In preparation

  1. J. Lie, H.M. Schuttelaars, and M. Möller: A refinement strategy to determine the optimal number of degrees of freedom in the finite element methods.

Under review

  1. P. de Koster, R. Tielen, E.D. Wobbes, and M. Möller: Towards a material point method with C1-continuous Powell-Sabin spline basis functions un unstructured triangulations. Submitted to: International Journal for Numerical Methods in Engineering.
  2. J. Hinz, M. Möller, and C. Vuik: Elliptic Grid Generation Techniques for the Generation of IgA-Suitable Planar Parameterizations with Arbitrary Continuity Properties. Submitted to the Proceedings of the 3rd Conference on Isogeometric Analysis and Applications (IGAA 2018), 23-27 April 2018, Delft, The Netherlands.
  3. R. Tielen, M. Möller, and C. Vuik: Efficient p-multigrid based solvers for multipatch geometries in isogeometric analysis. Submitted to the Proceedings of the 3rd Conference on Isogeometric Analysis and Applications (IGAA 2018), 23-27 April 2018, Delft, The Netherlands.
  4. R. Tielen, M. Möller, D. Göddeke, and C. Vuik: Efficient p-Multigrid Methods for Isogeometric Analysis. Submitted to: Comput. Meth. Appl. Mech. Engrg.
  5. R. Miedema, G. Smaragdos, M. Negrello, Z. Al-Ars, Matthias Möller, and Ch. Strydis: Generic Hodgkin-Huxley models implemented on FPGA based Data-Flow engines. Submitted to: The 27th IEEE International Symposium On Field-Programmable Custom Computing Machines.

Preprints

  1. D. Kuzmin, M. Möller, and J.N. Shadid: High-resolution finite element schemes for an idealized Z-pinch implosion model. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 410, Technische Universität Dortmund, 2010 (PDF).

Book Chapters

  1. E.D. Wobbes, R. Tielen, M. Möller, and C. Vuik: Chapter 4 in The Material Point Method for Geotechnical Engineering: A Practical Guide (link). CRP Press, US, 2019.
  2. D. Göddeke, D. Komatitsch, M. Möller: Finite and Spectral Element Methods on Unstructured Grids for Flow and Wave Propagation Problems. Chapter 9 in: Volodymyr Kindratenko (editor): Numerical Computations with GPUs, Springer, Jul. 2014. doi: 10.1007/978-3-319-06548-9_9.
  3. S. Turek, M. Möller, M. Razzaq, and L. Rivkind: Efficient Simulation and Optimization of Rotationally Symmetric, Converging-Diverging de Laval Nozzles for Twin Wire Arc Spraying. In: W. Tillmann and I. Baumann (editors). CRC 708 - 6th Public Colloquium. Verlag Praxiswissen, Dortmund 2013, pp. 153-166. ISBN 978-3-86975-086-6.
  4. C. Kühbacher, M. Möller, and S. Turek: Ein dG-FEM-Verfahren zur Lösung der Konvektions-Diffusionsgleichung mit Hilfe von Mehrgitterverfahren. In: W. Tillmann and J. Nebel (editors). CRC 708 - 5th Public Colloquium. Verlag Praxiswissen, Dortmund, 2012, pp. 135-144. ISBN 978-3-86975-071-2.
  5. D. Kuzmin, M. Möller, M. Gurris: Algebraic flux correction II. Compressible Flow Problems. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 439, Technische Universität Dortmund, 2011 (PDF). In: D. Kuzmin et al. (eds), Flux-Corrected Transport: Principles, Algorithms, and Applications, Springer, 2nd edition, 2012, 193-238, doi: 10.1007/10.1007/978-94-007-4038-9_7.
  6. M. Möller, C. Kühbacher, and S. Turek: Ein implizites DG-FEM-Verfahren zur Lösung der kompressiblen Eulergleichungen. In: W. Tillmann and J. Nebel (editors). CRC 708 - 4th Public Colloquium. Verlag Praxiswissen, Dortmund, 2011, pp. 139-148. ISBN 978-3-86975-052-1.
  7. M. Gurris, R. Münster, Z. Cui, S. Turek, M. Möller, D. Kuzmin, and O. Mierka: Effiziente FEM Techniken bei Beschichtungsvorgängen mittels Thermischer Spritztechnik. In: W. Tillmann and J. Nebel (editors). CRC 708 - 3rd Public Colloquium. Verlag Praxiswissen, Dortmund, 2010, pp. 117-130. ISBN 978-3-86975-010-1.
  8. D. Kuzmin and M. Möller: Algebraic flux correction I. Scalar conservation laws. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 249, Technische Universität Dortmund, 2004 (PDF). In: D. Kuzmin et al. (eds), Flux-Corrected Transport: Principles, Algorithms, and Applications, Springer, 2005, 155-206, doi: 10.1007/3-540-27206-2_6.
  9. D. Kuzmin and M. Möller: Algebraic flux correction II. Compressible Euler equations. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 250, Technische Universität Dortmund, 2004 (PDF). In: D. Kuzmin et al. (eds), Flux-Corrected Transport: Principles, Algorithms, and Applications, Springer, 2005, 261-250, doi: 10.1007/3-540-27206-2_7.

Scientific Articles in Journals (peer-reviewed)

  1. M. Möller and C. Vuik: A Conceptual Framework for Quantum Accelerated Automated Design Optimization. Accepted for publication in: Microprocessors and Microsystems. doi: 10.1016/j.micpro.2019.02.009.
  2. J. Q.-A. Tran, E.D. Wobbes, W. Solowski, M. Möller, and C. Vuik: Moving least squares reconstruction for B-spline Material Point Method (PDF). Proceedings of the 2nd International Conference on the Material Point Method (MPM 2019), 8-10 January 2019, Cambridge, United Kingdom.
  3. R. Tielen, M. Möller, and C. Vuik: Efficient multigrid based solvers for B-spline MPM (PDF). Proceedings of the 2nd International Conference on the Material Point Method (MPM 2019), 8-10 January 2019, Cambridge, United Kingdom.
  4. E.D. Wobbes, R. Tielen, M. Möller, C. Vuik, and V. Galavi: Comparison between Material Point Method and meshfree schemes derived from optimal transportation theory (PDF). Proceedings of the 2nd International Conference on the Material Point Method (MPM 2019), 8-10 January 2019, Cambridge, United Kingdom.
  5. M. Möller: On the Development of an Isogeometric Analysis Framework for the Numerical Analysis of Screw Machines (PDF). Proceedings of the 10th International Conference on Screw Machines (ICSM 2018). IOP Conf. Ser.: Mater. Sci. Eng. 425 (2018), 012032, doi:10.1088/1757-899X/425/1/012032.
  6. J. Hinz, M. Möller, and C. Vuik: Spline-Based Meshing Techniques for Twin-Screw Machine Geometries (PDF). Proceedings of the 10th International Conference on Screw Machines (ICSM 2018). IOP Conf. Ser.: Mater. Sci. Eng. 425 (2018), 012030, doi:10.1088/1757-899X/425/1/012030.
  7. E.D. Wobbes, M. Möller, V. Galavi, and C. Vuik: Conservative Taylor Least Squares reconstruction for material point methods (PDF). Int. J. Numer. Meth. Fluids 117 (2018) no. 3, 271-290, doi: 10.1002/nme.5956.
  8. J. Hinz, M. Möller, and C. Vuik: Elliptic Grid Generation Techniques in the Framework of Isogeo-metric Analysis Applications. Computer Aided Geometric Design 65 (2018), 48-75, doi: 10.1016/j.cagd.2018.03.023.
  9. J. Maljaars, R.J. Labeur, and M. Möller: A high-order particle-mesh operator splitting approach for the incompressible Navier-Stokes equations. J. Comput. Phys. 358 (2018), 150-172, doi: 10.1016/j.jcp.2017.12.036.
  10. M. Möller and C. Vuik: On the impact of quantum computing technology on future developments in high-performance scientific computing(arXiv:1705.07413). Ethics and Information Technology 19 (2017), 253-269, doi: 10.1007/s10676-017-9438-0. ArXiv 1705.07413.
  11. B.S. Hosseini, S. Turek, M. Möller, and C. Palmes: Isogeometric analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows (PDF). J. Comput. Phys. 348 (2017), 171-194, doi: 10.1016/j.jcp.2017.07.029.
  12. R. Tielen, E.D. Wobbes, M. Möller, and L. Beuth: A high order material point method (PDF). Proceedings of the 1st International Conference on the Material Point Method (MPM 2017), 10-13 January 2017, Delft, The Netherlands, 175 (2017), 265-272, doi:10.1016/j.proeng.2017.01.022.
  13. J. Maljaars, R.J. Labeur, M. Möller, and W. Uijttewaal: A hybrid particle-mesh approach for the numerical simulation of a wave flume (PDF). Proceedings of the 1st International Conference on the Material Point Method (MPM 2017), 10-13 January 2017, Delft, The Netherlands, 175 (2017), 21-28, doi:10.1016/j.proeng.2017.01.007.
  14. M. Kumar, H.M. Schuttelaars, P.C. Roos, M. Möller: Three-dimensional semi-idealized model for tidal motion in tidal estuaries. An Application to the Ems estuary (PDF). Ocean Dynamics 66 (2016) no. 1, 99-118 doi: 10.1007/s10236-015-0903-1.
  15. B. Hosseini, M. Möller, and S. Turek: A numerical study of Isogeometric Analysis for cavity flow and flow around a cylindrical obstacle, Ergebnisberichte des Instituts für Angewandte Mathematik, no. 505, Technische Universität Dortmund, 2014 (PDF). Appl. Math. Comput. 276 (2015), 264-281, doi: 10.1016/j.amc.2015.03.104
  16. M. Möller: Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 464, Technische Universität Dortmund, 2012 (PDF). Computing 95 (2013) no. 5, 425-448, doi: 10.1007/s00607-012-0276-y.
  17. D. Kuzmin, M. Möller, J.N. Shadid, and M. Shashkov: Failsafe flux limiting and constrained data projections for equations of gas dynamics. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 407, Technische Universität Dortmund, 2010 (PDF). J. Comput. Phys. 229 (2010) no. 23, 8766-8779, doi: 10.1016/j.jcp.2010.08.009.
  18. D. Kuzmin and M. Möller: Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 394, Technische Universität Dortmund, 2009 (PDF). J. Comput. Appl. Math. 223 (2010) no. 12, 3113-3120, doi: 10.1016/j.cam.2009.07.026.
  19. M. Möller, D. Kuzmin, and D. Kourounis: Implicit FEM-FCT algorithms and discrete Newton methods for transient convection problems. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 340, Technische Universität Dortmund, 2007 (PDF). Int. J. Numer. Meth. Fluids. 57 (2008) no. 7, 761-792, doi: 10.1002/fld.1654.
  20. M. Möller: On an efficient solution strategy of Newton type for implicit finite element schemes based on algebraic flux correction (PDF). Int. J. Numer. Meth. Fluids. 56 (2008) no. 8, 1085-1091, doi: 10.1002/fld.1645.
  21. M. Möller: Efficient solution techniques for implicit finite element schemes with flux limiters. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 328, Technische Universität Dortmund, 2006 (PDF). Int. J. Numer. Meth. Fluids 55 (2007) no. 7, 617-635, doi: 10.1002/fld.1470.
  22. M. Möller and D. Kuzmin: Adaptive mesh refinement for high-resolution finite element schemes. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 297, Technische Universität Dortmund, 2005 (PDF). Int. J. Numer. Meth. Fluids 52 (2006) no. 5, 545-569, doi: 10.1002/fld.1183.
  23. M. Möller, D. Kuzmin, and S. Turek: Implicit finite element discretizations based on the flux-corrected transport algorithm. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 285, Technische Universität Dortmund, 2005 (PDF). Int. J. Numer. Meth. Fluids 47 (2005) no. 10-11, 1197-1203, doi: 10.1002/fld.900.
  24. D. Kuzmin, M. Möller, and S. Turek: High-resolution FEM-FCT schemes for multidimensional conservation laws. Comput. Meth. Appl. Mech. Engrg. 193 (2004) 4915-4946, doi: 10.1016/j.cma.2004.05.009.
  25. D. Kuzmin, M. Möller, and S. Turek: Multidimensional FEM-FCT schemes fo arbitrary time-stepping. Ergebnisberichte des Instituts für Angewandte Mathematik, no. 215, Technische Universität Dortmund, 2002 (PDF). Int. J. Numer. Meth. Fluids 42 (2003) 265-295, doi: 10.1002/fld.493.

Scientific Articles in Proceedings

  1. I. Stamoulias, M. Möller, C. Strydis, C. Kachris, and D. Soudris: High-performance hardware accelerators for solving ordinary differential equations. In: Proceedings of the 8th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART2017), 7th-9th June 2017, Bochum, Germany. doi: 10.1145/3120895.3120919
  2. M. Möller and A. Jaeschke: FDBB: Fluid dynamics building blocks (PDF). In: Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11th-15th June 2018, Glasgow, United Kingdom.
  3. E.D. Wobbes, M. Möller, V. Galavi and C. Vuik: Taylor least squares reconstruction technique for material point methods (PDF). In: Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11th-15th June 2018, Glasgow, United Kingdom.
  4. R. Tielen, M. Möller, and C. Vuik: Efficient multigrid based solvers for isogeometric analysis (PDF). In: Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11th-15th June 2018, Glasgow, United Kingdom.
  5. J. Hinz, M. Möller, and C. Vuik: Spline-based meshing techniques for industrial applications (PDF). In: Proceedings of the 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11th-15th June 2018, Glasgow, United Kingdom.
  6. A. Jaeschke and M. Möller: High-order isogeometric methods for compressible flows. I. Scalar conservation laws (arXiv:1809.10896). Accepted for publication in: 19th International Conference on Finite Elements in Flow Problems (FEF 2017), 5-7th April 2017, Rome, Italy.
  7. A. Jaeschke and M. Möller: High-order isogeometric methods for compressible flows. II. Compressible Euler equations (arXiv:1809.10893). Accepted for publication in: 19th International Conference on Finite Elements in Flow Problems (FEF 2017), 5-7th April 2017, Rome, Italy.
  8. J.M. van der Meer, J.F.B.M. Kraaijevanger, M. Möller, and J.D. Jansen: Temporal oscillations in the simulation of foam enhanced oil recovery (PDF). In: Proceedings of the 15th European Conference on the Mathematics of Oil Recovery (ECMOR XV), 29th August - 1st September 2016, Amsterdam, The Netherlands.
  9. M. Möller: On the design of non-conforming high-resolution finite element schemes (PDF). In: J. Eberhardsteiner et al. (ads), Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), 2012, 1-19. doi: 10.3997/2214-4609.201601850
  10. M. Möller and D. Kuzmin: On the use of slope limiters for the design of recovery based error indicators (PDF). In: P. Wesseling et al. (eds), Proceedings of the European Conference on Computational Fluid Dynamics, 2006, 1-16.
  11. M. Möller and D. Kuzmin: On the use of slope limiters for the design of recovery based error indicators (PDF). In: A. Bermudez de Castro et al. (eds), Numerical Mathematics and Advanced Applications (Proceedings of the ENUMATH 2005 Conference), Springer, 2006, 233-240.
  12. M. Möller, D. Kuzmin, and S. Turek: Implicit FEM-FCT algorithm for compressible flows (PDF). Ergebnisberichte des Instituts für Angewandte Mathematik, no. 276, Technische Universität Dortmund, 2004. In: M. Feistauer et al. (eds), Numerical Mathematics and Advanced Applications (Proceedings of the ENUMATH 2003 Conference), Springer, 2004, 641-650.
  13. M. Möller, D. Kuzmin, and S. Turek: Implicit flux-corrected transport algorithm for finite element simulation of the compressible Euler equations (PDF). Ergebnisberichte des Instituts für Angewandte Mathematik, no. 221, Technische Universität Dortmund, 2002. In: M. Krizek et al. (eds), Conjugate Gradient Algorithms and Finite Element Methods, Springer, 2004, 325-354.

PhD Thesis

  • M. Möller: Adaptive High-Resolution Finite Element Schemes (PDF). Technische Universität Dortmund, Germany, (2008)

Diploma Thesis

  • M. Möller: Hochauflösende FEM-FCT Verfahren zur Diskretisierung von konvektionsdominanten Transportproblemen mit Anwendung auf die kompressiblen Euler Gleichungen (PDF). Technische Universität Dortmund, Germany, (2003) (in german)