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MSc. thesis project:

Model-based machine learning for air quality forecast

This is an MSc. thesis project for a student who is interested in applicating machine learning and numerical

modeling to improve the accuracy of air quality forecast.

1 Introduction

Air pollution is one of the most important environmental issues of our time. For instance, according to a report by
the World Health Organization (WHO, 2016), the passing away of one out of every nine persons is related to air
pollution. Next to life and death, air pollution also causes great damage to economy. A dust storm or heavy smog

with low visibility can cause a severe disruption of air traffic operations.
1.1 Chemical transport models

Over the last thirty years, large efforts have been spent in developing numerical atmospheric models in order to
produce accurate air quality forecasts. Traditionally, the so-called chemical transport model (CTM) has been widely
used to forecast the air quality index, such as Lotos-Euros (Manders et al., 2017) which is currently used for
operational air index prediction in the Netherlands. These CTMs generally adopt (1) physical principles and (2)
statistical methods to model the emission, advection, diffusion, and deposition. However, the accuracy of the CTMs
is strongly affected by the model parametrization errors and the emission inventories. Here we note already that a

timely update of the emission inventories is an essential prerequisite for an acceptable air quality forecast.
1.2 Data-driven machine learning

The advances in sensor technologies and the continuously decreasing costs of electronic devices have made large
scale measurements feasible. A combination with the ever increasing power of computing platforms has led to a new
paradigm in the computational and statistical methods for processing and analyzing data (Hey et al., 2009). It is
collectively referred to as data science. Data-driven machine learning methods are nowadays able to deal with issues
such as local refinement. However, current knowledge is not sufficient to formulate them into a (partial differential)
equation. Therefore, data-driven machine learning techniques have been applied and they showed us some successes
in improving relevant air quality predictions. Examples of using machine learning in atmospheric modeling have

shown remarkable performances in a number of situations see (Li et al., 2016; Fan et al., 2017; Li et al., 2017;
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Chen et al., 2018). Their results demonstrate that in some cases data-driven machine learning approaches are able
to produce results with a high accuracy. However, we have to admit that the notion of a black-box application
within data science has so far met only limited success (e.g., (Caldwell et al., 2014; Lazer et al., 2014)). Currently,
we see in air quality forecasting research that the majority of the machine learning tools are data-driven and the
knowledge about physical laws does not play any role of importance. As our starting point we put forward that
scientific problems are often under-constrained in nature as the state space (the degree of freedom) is much larger
than the training samples (observations). For example, the number of state variables in an atmospheric model is
outnumbering the observations by far, because for a numerical model with millions or even billions grid points it is

impossible to perform accurate measurements at every grid point and every time step.
1.3 Theory-based machine learning

Recently, several research groups have started to study the combination of physics and theory in data-driven machine
learning models (Keller et al., 2017; Karpatne et al., 2017; Jia et al., 2018). An example is attempting to enforce
physical consistency (e.g., conservation of mass and energy) through adding a regularization term in the loss function.
It has resulted in more consistent output.

However, the parameterization of physical rules into the loss function in machine learning is also a complex work.
For the atmospheric modeling the states of which are involved in many processes and have great spatiotemporal
variability, it will be even more challenging and required the developer who are well familiar with the modeling

techniques.

2 Model-based machine learning system

The research proposed here is to designed a model-based machine learning system for air quality forecast with
a high feasibility. Not like the option 1 as shown in Fig.1 which combines the physics into the machine learning
models by adding the regularizations. This research is to explore the possibility of combine the available chemical
transport model with current data driven machine learning system. Actually the former one are considered as a good
representation of the physics, and the output of which can be mapped into the observation space easily required by
machine learning. As shown in Fig.1 option 2, the final system could use a CTM for generating output which is then
used as input for a machine learning system.

The work includes the design of the new machine learning architecture, the sensitivity test of chemical transport

model simulation into machine learning training model and also the optional configurations.
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Figure 1. The combination of chemical transport model and machine learning system.

3 What to do for the model-based machine learning air quality forecast system

In this project, exploration on combining physical-based CTMs with data-driven machine learning will be carried
out over the Fast Asian areas, mainly the China, over which a rich observation data are available, e.g., ground-based
and satellite-based air quality measurements. A CTM (Lotos-Euros) is available to provide the daily air quality

forecast over the test region. The study can comprise the following steps:
1: Learn about the air quality components involved processes and the Lotos-Euros model;

2: Use machine learning techniques, e.g., LSTM (long short term memory) neural network to predict the air

quality index (only-data driven);

3: Combine the air quality forecasts from Lotos-Euros with the data-driven machine learning system, analyze the
sensitivity of the new input features on the estimated forecasts, update the emission inventory that drives the

CTM (optional);

4: Explore different configurations of the hybrid system, investigate the influence of the hyperparameters on the

performance of the predictions.
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