact area is

+

2R 2R

F_ooox2 o y? T .
= =¥ 7 « » upper sign: upper half-space,
X ¥y lower sign: lower half-space. (3.36)

In the contact area, we have w'(x,y,0)+z*—w=(x,y,0)-z" = 0, that is,

- +
w(x,y) =z (X;y)"'z (X,y)= - sz'Byz"'ag (3.37)
with
- + 3\
a=a =a,
1 1
A= % ( —1- + - )’ .
Rx Rx if the axes of the paraboloids
B =} (.l: . l: ), are (nearly) parallel,
R R
y y
1
I

l:%(A-{-B): (_1_+.1__+..1_+1__),
P R' R R. &R,
1 1 2 2
p: characteristic length of the bodies;

RT ot principal radii of curvature of lower (+) and > (3.38)
’ .
upper (-) body, taken positive when the
corresponding centre of curvature lies inside

the half-space under consideration;

saen)2 = (Lo (Lol

Ry R 2 Ry
+2(-1—+--—1-:)(1—+-1—_)c052w,
R1 R2 R2 R1

-

w: angle between the plane of R? and the plane of R1,

in case the axes of the paraboloids are not parallelv
This means that ,
00 Cog = =As cpy = -Be (3.39)

We propose the hypothesis that the contact area is elliptic with

Chn = O

semi-axes a and b,
E = {x,y: (x/a)2+(y/p)?< 1}, (3.40)

We take the normal stress in the form

56,



Z =G £y, V1-(x/a)2-(y/v)2, (3.41)

vhere G is the combined modulus of rigidity. We will also need the
combined POISSON's ratio o, They are given by (2.10), which we repeat

here:
1 1 1 g o o
il +r=)g=i=+=). (3.42)
G G G G
The total normal force can be found from (3.41) by integration:
g = ([ o _g_-x.n 3N foy Vo
N= s 2 dxdy =3 mabifags Tog = Frapg * {3+ 537
The load-displacement equations are
- _ 0300
o =cy = 2(1-0)F 00 Too *
_ _ 0300 i
-A=cyy = (1=0)F 7,0 T, (3.44)
_ _ 0;00 ,
-B = ¢y, = {(t=0)F 02 Too 3

according to (3.22),

Pigollel) = Fig0(-lel) = s K,

FO;OO(|e|) - FO;OO(_Iel) = _Qg-e%g)/s

-B/s, > (3.45)

20 02
%500 (lel) = #%30(-lel) = -(1-e2)D/s = ~gZD/s.
s: minor semi-~axis of contact ellipse. J
So we obtain from (3.43), (3.4h4), and (3.L45):
3N(1-0)sK 3N(1-0) (D-e2C)  3N(1-uv)B
= TZrabc ? A(|e[)=B(—]e|)= 2rabsG = “Zmabsc  ° (3.146)
3N(1-0)(1-e2)D  3N(1-0)g?D
B(lel)=B(-le}= 2rabsG = T ZnabsG  °
Since D > C, see sec. 3.2, Table 1, it follows that A(]e|)=B[-|e|)3
B(]e|)= ( I), s0 that we have:
A= %(l;+1—_) :B=3(5+1)3e20,ach,
: Rx Rx R R
AR (3.47)
A= %(-1:+ 1_ JsB= %(—1-;+—1:)=)e50, b < a.
R R R R
x X ¥y ¥

In order to find the excentricity of the contact ellipse, we set with
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HERTZ

+ - + -
. [1/R, + 1/E_ - 1/R - 1/Ryl

cost = =3 p|A-B] = s (3.48a)
B T - + -
1/RX+ 1/Rx+ 1/Ry+ 1/Ry
and it follows from this and (3.46) and (3.17c) that
e? (D-C)
cosT = = . (3.L48pb)

E, le] and g are tabulated as functions of t in Table 2, This teble
is taken from LOVE [1], p. 197, and from JAMIKE & EMDE [1], p. 78 and

Table 2. |el|, g, E, X as functions of .

) o ) ° )

v [90° |80° |70 60° |50° [40° |30° |20 °

10 0

g=s/%{1.00|0.79 | 0,62 | 0,47 |0.36 |0.,26 | 0,18 | 0.10 [ 0,05 [ 0.00
le] ]0.00{0.61]0.78|0.33 [0.93 [0.96|0.98[0.99 |0.999| 1.00
K 1.57 [ 1.76 | 1.97 ] 2.21 | 2,46 [2.75 [ 3,14 | 3.71 [ L.LO | =

E 1.57 [ 1.41 1,29 1,19 | 1,13 | 1,08 | 1.0k | 1,02 | 1,01 | 1,00

30. We see from (3,48) that the shape of the contact ellipse depends
only on A and B, and not on the applied load N or the elastic
properties of the bodies, The size of the contact area does depend on
the load, as follows:

3W(1-0)E  3N(1-0)E

e 2o - ¢ = V&b (3.49)
A+B p 2mabsG 2Tch3/é ? ’

n

or
3N(1-0)pE = bne3G Vg, c = Yab. (3.50)

A frequently-used quantity is fOO‘ It is

_ 3d§  _ 2cVg 2 s
£00 = Frane = T=o78p = T 5 ° (3.51)

Finally we determine the penetration a of the bodies according to

(3.h44), (3.46), (3.51)

a= (1-0)K T

2s2K ( )
s = = . 3.52

00 pg
3.222, A tangential problem: The problem of CATTANEO and MINDLIN with

slip, without twist,

Two elastic bodies are pressed together by a normal force N, so
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that a contact area forms between them, According to the HERTZ theory,
which we assume to be applicable, the contact area E is elliptical

with semi-axes a and b, a < b:
E = {x,y: (x/a)2+(y/p)2}, a < b, (3.53)

After this, a tangential force (Fx,Fy) is applied. Assuming that the
HERTZ distribution does not influence the tangential displacement
difference, and vice versa, it is required to find the tangential
displacement (Gx,éy) of the upper body with respect to the lower.
This problem was treated by MINDLIN [1] end CATTANEO [1].

LIr the.tangential force is below its maximal value as predicted

by COULOMB's law,
[[Fx,FyN<uN, u: coefficient of friction (3.54)

the contact area is split up into a region of adhesion Eh in which
there is no relative movement of the particles in contact as a
consequence of the tangential force, and a region of slip E_where
the tangential traction has reached the COULQMB value |(X,Y)|=pZ. The
boundary conditions in Eh are the same as those of 3,312, with B=0:

u(x,y) u+(xsy:o)'u-(x’yso) 6X s

inE . (3.55)

1}

)
y ?

The boundary conditions in Eg are, that the tangential traction is
equel -to the COULOMB value, and that the local slip takes place in
the diréction of the local tangential traction:

[(X,Y) |=uZ = Gu oo V1-(x/a)2-(y/b)2, 40 © E%TG ,| in By (3.56a)

slip in direction of tangential traction. (3.56Db)

V(x9y) = v*(x,y,O)—v_(x,y,O)

In the analysis of CATTANEO and MINDLIN, which we will give here with
the aid of the load-displacement equations,boundary conditions (3.55)
and (3.56a) are met completely; (3.56b) is satisfied only approxim-
ately, for it is assumed that (X,Y) is in the same sense as (Fx’Fy)’
rather than in the same sense as the slip. The solution 1s found by
& device which was already used by CARTER [1] in his treatment of

the problem of the rolling contact with creepage of parallel
cylinders. This device consists of assuming that the stress distribu-

tion is that which obtains when camplete sliding tekes place,
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(x',Y'), from vhich is substracted a stress distribution (x",Y") over
the adhesion area alone, and which is similar to the stress distribu~
tion of complete sliding., As a consequence (3.56a) is met automatic-
ally and, (this hypothesis was advanced by CATTANEO and MIUDLIN), the
area of adhesion will be bounded by an ellipse. We will show that the
ellipse is similar to the contact ellipse, concentric with it, and .
similarly oriented., We denote the semi-axes of the area of adhesion
by a",b", and we will prove the statement just made by showing that
the boundary conditions (3.55) can be met.
Denocting by (u',v') the displacement differences due to the

stress distribution (X',Y') of complete sliding, and by (u",v") those

due to the stress distribution (X",Y") over the adhesion area alone,

we have
(F.,F ) wef ' ]
(X',Y")= uZ XFI = FOO (Fx'Fy) Y1-(x/a)2=(y/b)? in E,
=0 outside E,
[F ’F ) > (3-57)
(X",¥")= uegy, —— /1-(x/a")2-(y/b")? in E,
=0 outside Eh’
(x,%) = (x',¥)-(x",¥"); F = |(F,E) ], /
and

(0',v")=(2sDo0) * (BpgsPpg) ¥ *(8115D41) 5 +(8gnsbpp)¥? in E, (3.588)
(w",v")= (g0, 0g0) + (8p0sPho) 2 + (2745073 +(age20,)v? in B, (3.580)
) in Eh9(3058c)

(u,v) = (u'=u", v'=v") = [5 ‘Sy

where, according to the load-displacement equations (3.6),

N . A (I "
2002 (F300 - OF"SSJ =2 (F300 - oF i37)
0500 _ 1 300 F "o; oo "1 100 F
a_ = (F°? a’ = (F
20 (F 20 - 5o) >ufoo~§£ , 220 ( wo) | uEh o Fx R
= 1300 "o "1 oo
byy= =20F oy b= —20F "oy
0300 _ 1300 "0;00 "1;00
a.=(F’ F’) a' = (F’—UF
02 o2 ~ 22 02 02 22 )
’ : (3.59a)
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-~

262 - 2 B -
oo™ (Fo;gg - °F1;gg . F. 50" (%9;28 - 0§1;gg F
8= -20F1;gg f Moo T e all = -2 %1522 PHEGo T -
b= (FO;gg - UF1;82) ] b = (goigg - °§1;88),

(3.59b)

Here the coefficients Fh;Pq are taken with the minor semi-axis a of
[129 .
the contact area, while the Fh’gg are taken with the minor semi-axis
a" of the adhesion area,
1"

Now, we see from (3.35) that the coefficients F and F of the
second degree terms are equal to each other but for a factor s =a !
and (s")-1=(a.")—1, since d= -1. So,

" '

F=F a/a" in 2nd degree terms. (3.60)
If the second degree terms in (u,v) are to vanish in E , as is
demanded by (3.58¢c), we must choose

"
"o B
o0~ %= Toor

If we do so gll second degree terms vanish simultaneously.

T (3.61)

We are now in a position to express the semi-axes a" in a, with
the aid of the prescribed forces Fx and Fy:

B."'b" a"

F, = fé X'axdy - féh Xaxdy = fé X'axdy - fé & — X'axdy =
= {1-(a"/a)3} u F_N/F,
F, = {1-(a"/a)3} uE N/F,
so that
Eog (a3, - AT+ L, (3.62)

As to the zero degree terms, it follows from the fact that d=0,
"
that F = F a"/a, so that
fll "

| L _QQ a 2/3 "o 2/3
230 = 800 F, ® = aoo(1-F/uN) . boo—boo(1-F/uN) . (3.63)
According to (3.22),
0300 1500 1300
F ,00 = %Ea’ F ’20 = %28', F ’02 = %_]28‘: (306’4)
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and we finally find that

3}JNFX
27bGF *
3ulF
A
21hGF

{1-(1=F/um)?/3} (-oD)

[o2}
n

(3.65)

5. = {1-(1-F/um?/3} (-0B)

y

If we let F/uN approach zero, we get again the result (3.34).

It should be observed that for non-vanishing POISSON's ratio o
the boundary condition (3.56b) is met only approximately. In order to
see that, we consider the case that Fy=0’ and that Fx grows to Fx=uN.

The traction at every instant is then parallel to the x-axis,

and the same should hold for the slip. The slip is given by
3 fu-s_] 3[v-6y]

—~

)' its y-component should vanish, that is,

9t ! ot ’
a(v-8.) . v . .
7T = 0, Since 5y-o when Fy—O, P should vanish at every instant.

Accordingly, v should vanish in the final state of complete slip; in
that case, v'=0, and v=v'=b11xy according to (3.59a), where b119£0
when o#0. So the slip is not always parallel to the traction. In the
case of a circular contact area, the maximum angle between (u,v) and
(X,Y) is 9.6° when o=%, and 4.1° when o=1. We conjecture from this

that the angle between (u,v) and (X,Y) is always small.

62.



