next up previous
Next: About this document Up: An investigation of Schwarz Previous: Conclusions

References

1
P.E. Bjørstad and O.B. Widlund. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM Journal of Numerical Analysis, 23:1097--1120, 1986.

2
E. Brakkee and A. Segal. A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations. In L. Dekker, W. Smit, and J.C. Zuidervaart, editors, Massively Parallel Processing Applications and Development, pages 743--752, Elsevier, Amsterdam, 1994.

3
E. Brakkee, A. Segal, and C.G.M. Kassels. A parallel domain decomposition algorithm for the incompressible Navier-Stokes equations. To appear in Journal of Simulation Practice and Theory.

4
Erik Brakkee and Piet Wesseling. Schwarz domain decomposition for the incompresssible Navier-Stokes equations in general coordinates. Report 94-84, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, 1994. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-84.ps .gz.

5
Erik Brakkee and Peter Wilders. A domain decomposition method for the advection-diffusion equation. Report 94-08, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, 1994. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-08.ps .gz.

6
Xiao-Chuan Cai, William D. Gropp, and David E. Keyes. A comparison of some domain decomposition and ILU preconditioned iterative methods for nonsymmetric elliptic problems. Numerical Linear Algebra with Applications, 1, 1994.

7
Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund, editors. Proc. of the Second International Symposium on Domain Decomposition methods, SIAM, Philadelphia, 1989.

8
Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund, editors. Proc. of the Third International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia, 1990.

9
C.W.Oosterlee and P.Wesseling. A multigrid method for an invariant formulation of the incompressible Navier-Stokes equations in general coordinates. Comm. Applied Num. Methods, 8:721--725, 1992.

10
E. de Sturler and D.R. Fokkema. Nested Krylov methods and preserving the orthogonality. In N. Duane Melson, T.A. Manteuffel, and S.F. McCormick, editors, Sixth Copper Mountain Conference on Multigrid Methods, Nasa Conference Publication 3224, Part I, pages 111--125, Nasa Langley Research Center, Hampton, VA, USA, 1993.

11
Eric de Sturler. IBLU preconditioners for massively parallel computers. In D. E. Keyes and J. Xu, editors, Domain Decomposition Methods in Science and Engineering (Proceedings of the Seventh International Conference on Domain Decomposition, October 27--30, 1993, The Pennsylvania State University). American Mathematical Society. Providence, USA, 1995.

12
H.A. Van der Vorst. Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from pde-problems. J. Comput. Phys., 44:1--19, 1981.

13
Radicati di Brozolo and Y. Robert. Parallel conjugate gradient like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Computing, 11:223--239, 1989.

14
S.C. Eisenstat, H.C. Elman, and M.H. Schultz. Variational iterative methods for nonsymmetric systems of linear equations. SIAM Journal of Numerical Analysis, 20:345--357, 1983.

15
R. Glowinski, G.H. Golub, G.A. Meurant, and J. Périaux, editors. First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988.

16
Roland Glowinski, Yuri A. Kuznetsov, Gérard Meurant, Jacques Périaux, and Olof B. Widlund, editors. Proc. of the Fourth International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia, 1991.

17
C.P. Jackson and P.C. Robinson. A numerical study of various algorithms related to the preconditioned conjugate gradient method. Internal Journal for Numerical Methods in Engineering, 21:1315--1338, 1985.

18
Wang Jin-xiau. The parallel block preconditioned conjugate gradient algorithms. In David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors, Proc. of the Fifth International Symposium on Domain Decomposition methods for Partial Differential Equations, pages 339--345, SIAM, Philadelphia, 1992.

19
David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and Robert G. Voigt, editors. Proc. of the Fifth International Symposium on Domain Decomposition methods for Partial Differential Equations, SIAM, Philadelphia, 1992.

20
A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels. The ISNaS incompressible Navier-Stokes solver: invariant discretization. Applied Scientific Research, 48:175--191, 1991.

21
C.W. Oosterlee, P. Wesseling, A. Segal, and E. Brakkee. Benchmark solutions for the incompressible Navier-Stokes equations in general coordinates on staggered grids. International Journal for Numerical Methods in Fluids, 17:301--321, 1993.

22
Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Comp., 14:461--469, 1993.

23
Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comp., 7:856--869, 1986.

24
H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods. Numerical Linear Algebra with Applications, 1(4), 1994.

25
C. Vuik. New insights in GMRES-like methods with variable preconditioners. Reports of the Faculty of Technical Mathematics and Informatics 93--10, Delft University of Technology, Delft, 1993. Available from anonymous ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1993/DUT-TWI-93-10.ps .gz.

26
C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the GMRES method. International Journal for Numerical Methods in Fluids, 16:507--523, 1993.

27
P. Wesseling, A. Segal, J. van Kan, C.W. Oosterlee, and C.G.M. Kassels. Invariant discretization of the incompressible Navier-Stokes equations in general coordinates on staggered grids. Comput. Fluids Dyn. J., 1:27--33, 1992.



ISNaS ontwikkeling
Thu Jun 1 10:46:16 METDST 1995