Next: About this document
Up: An investigation of Schwarz
Previous: Conclusions
References
- 1
-
P.E. Bjørstad and O.B. Widlund.
Iterative methods for the solution of elliptic problems on regions
partitioned into substructures.
SIAM Journal of Numerical Analysis, 23:1097--1120, 1986.
- 2
-
E. Brakkee and A. Segal.
A parallel domain decomposition algorithm for the incompressible
Navier-Stokes equations.
In L. Dekker, W. Smit, and J.C. Zuidervaart, editors, Massively
Parallel Processing Applications and Development, pages 743--752, Elsevier,
Amsterdam, 1994.
- 3
-
E. Brakkee, A. Segal, and C.G.M. Kassels.
A parallel domain decomposition algorithm for the incompressible
Navier-Stokes equations.
To appear in Journal of Simulation Practice and Theory.
- 4
-
Erik Brakkee and Piet Wesseling.
Schwarz domain decomposition for the incompresssible
Navier-Stokes equations in general coordinates.
Report 94-84, Faculty of Technical Mathematics and Informatics, Delft
University of Technology, Delft, 1994.
Available from anonymous
ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-84.ps
.gz.
- 5
-
Erik Brakkee and Peter Wilders.
A domain decomposition method for the advection-diffusion equation.
Report 94-08, Faculty of Technical Mathematics and Informatics, Delft
University of Technology, Delft, 1994.
Available from anonymous
ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1994/DUT-TWI-94-08.ps
.gz.
- 6
-
Xiao-Chuan Cai, William D. Gropp, and David E. Keyes.
A comparison of some domain decomposition and ILU preconditioned
iterative methods for nonsymmetric elliptic problems.
Numerical Linear Algebra with Applications, 1, 1994.
- 7
-
Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund,
editors.
Proc. of the Second International Symposium on Domain
Decomposition methods, SIAM, Philadelphia, 1989.
- 8
-
Tony F. Chan, Roland Glowinski, Jacques Périaux, and Olof B. Widlund,
editors.
Proc. of the Third International Symposium on Domain
Decomposition methods for Partial Differential Equations, SIAM,
Philadelphia, 1990.
- 9
-
C.W.Oosterlee and P.Wesseling.
A multigrid method for an invariant formulation of the incompressible
Navier-Stokes equations in general coordinates.
Comm. Applied Num. Methods, 8:721--725, 1992.
- 10
-
E. de Sturler and D.R. Fokkema.
Nested Krylov methods and preserving the orthogonality.
In N. Duane Melson, T.A. Manteuffel, and S.F. McCormick, editors,
Sixth Copper Mountain Conference on Multigrid Methods, Nasa Conference
Publication 3224, Part I, pages 111--125, Nasa Langley Research Center,
Hampton, VA, USA, 1993.
- 11
-
Eric de Sturler.
IBLU preconditioners for massively parallel computers.
In D. E. Keyes and J. Xu, editors, Domain Decomposition Methods
in Science and Engineering (Proceedings of the Seventh International
Conference on Domain Decomposition, October 27--30, 1993, The Pennsylvania
State University). American Mathematical Society. Providence, USA, 1995.
- 12
-
H.A. Van der Vorst.
Iterative solution methods for certain sparse linear systems with a
non-symmetric matrix arising from pde-problems.
J. Comput. Phys., 44:1--19, 1981.
- 13
-
Radicati di Brozolo and Y. Robert.
Parallel conjugate gradient like algorithms for solving sparse
nonsymmetric linear systems on a vector multiprocessor.
Parallel Computing, 11:223--239, 1989.
- 14
-
S.C. Eisenstat, H.C. Elman, and M.H. Schultz.
Variational iterative methods for nonsymmetric systems of linear
equations.
SIAM Journal of Numerical Analysis, 20:345--357, 1983.
- 15
-
R. Glowinski, G.H. Golub, G.A. Meurant, and J. Périaux, editors.
First International Symposium on Domain Decomposition Methods
for Partial Differential Equations, SIAM, Philadelphia, 1988.
- 16
-
Roland Glowinski, Yuri A. Kuznetsov, Gérard Meurant, Jacques
Périaux, and Olof B. Widlund, editors.
Proc. of the Fourth International Symposium on Domain
Decomposition methods for Partial Differential Equations, SIAM,
Philadelphia, 1991.
- 17
-
C.P. Jackson and P.C. Robinson.
A numerical study of various algorithms related to the preconditioned
conjugate gradient method.
Internal Journal for Numerical Methods in Engineering,
21:1315--1338, 1985.
- 18
-
Wang Jin-xiau.
The parallel block preconditioned conjugate gradient algorithms.
In David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S.
Scroggs, and Robert G. Voigt, editors, Proc. of the Fifth International
Symposium on Domain Decomposition methods for Partial Differential
Equations, pages 339--345, SIAM, Philadelphia, 1992.
- 19
-
David E. Keyes, Tony F. Chan, Gérard Meurant, Jeffrey S. Scroggs, and
Robert G. Voigt, editors.
Proc. of the Fifth International Symposium on Domain
Decomposition methods for Partial Differential Equations, SIAM,
Philadelphia, 1992.
- 20
-
A.E. Mynett, P. Wesseling, A. Segal, and C.G.M. Kassels.
The ISNaS incompressible Navier-Stokes solver: invariant
discretization.
Applied Scientific Research, 48:175--191, 1991.
- 21
-
C.W. Oosterlee, P. Wesseling, A. Segal, and E. Brakkee.
Benchmark solutions for the incompressible Navier-Stokes
equations in general coordinates on staggered grids.
International Journal for Numerical Methods in Fluids,
17:301--321, 1993.
- 22
-
Y. Saad.
A flexible inner-outer preconditioned GMRES algorithm.
SIAM J. Sci. Stat. Comp., 14:461--469, 1993.
- 23
-
Y. Saad and M.H. Schultz.
GMRES: a generalized minimal residual algorithm for solving
non-symmetric linear systems.
SIAM J. Sci. Stat. Comp., 7:856--869, 1986.
- 24
-
H.A. van der Vorst and C. Vuik.
GMRESR: a family of nested GMRES methods.
Numerical Linear Algebra with Applications, 1(4), 1994.
- 25
-
C. Vuik.
New insights in GMRES-like methods with variable preconditioners.
Reports of the Faculty of Technical Mathematics and Informatics
93--10, Delft University of Technology, Delft, 1993.
Available from anonymous
ftp://ftp.twi.tudelft.nl/TWI/publications/tech-reports/1993/DUT-TWI-93-10.ps
.gz.
- 26
-
C. Vuik.
Solution of the discretized incompressible Navier-Stokes
equations with the GMRES method.
International Journal for Numerical Methods in Fluids,
16:507--523, 1993.
- 27
-
P. Wesseling, A. Segal, J. van Kan, C.W. Oosterlee, and C.G.M. Kassels.
Invariant discretization of the incompressible Navier-Stokes
equations in general coordinates on staggered grids.
Comput. Fluids Dyn. J., 1:27--33, 1992.
ISNaS ontwikkeling
Thu Jun 1 10:46:16 METDST 1995